JOC The Journal of Organic Chemistry

# Article

# Visible-light-driven Difluoromethylation of Isocyanides with S-(Difluoromethyl)diarylsulfonium Salt: Access to a Wide Variety of Difluoromethylated Phenanthridines and Isoquinolines

Wen-Bing Qin, Wei Xiong, Xin Li, Jia-Yi Chen, Li-Ting Lin, Henry Nai Ching Wong, and Guo-Kai Liu

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.0c00816 • Publication Date (Web): 15 Jul 2020 Downloaded from pubs.acs.org on July 16, 2020

# **Just Accepted**

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

# Visible-light-driven Difluoromethylation of Isocyanides with S-(Difluoromethyl)diarylsulfonium Salt: Access to a Wide Variety of Difluoromethylated Phenanthridines and Isoquinolines

Wen-Bing Qin,<sup>a</sup> Wei-Xiong,<sup>a</sup> Xin Li,<sup>a</sup> Jia-Yi Chen,<sup>a</sup> Li-Ting Lin,<sup>a</sup> Henry N. C. Wong,<sup>b</sup> and Guo-Kai Liu\*<sup>a</sup>

<sup>a</sup> School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, 3688 Nanhai Ave., Shenzhen 518060, China

<sup>b</sup> Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China

Supporting Information



**ABSTRACT:** A highly efficient approach of visible-light-driven radical difluoromethylation of isocyanides to access a wide variety of difluoromethylated phenanthridines and isoquinolines was herein described. Electrophilic *S*-(difluoromethyl)diarylsulfonium salt proved to be a good difluoromethyl radical precursor under photoredox catalysis. Broad range of isocyanides were tolerated to furnish the corresponding difluoromethylated phenanthridines, isoquinolines, furo[3,2-c]pyridine and pyrido[3,4-b]indole in moderate to excellent yields under mild conditions. A plausible mechanism was also proposed.

# INTRODUCTION



ACS Paragon Plus Environment

Difluoromethyl group ( $CF_2H$ ) is a useful structural moiety in pharmaceuticals,<sup>1</sup> agrochemicals,<sup>2</sup> and materials,<sup>3</sup> because of its contribution to a profound and beneficial alternation in chemical, physical and biological properties of the parent compounds.<sup>4</sup> In particular, CF<sub>2</sub>H unit plays an important role in drug discovery and development, since it can act as a bioisostere to CH<sub>3</sub>OH and SH units<sup>1h, 5</sup> and serve in hydrogenbond donor with more lipophilicity and metabolic-stability,<sup>6</sup> thereby benefitting the ADME (Absorption, Distribution, Metabolism and Excretion) of drugs.<sup>[1h,4f]</sup> Therefore, the introduction of a CF<sub>2</sub>H group into common organic molecules represents a significant synthetic goal. Among the existing strategies for the synthesis of difluoromethylated compounds, the visible-light photoredox radical approach has been emerged recently as one of the most powerful synthetic tools, due to its numerous advantages such green, highly efficient, mild conditions, environment-friendly and economic, etc. In the past few years, several research groups have contributed this research area,<sup>7</sup> including Dolbier,<sup>8</sup> Qing,<sup>9</sup> and Akita<sup>10</sup> etc. However, most of these previous reports chose to focus on radical difluoromethylation of alkenes. A direct radical difluoromethylation of isocyanides install to difluoromethylated phenanthridines and isoquinolines is still underdeveloped. More importantly, both phenanthridines and isoquinolines are very useful skeletons which frequently occur in natural products and biologically active molecules.<sup>11</sup> Consequently, the facile synthesis of difluoromethylated phenanthridines and isoquinolines from the corresponding isocyanides via a radical pathway has attracted considerable attention in the past few years. The current methods to access difluoromethylated phenanthridines and isoquinolines mainly involve transition-metal catalysis<sup>12</sup> or metal-free conditions.<sup>13</sup> However, very few visible-light-driven protocols have been

| Image: state         Image: state           entry         [I           1         Ir           2         R           3         E           4         44           5 <sup>b</sup> Ir           6         Ir | C <sup>+</sup> BF <sub>4</sub> | O → → OMe → PC (3.0 mol<br>base (2.0 equ<br>solvent, rt, a<br>blue LED, ove                                        | %)<br>Jiv)<br>rgon<br>ernight | <mark>CF₂H</mark><br>⊳N |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------|--|--|
| entry [I<br>1 Ir<br>2 R<br>3 E<br>4 4<br>$5^{b}$ Ir<br>6 Iv                                                                                                                                               |                                | NC +<br>BF <sub>4</sub> OMe OMe PC (3.0 mol%)<br>base (2.0 equiv)<br>solvent, rt, argon<br>blue LED, overnight Jaa |                               |                         |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                     | PC]                            | base/(equiv)                                                                                                       | solvent                       | yield<br>(%)            |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                     | r(ppy) <sub>3</sub>            |                                                                                                                    | DCM                           | 37                      |  |  |
| 3 E<br>4 4<br>5 <sup>b</sup> Ir                                                                                                                                                                           | u(bpy)2Cl2                     |                                                                                                                    | DCM                           | ND                      |  |  |
| 4 4 $5^{b}$ Ir                                                                                                                                                                                            | losin Y                        |                                                                                                                    | DCM                           | ND                      |  |  |
| 5 <sup>b</sup> Ir                                                                                                                                                                                         | CzPN                           |                                                                                                                    | DCM                           | 26                      |  |  |
| 6 Ir                                                                                                                                                                                                      | r(ppy) <sub>3</sub>            |                                                                                                                    | DCM                           | ND                      |  |  |
| 0 11                                                                                                                                                                                                      | r(ppy) <sub>3</sub>            |                                                                                                                    | 1,4-doxane                    | 30                      |  |  |
| 7 Ir                                                                                                                                                                                                      | r(ppy) <sub>3</sub>            |                                                                                                                    | THF                           | 31                      |  |  |
| 8 Ir                                                                                                                                                                                                      | r(ppy) <sub>3</sub>            |                                                                                                                    | MeCN                          | 19                      |  |  |
| 9 Ir                                                                                                                                                                                                      | r(ppy) <sub>3</sub>            | Et <sub>3</sub> N (2.0 equiv)                                                                                      | DCM                           | 4                       |  |  |
| 10 Ir                                                                                                                                                                                                     | r(ppy) <sub>3</sub>            | (iPr)2NEt (2.0 equiv)                                                                                              | DCM                           | 8                       |  |  |
| 11 Ir                                                                                                                                                                                                     | r(ppy) <sub>3</sub>            | DBU (2.0 equiv)                                                                                                    | DCM                           | 26                      |  |  |
| 12 Ir                                                                                                                                                                                                     | r(ppy) <sub>3</sub>            | KOH (1M, 2.0 equiv)                                                                                                | DCM                           | 71                      |  |  |
| 13 Ir                                                                                                                                                                                                     | r(ppy) <sub>3</sub>            | NaOH (1M, 2.0 equiv)                                                                                               | DCM                           | 58                      |  |  |
| 14 Ir                                                                                                                                                                                                     | r(ppy) <sub>3</sub>            | K <sub>2</sub> HPO <sub>4</sub> (1M, 2.0 equiv)                                                                    | DCM                           | 34                      |  |  |
| 15 Ir                                                                                                                                                                                                     | r(ppy) <sub>3</sub>            | KOAc (1M, 2.0 equiv)                                                                                               | DCM                           | 46                      |  |  |
| 16 Ir                                                                                                                                                                                                     | r(ppy) <sub>3</sub>            | KOH (2.0 equiv)                                                                                                    | DCM                           | 18                      |  |  |
| 17 <sup>c</sup> Ir                                                                                                                                                                                        |                                |                                                                                                                    |                               |                         |  |  |

<sup>*a*</sup> Reaction conditions (unless otherwise specified): 1a (0.1 mmol), photocatalyst (3.0 mol%), solvent and 2 (0.2 mmol) was added in a tube, the reaction were irradiated with a 12 W blue LED at room temperature under argon atmosphere overnight, isolated yield. <sup>*b*</sup> Without blue LED. <sup>*c*</sup> PEG 600 (15  $\mu$ L) was added. Eosin Y = 2,4,5,7-Tetrabromofluorescein disodium salt, 4CzPN = 3,4,5,6-tetrakis(carbazol-9-yl)-1,2dicyanobenzene



<sup>*a*</sup> Reaction conditions (unless otherwise specified): **1** (0.1 mmol), **2** (0.2 mmol), Ir(ppy)<sub>3</sub> (3 mol%), PEG 600 (15  $\mu$ L) and KOH (1M, 2.0 equiv) in DCM (2 mL) were irradiated with a 12 W blue LED at room temperature under argon atmosphere overnight, isolated yields. <sup>*b*</sup> This reaction was performed in 3.0 mmol scale of **1aa** to give 61% isolated yield of **3aa**.

recorded. Yu and co-worker disclosed the first visible-lightdriven approach for radical difluoromethylation of isocyanides using BrCF<sub>2</sub>CO<sub>2</sub>Et as the difluoromethyl radical regent (Scheme 1a).<sup>14</sup> Subsequently, Hu<sup>15</sup> and Dolbier<sup>16</sup> employed difluoromethylsulfone (Scheme 1b) and HCF<sub>2</sub>SO<sub>2</sub>Cl (Scheme 1c) to realize the same goal under visible-light photoredox catalysis, respectively. Although the aforementioned progress has been rather useful, a facile and practical direct difluoromethylation of isocyanides is still lacking. Very developed recently. we the bench-stable S-(difluoromethyl)diarylsulfonium salts 2 as a highly efficient electrophilic difluoromethylating reagent and difluorocarbene precursor.<sup>17</sup> As a part of our continuous effort for the synthesis of biologically active fluorinated compounds, herein we disclose a facile visible-light-driven photoredox process for radical difluoromethylation of isocyanides to assemble 6difluoromethyl phenanthridine derivatives with 2 as a difluoromethyl radical reagent.

### **RESULTS AND DISCUSSION**

59 60

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

2

3

4

5

6

7

8

9

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

We initially used isocyanide **1a** as a model substrate to optimize the reaction conditions (Table 1). Reagent 2 was employed to generate the difluoromethyl radical by blue light irritation under Ir(ppy)<sub>3</sub> (3 mol%) in DCM. To our delight, the desired difluoromethylphenanthridine (3a) was formed in an isolated yield of 37% (entry 1). Although the reagent's byproduct trimethoxyphenyl sulfide is also a very electronrich arene, which might be a good radical acceptor, no corresponding difluoromethylation side product was found. Probably isocvanide is more active acceptor toward difluoromethyl radical than trimethoxyphenyl sulfide in this 10 reaction. Other photoredox catalysts such as Ru(bpy)<sub>2</sub>Cl<sub>2</sub>, 11 Eosin Y and 4CzPN were next tested, but no desired products 12 were found (entries 2-3) except 4CzPN in 26% yield (entry 4). 13 It should be noted that the reaction does not proceed in the absence of blue LED (entry 5). Using other solvents did not 14 give better results (entries 6-8). In order to improve the 15 reaction efficiency, bases were added to neutralize the acid 16 generated during the reaction course (entries 9-17). It was 17 found that organic bases were ineffective (entries 9-11), and 18 difluoromethylating reagent 2 might be decomposed under 19 Et<sub>3</sub>N or (<sup>*i*</sup>Pr)<sub>2</sub>NEt, thus resulting in decreasing yields (entries 20 9-10). Gratifyingly, we found that aqueous basic solution 21 would promote the reaction (entries 12-15). Thus, aqueous 22 KOH (1M) dramatically increased the yield to 71% (entry 12), 23 while only 18% yield of product was afforded when insoluble 24 KOH powder was used (entry 16). The yields were further slightly improved to 79% when 15 µL of PEG 600 was 25 employed as an additive (entry 17), probably benefiting from 26 its acting as a co-solvent to enhance miscibility of KOH 27 aqueous solution and organic solvent dichloromethane. 28

With the optimized reaction conditions in hand (entry 17, Table 1), we then examined the substrate scope of this process under optimized reaction conditions (Scheme 2). These substrates with both electron-donating (1ab-1af, 1ap, 1ba-1bb) and electron-withdrawing (1ag-1aj, 1al-1an, 1bc-1bg) substituents, regardless of para- or meta-positions on the biphenyl moieties of the isocyanides, were compatible to this reaction, leading to the formation of the corresponding products in moderate to good yields, although substrates bearing strongly electron-withdrawing groups (1ak, 1bf) gave poor yields. A 3.0 mmol scale conversion was performed and 419.3 mg **3aa** was isolated (61% yield), revealing the potential application of this method.

However, the ortho-OMe substituent and multiple OMe substituents in the benzene ring decreased reactivity to afford lower yields (3ao, 3aq), probably due to their steric hindrance. The 3-methoxy-substituted isocyanide 1ap gave two corresponding products 3ap and 3ap' in yields of 40% and 47%, respectively. Importantly, Substrates containing heteroaryl moieties including indole, pyrrole and thianaphthene were also suitable substrates for this transformation, providing their corresponding products 3ca-**3cd** in moderate to good yields.

Remarkably, 2-isocyanoacrylates could also react smoothly with the difluoromethyl radical reagent, offering the desired difluoromethylated isoquinolines (3da-3dd), furo[3,2c]pyridine (3de) and pyrido[3,4-b]indole (3df) in moderate is worth noting that direct vields. It radical difluoromethylation in a regioselective manner of the parent heterocycles remain still a highly challenge task so far, thus suggesting that this protocol indeed provides a practical and

efficient method for the synthesis of a variety of important difluoromethylated heterocyclic compounds which possess high potentials in pharmaceuticals and drug discovery.

To demonstrate the practicability of this radical difluoromethylation method, the synthesis for the drug 6difluoromethyltrispheridine, which is a DNA intercalator<sup>18</sup>, was exploited. As shown in scheme 3, the dioxole derivative 1ar could smoothly undergo reaction in a regioselectively manner to afford 6-difluoromethylated trispheridine 3ar as a single isomer in 71% yield under the standard conditions, while no 3ar' was found, thus clearly suggesting its practicability and potential in medical chemistry and drug discovery.

### Scheme 3. Synthesis of Difluoromethylated Trispheridine



To gain detailed insight into the mechanism, the cyclic voltammogram experiment was carried out. As shown in Scheme 4, the measured reduction potential of S-(difluoromethyl)diarylsulfonium salt 2 is  $E_{\rm p}^{\rm red} = -1.34$  V vs. SCE in  $CH_3CN$ , thus inferring that reagent 2 could be readily reduced by the selected photoexcited complex  $[Ir(ppy)_3^*]$  $(E_{1/2}^{red}[Ir^{IV}/Ir^{*III}] = -1.73 \text{ V vs. SCE})^{19}$ .

Based on our experimental results and previous mechanistic studies<sup>16</sup>, a plausible mechanism is proposed (Scheme 5). Initially, the excited  $[Ir(ppy)_3^*]$  catalyst reduces the

Scheme 4. Cyclic Voltammetry Study of Reagent 2



Scheme 5. Proposed Mechanism



*S*-(difluoromethyl)diarylsulfonium salt **2** to generate the CF<sub>2</sub>H radical, followed by an intermolecular addition to the isocyanide functionality of **1** to form imidoyl radical **A**. Radical **A** subsequently undergoes an intramolecular attack onto the pendant aromatic ring to give cyclohexadienyl-type radical **B**. Then radical **B** is oxidized by the high-valent catalyst Ir<sup>IV</sup> (E<sub>1/2</sub><sup>ox</sup>[Ir<sup>IV</sup>/Ir<sup>III</sup>] = +0.77 V vs. SCE)<sup>19</sup> through a single electron transfer (SET) process to afford the cyclohexadienyl cation **C** along with the regeneration of catalyst. Finally, aromatization of **C** *via* deprotonation leads to the desired product **3**. Another possible pathway is deprotonation of radical **B**, followed by oxidation with Ir<sup>IV</sup> to give final desired product **3**.

### CONCLUSIONS

In conclusion, we have developed an effective and practical approach for the assembling of a wide variety of difluoromethylated phenanthridines, isoquinolines, furo[3,2c]-pyridine and pyrido[3,4-b]indole from isocyanides with *S*-(difluoromethyl)diarylsulfonium salt **2** via visible-light-driven radical difluoromethylation process under mild reaction conditions. This transformation tolerated a variety of functional groups to furnish desired products in moderate to excellent yields. We believe that this protocol would provide a facile method to access many pharmaceutically important difluoromethylated heterocyclic compounds, and is of interest to organic chemists and medicinal chemists.

### EXPERIMENT SECTION

General Experimental Information: <sup>1</sup>H NMR spectra were recorded on a Bruker Ascend<sup>™</sup> 400MHz (400 MHz) or Bruker Ascend<sup>TM</sup> 500MHz (500 MHz) spectrometer at ambient temperature unless otherwise indicated. Data were reported as follows: chemical shifts in ppm from tetramethylsilane as an internal standard in CDCl<sub>3</sub>, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet-doublet, m = multiplet, br = broad), coupling constants (Hz), and assignment. <sup>13</sup>C NMR spectra were recorded on a Bruker Ascend<sup>TM</sup> 400MHz (101 MHz), Bruker Ascend<sup>™</sup> 500MHz (126 MHz) or Bruker Ascend<sup>™</sup> 600MHz (151 MHz) spectrometer at ambient temperature and were proton decoupled. Chemical shifts are reported in ppm from tetramethylsilane on the scale with the solvent resonance employed as the internal standard. <sup>19</sup>F NMR spectra were recorded on a Bruker Ascend<sup>™</sup> 400MHz (376 MHz), Bruker Ascend<sup>TM</sup> 500MHz (471 MHz) spectrometer at ambient temperature. Chemical shifts are reported in ppm from CFCl<sub>3</sub> as the internal standard. ESI-MS analyses were performed in

positive ionization mode on an Agilent 1260-Infinity LC/MSD. All high resolution mass spectra were obtained on a Thermo Scientific Q-Exactive (HR/AM) Orbitrap<sup>™</sup> mass spectrometer. Commercially available reagents were used as received. Reactions were monitored by TLC. Flash chromatography: silica gel (300-400 mesh).

### General Procedure for the Preparation of Isocyanides.

All known isocyanides were prepared according to a reported method, and analytical data are in agreement with those reported in the literature. <sup>14, 15, 20</sup>

General Procedure for synthesis of 2-(isocyano)-1,1 'biaryl derivatives A:



**Step 1**: 2-Iodoarylamine **S1** (1 mmol, 1.0 equiv), Arylboronic acid (1.2 mmol, 1.2 equiv) and an aqueous solution of  $K_2CO_3$  (2 M, 2.5 mL) were placed in a dry three necked flask under Ar. Then, DME (10 mL) was added and the mixture was stirred for 30 min at room temperature under Ar. To the stirred mixture,  $PdCl_2(PPh_3)_2$  (0.02 mmol, 0.02 equiv) was added at room temperature and the mixture was stirred at 80 °C (oil bath) over night. The mixture was then cooled to room temperature and diluted with EtOAc. The organic layer was washed with water and dried over anhydrous MgSO<sub>4</sub>. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel by using a 30:1 mixture of hexane/EtOAc as an eluent to provide **S2**.



**Step 2:** Acetic formic anhydride, which was prepared from the reaction of acetic anhydride (0.34 mL) with formic acid (0.76 mL) at 55 °C (oil bath) for 2 h, was added dropwise to a stirred solution of **S2** at 0 °C in THF (6 mL) and the mixture was stirred for 2 h at room temperature. Volatiles were removed in vacuum to afford **S3** as white solid. This material was used for the subsequent dehydration without further purification.

**Step 3:** A THF solution (6 mL) of the whole amount of **S3** and Et<sub>3</sub>N (1 mL, 7 mmol) was cooled to 0 °C. Then, POCl<sub>3</sub> (0.3 mL, 3 mmol) was added drop wise and the mixture was stirred at 0 °C for 2 h. After the reaction was completed, the mixture was quenched by aqueous saturated Na<sub>2</sub>CO<sub>3</sub> solution and stirred for 1 h. The mixture was extracted with CHCl<sub>3</sub> three times. The combined organic layer was dried over anhydrous MgSO<sub>4</sub>. The solvent was removed under reduced pressure and the crude product was purified by flash column chromatography on silica gel by using a 20:1 mixture of hexane/EtOAc as an eluent to provide analytical pure product Isocyanides.

General Procedure for synthesis of 2-(isocyano)acrylates B:



2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

**Step 1:** A mixture of Arylaldehyde or Arylketone (**S4**, 5.0 mmol) and methyl isocyanoacetate (5.0 mmol) in THF (10 ml) was added dropwise to a suspension of NaH (60% in oil) (0.24 g, 6.0 mmol) in THF (10.0 ml) at room temperature. After stirring for 2 h at room temperature, 10% AcOH was added to the mixture at 0 °C until there is no hydrogen release. The solvent was removed under reduced pressure and the residue was extracted with  $CH_2Cl_2$  three times and the extract was washed with  $H_2O$ , dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. Further recrystallization in MeOH afforded the product **S5** as a white solid.

**Step 2:** THF (10.0 mL), NEt<sub>3</sub> (2.8 mL, 20 mmol) and S5 (5.0 mmol) were added to an oven-dried three necked flask under N<sub>2</sub> atmosphere and cooled to 0 °C. POCl<sub>3</sub> (0.47 mL, 5.0 mmol) was added dropwise and the mixture was stirred for 2 h at 0 °C after the addition was completed. Then the mixture was quenched by sat. Na<sub>2</sub>CO<sub>3</sub> and stirred for another 1 h. The mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> three times, dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/EtOAc = 20/1) to give analytical pure product **1da-df**.

2-isocyano-3',4',5'-trimethoxy-1,1'-biphenyl (1aq). Following general procedure A, 1aq was purified by silica gel chromatography (PE/EtOAc =20/1) as a white solid (142.7 mg, 53%). Mp: 88.5-90.0 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ 7.56 – 7.43 (m, 3H), 7.42 – 7.34 (m, 1H), 6.75 (s, 2H), 3.93 (s, 9H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  166.8, 153.2, 138.8, 138.3, 132.4, 130.4, 129.5, 128.1, 128.0, 124.5, 106.4, 61.0, 56.3. HRMS (ESI) m/z [M+H]<sup>+</sup> calculated for C<sub>16</sub>H<sub>16</sub>NO<sub>3</sub> 270.1125; found 270.1123.

*Methyl* 2-isocyano-[1,1'-biphenyl]-4-carboxylate (1bg). Following general procedure A, **1bg** was purified by silica gel chromatography (PE/EtOAc =5/1) as a white solid (165.8 mg, 66%). Mp: 57.1-58.3 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.18 (d, *J* = 1.5 Hz, 1H), 8.14 (dd, *J* = 8.1, 1.7 Hz, 1H), 7.57 – 7.47 (m, 6H), 4.45 (q, *J* = 7.1 Hz, 2H), 1.45 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  167.79, 164.7, 142.8, 136.1, 130.8, 130.6, 130.4, 129.0, 128.9, 128.8, 128.7, 124.7, 61.7, 14.3. HRMS (ESI) m/z [M+H]<sup>+</sup> calculated for C<sub>16</sub>H<sub>14</sub>NO<sub>2</sub> 252.1020; found 252.1019.

*Methyl* (*Z*)-3-(*furan-2-yl*)-2-*isocyanoacrylate* (*1de*). Following general procedure B, **1de** was purified by silica gel chromatography (PE/EtOAc =20/1) as a white solid (310.4 mg, 35%). Mp: 70.8-72.0 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.70 (d, J = 1.8 Hz, 1H), 7.61 (s, 1H), 7.35 (d, J = 3.7 Hz, 1H), 6.67 (dd, J = 3.7, 1.8 Hz, 1H), 3.93 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (151 MHz, CDCl<sub>3</sub>) δ 173.9, 161.7, 147.9, 146.7, 126.1, 119.6, 113.5, 110.8, 53.4. HRMS (ESI) m/z [M+H]<sup>+</sup> calculated for C<sub>9</sub>H<sub>8</sub>NO<sub>3</sub> 178.0499; found 178.0495.

*Methyl* (*Z*)-2-*isocyano-3-(1-methyl-1H-indol-3-yl)acrylate* (*1df*). Following general procedure B, **1df** was purified by silica gel chromatography (PE/EtOAc =5/1) as a white solid (564.6 mg, 47%). Mp: 154.1-155.0 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.81 (s, 1H), 7.75 (d, *J* = 7.8 Hz, 1H), 7.70 (s, 1H), 7.41 – 7.31 (m, 3H), 3.93 (s, 3H), 3.90 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  163.8, 162.8, 137.8, 136.7, 135.7, 129.1, 123.4, 122.0, 117.9, 110.2, 108.5, 107.7, 52.5, 33.8. HRMS (ESI) m/z [M+H]<sup>+</sup> calculated for C<sub>14</sub>H<sub>13</sub>N<sub>2</sub>O<sub>2</sub> 241.0972; found 241.0970.

General Procedure for Radical Difluoromethylation of Isocyanides

In a 15 mL flame-dried Schlenk tube (Synthware Glass, Beijing F580810) was charged with isocyanide 1 (0.1 mmol, 1.0 equiv), diarylsulfonium salt 2 (0.2 mmol, 2.0 equiv), fac- $Ir(ppy)_3$  (0.003 mmol, 0.03 equiv), PEG 600 (15 µL). The flask was evacuated and backfilled with argon for 3 times. KOH (1.0 M, 200 µL, 2.0 equiv) and CH<sub>2</sub>Cl<sub>2</sub> (2.0 mL) was added with syringe under argon. The mixture was then irradiated by a 12W blue LED (450 nm) strip overnight (laid 0.5 CM away from the Schlenk tube). The mixture was poured into a separatory funnel containing 10 mL H<sub>2</sub>O and 10 mL CH<sub>2</sub>Cl<sub>2</sub>. The layers were separated and the aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (2×10 mL). The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure after filtration. The residue was purified by flash chromatography on silica gel to afford the desired product difluoromethylated phenanthridines and isoquinolines 3.

# 3.0 mmol scale Procedure for Radical Difluoromethylation of Isocyanides

In a 100 mL flame-dried Schlenk tube (Synthware Glass, Beijing F588100N) was charged with isocyanide 1aa (3.0 mmol, 1.0 equiv), diarylsulfonium salt 2 (6.0 mmol, 2.0 equiv), fac-Ir(ppy)<sub>3</sub> (0.09 mmol, 0.03 equiv), PEG 600 (450 µL). The flask was evacuated and backfilled with argon for 3 times. KOH (1.0 M, 6.0 mL, 2.0 equiv) and CH<sub>2</sub>Cl<sub>2</sub> (60 mL) was added with syringe under argon. The mixture was then irradiated by a 12W blue LED (450 nm) strip overnight (laid 0.5 CM away from the Schlenk tube). The mixture was poured into a separatory funnel containing 60 mL H<sub>2</sub>O and 30 mL CH<sub>2</sub>Cl<sub>2</sub>. The layers were separated and the aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (2×30 mL). The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure after filtration. The residue was purified by flash chromatography on silica gel to afford the desired product 6-(difluoromethyl)phenanthridine (3aa) as a white solid (419.3 mg, 61%).

6-(difluoromethyl)phenanthridine (3aa).<sup>15</sup> Following general procedure, **3aa** was purified by silica gel chromatography (PE/EA = 30/1) as a white solid (17.7 mg, 77%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.67 (d, *J* = 8.3 Hz, 1H), 8.59 (d, *J* = 7.8 Hz, 2H), 8.22 (d, *J* = 7.7 Hz, 1H), 7.90 (t, *J* = 7.6 Hz, 1H), 7.83 – 7.72 (m, 3H), 7.05 (t, *J* = 54.4 Hz, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  151. 34 (t, *J* = 26.4 Hz), 142.4, 133.8, 131.2, 130.6, 129.1, 128.7, 127.8, 126.5 (t, *J* = 4.1 Hz), 125.0, 122.4, 122.2, 118.5 (t, *J* = 243.4 Hz). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -111.1 (d, *J* = 54.2 Hz).

6-(difluoromethyl)-8-methylphenanthridine (3ab).<sup>15</sup> Following general procedure, **3ab** was purified by silica gel chromatography (PE/EA = 30/1) as a white solid (17.0 mg, 70%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.49 – 8.44 (m, 2H), 8.25 (s, 1H), 8.16 – 8.05 (m, 1H), 7.69 – 7.61 (m, 3H), 6.95 (t, J = 54.4 Hz, 1H), 2.53 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ 151.0 (t, J = 26.4 Hz), 142.0, 137.9, 133.1, 131.7, 130.4, 128.6, 128.6, 125.7 (t, J = 4.1 Hz), 125.1, 122.6, 122.3, 122.0, 118.3 (t, J = 243.4 Hz), 21.9. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) δ -111.3 (d, J = 54.5 Hz).

8-(tert-butyl)-6-(difluoromethyl)phenanthridine (3ac).<sup>15</sup> Following general procedure, **3ac** was purified by silica gel chromatography (PE/EA = 30/1) as a white solid (20.6 mg, 72%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.62 (d, *J* = 8.8 Hz, 1H), 8.60 - 8.55 (m, 2H), 8.21 (dd, *J* = 6.9, 2.5 Hz, 1H), 8.00 (dd, *J* = 8.8, 1.9 Hz, 1H), 7.75 (tt, *J* = 7.1, 5.2 Hz, 2H), 7.07 (t, *J* = 54.4 Hz, 1H), 1.50 (s, 9H). <sup>13</sup>C {<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ 151.4 (t, J = 26.3 Hz), 150.9, 142.2, 131.7, 130.4, 129.7, 128.7, 128.5, 125.0, 122.5 (t, J = 1.8 Hz), 122.2, 122.0, 121.9 (t, J = 4.4 Hz), 118.5 (t, J = 243.5 Hz), 35.2, 31.2. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) δ -111.3 (d, J = 54.3 Hz).

6-(*difluoromethyl*)-8-*methoxyphenanthridine* (3*ad*).<sup>14,15</sup> Following general procedure, 3*ad* was purified by silica gel chromatography (PE/EA = 30/1) as a white solid (19.0 mg, 73%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.47 (d, J = 9.1 Hz, 1H), 8.44 – 8.37 (m, 1H), 8.13 – 8.04 (m, 1H), 7.81 (d, J = 2.1 Hz, 1H), 7.66 – 7.59 (m, 2H), 7.43 (dd, J = 9.1, 2.6 Hz, 1H), 6.95 (t, J = 54.4 Hz, 1H), 3.92 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ 158.8, 150. 3 (t, J = 26.6 Hz), 141.6, 130.4, 128.7, 128.3, 128.1, 125.1, 124.0, 123.7 (d, J = 2.1 Hz), 122.5, 121.7, 118.6 (t, J = 243.3 Hz), 105. 9 (t, J = 4.6 Hz), 55.6. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) δ -111.9 (d, J = 54.3 Hz).

6-(difluoromethyl)-8-(methylthio)phenanthridine (3ae).<sup>15</sup> Following general procedure, **3ae** was purified by silica gel chromatography (PE/EA = 30/1) as a white solid (17.9 mg, 65%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ 8.56 (d, J = 8.7 Hz, 1H), 8.55 - 8.52 (m, 1H), 8.34 - 8.31 (m, 1H), 8.22 - 8.18 (m, 1H), 7.80 - 7.74 (m, 3H), 7.04 (t, J = 54.4 Hz, 1H), 2.67 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  150.1 (t, J = 26.7 Hz), 141.5, 139.6, 131.1, 130.3, 130.2, 128.9, 128.9, 124.9, 122.8, 122.6, 121.9, 121.4 (t, J = 4.6 Hz), 118.0 (t, J = 243.6 Hz), 15.4. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -110.8 (d, J = 54.4 Hz).

6-(difluoromethyl)-8-phenylphenanthridine (3af).<sup>14,15</sup> Following general procedure, **3af** was purified by silica gel chromatography (PE/EA = 30/1) as a white solid (18.4 mg, 60%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.75 (d, J = 1.8 Hz, 1H), 8.67 (d, J = 8.6 Hz, 1H), 8.55 (dd, J = 7.6, 1.7 Hz, 1H), 8.19 (dd, J = 7.9, 1.4 Hz, 1H), 8.10 (dd, J = 8.6, 1.8 Hz, 1H), 7.78 – 7.70 (m, 4H), 7.52 (t, J = 7.6 Hz, 2H), 7.43 (t, J = 7.4 Hz, 1H), 7.05 (t, J = 54.4 Hz, 1H). <sup>13</sup>C {<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ 151.4 (t, J = 26.5 Hz), 142.4, 140.6, 140.0, 132.8, 130.6, 130.5, 129.1, 129.0, 128.7, 128.1, 127.5, 124.8, 124.3 (t, J = 4.3 Hz), 123.0, 122.8, 122.2, 118.5 (t, J = 243.4 Hz). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) δ -111.0 (d, J = 54.5 Hz).

6-(difluoromethyl)-8-fluorophenanthridine (3ag).<sup>15</sup> Following general procedure, 3ag was purified by silica gel chromatography (PE/EA = 30/1) as a white solid (17.3 mg, 70%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.64 (dd, J = 9.1, 5.2 Hz, 1H), 8.50 (dd, J = 6.8, 2.7 Hz, 1H), 8.23 – 8.17 (m, 2H), 7.80 – 7.73 (m, 2H), 7.64 (ddd, J = 9.1, 8.1, 2.6 Hz, 1H), 7.00 (t, J= 54.3 Hz, 1H). <sup>13</sup>C {<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ 161.4 (d, J = 249.3 Hz), 150.5 (dt, J = 27.1, 4.2 Hz), 142.1 (d, J = 1.3Hz), 130.7, 130.5, 129.1, 129.0, 124.9 (d, J = 8.6 Hz), 124.53, 123.4 (dt, J = 8.8, 1.7 Hz), 121.9, 120.6 (d, J = 24.1 Hz), 118.2 (t, J = 243.4 Hz), 111.2 (dt, J = 22.7, 4.5 Hz). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) δ -111.1 (m, 1F), -111.5 (d, J = 53.4 Hz, 2F).

8-chloro-6-(difluoromethyl)phenanthridine (3ah).<sup>15</sup> Following general procedure, **3ah** was purified by silica gel chromatography (PE/EA = 30/1) as a white solid (18.5 mg, 70%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.46 (d, J = 8.9 Hz, 1H), 8.43 (d, J = 1.8 Hz, 1H), 8.40 (dd, J = 8.2, 1.3 Hz, 1H), 8.09 (dd, J = 7.8, 1.4 Hz, 1H), 7.72 (dd, J = 8.9, 2.1 Hz, 1H), 7.69 (td, J = 7.2, 1.4 Hz, 1H), 7.66 (td, J = 7.2, 1.3 Hz, 1H), 6.90 (t, J = 54.3 Hz, 1H). <sup>13</sup>C {<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ 150.3 (t, J = 26.9 Hz), 142.3, 133.9, 132.1, 131.8, 130.7, 129.4, 129.1, 125.7 (t, J = 4.7 Hz), 124.3, 124.0, 123.1 (t, J = 1.8 Hz), 122.0, 118.1 (t, J = 243.6 Hz). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) δ -111.1 (d, J = 54.0 Hz). 8-bromo-6-(difluoromethyl)phenanthridine (3ai).<sup>15</sup> Following general procedure, 3ai was purified by silica gel chromatography (PE/EA = 30/1) as a white solid (16.1 mg, 52%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.69 (d, J = 1.8 Hz, 1H), 8.53 - 8.50 (m, 1H), 8.49 (d, J = 8.8 Hz, 1H), 8.18 (dd, J = 8.1, 1.1 Hz, 1H), 7.96 (dd, J = 8.9, 2.0 Hz, 1H), 7.80 (td, J = 8.2, 7.6, 1.5 Hz, 1H), 7.76 (td, J = 7.8, 7.3, 1.4 Hz, 1H), 6.99 (t, J =54.3 Hz, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ 150.2 (t, J =26.8 Hz), 142.3, 134.4, 132.4, 130.7, 129.4, 129.1, 128.8 (t, J = 4.7 Hz), 124.3, 124.1, 123.4 (t, J = 1.8 Hz), 122.0, 121.9, 118.1 (t, J = 243.6 Hz). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) δ -111.0 (d, J = 54.6 Hz).

6-(difluoromethyl)-8-(trifluoromethyl)phenanthridine (3aj).<sup>15</sup> Following general procedure, **3aj** was purified by silica gel chromatography (PE/EA = 10/1) as a white solid (15.8 mg, 53%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.87 (s, 1H), 8.79 (d, J = 8.7 Hz, 1H), 8.62 (d, J = 8.1 Hz, 1H), 8.26 (d, J = 8.0 Hz, 1H), 8.11 (d, J = 8.7 Hz, 1H), 7.88 (t, J = 7.5 Hz, 1H), 7.83 (t, J = 7.6 Hz, 1H), 7.06 (t, J = 54.2 Hz, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ 151.2 (t, J = 26.9 Hz), 143.0, 135.9, 130.8, 130.3, 129.7 (q, J = 33.0 Hz), 129.3, 127.1 (q, J = 3.1 Hz), 124.0 (q, J = 4.0 Hz), 124.0, 123.8 (q, J = 272.6 Hz), 123.5, 122.5, 121.6 (t, J = 1.7 Hz), 118.1 (t, J = 243.6 Hz). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) δ -62.9, -110.4 (d, J = 54.1 Hz).

6-(difluoromethyl)-8-nitrophenanthridine (**3ak**).<sup>15</sup> Following general procedure, **3ak** was purified by silica gel chromatography (PE/EA = 10/1) as a white solid (5.0 mg, 18%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 9.54 – 9.44 (m, 1H), 8.85 (d, J = 9.1 Hz, 1H), 8.70 (dd, J = 9.1, 2.3 Hz, 1H), 8.67 (d, J = 8.1 Hz, 1H), 8.29 (d, J = 8.1 Hz, 1H), 7.94 (td, J = 8.1, 1.3 Hz, 1H), 7.88 (td, J = 8.2, 1.2 Hz, 1H), 7.05 (t, J = 54.1 Hz, 1H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) δ -110.2 (d, J = 54.4 Hz).

6-(difluoromethyl)phenanthridine-8-carbonitrile (3al). Following general procedure, **3al** was purified by silica gel chromatography (PE/EA = 10/1) as a white solid (12.2 mg, 48%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.95 (s, 1H), 8.79 (d, J= 8.6 Hz, 1H), 8.63 (d, J = 8.1 Hz, 1H), 8.27 (d, J = 8.1 Hz, 1H), 8.10 (d, J = 8.6 Hz, 1H), 7.93 (t, J = 7.5 Hz, 1H), 7.87 (t, J = 7.6 Hz, 1H), 7.03 (t, J = 54.1 Hz, 1H). <sup>13</sup>C {<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ 150.7 (t, J = 27.4 Hz), 143.3, 136.2, 132.4, 132.0 (t, J = 4.8 Hz), 131.0, 130.9, 129.6, 123.8, 123.7, 122.7, 121.7, 118.0 (t, J = 243.6 Hz), 111.5. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -109.6 (d, J = 54.3 Hz). HRMS (ESI) m/z [M+H]<sup>+</sup> calculated for C<sub>15</sub>H<sub>9</sub> F<sub>2</sub>N<sub>2</sub> 255.0729; found 255.0722.

6-(difluoromethyl)-N,N-dimethylphenanthridine-8carboxamide (3am).<sup>15</sup> Following general procedure, 3am was purified by silica gel chromatography (PE/EA = 4/1) as a white solid (18.4 mg, 61%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.72 (d, J = 8.6 Hz, 1H), 8.63 – 8.61 (m, 1H), 8.59 (dd, J = 8.0, 1.4 Hz, 1H), 8.21 (dd, J = 8.0, 1.3 Hz, 1H), 8.01 (dd, J = 8.5, 1.6 Hz, 1H), 7.82 (td, J = 8.1, 7.6, 1.6 Hz, 1H), 7.78 (td, J = 7.7, 7.2, 1.5 Hz, 1H), 7.02 (t, J = 54.3 Hz, 1H), 3.21 (s, 3H), 3.09 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ 170.4, 151.2 (t, J = 26.7 Hz), 142.8, 135.3, 134.4, 130.7, 130.2, 129.7, 129.0, 125.2 (t, J = 4.4 Hz), 124.4, 123.0, 122.4, 121.6 (t, J = 1.7 Hz), 118.3 (t, J = 243.5 Hz), 39.7, 35.6. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) δ -110.6 (d, J = 54.0 Hz).

6-(difluoromethyl)-8-(methylsulfonyl)phenanthridine (3an).<sup>15</sup> Following general procedure, **3an** was purified by silica gel chromatography (PE/EA = 4/1) as a white solid (21.2 mg, 69%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  9.19 (s, 1H), 8.89 (d, J = 8.6 Hz, 1H), 8.67 (d, J = 8.2 Hz, 1H), 8.41 (d, J = 8.6 Hz,

58 59

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

1H), 8.29 (d, J = 8.0 Hz, 1H), 7.93 (t, J = 7.5 Hz, 1H), 7.88 (t, J = 7.5 Hz, 1H), 7.06 (t, J = 54.2 Hz, 1H), 3.22 (s, 3H). <sup>13</sup>C {<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  151.3 (t, J = 26.8 Hz), 143.3, 139.6, 137.0, 131.0, 130.9, 129.6, 128.3, 126.9 (t, J = 4.2 Hz), 124.3, 123.7, 122.8, 121.8, 117.9 (t, J = 243.8 Hz), 44.8. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -110.3 (d, J = 54.1 Hz).

6-(difluoromethyl)-10-methoxyphenanthridine (**3ao**).<sup>15</sup> Following general procedure, **3ao** was purified by silica gel chromatography (PE/EA = 30/1) as a white solid (9.4 mg, 36%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 9.47 (dd, J = 8.4, 1.4 Hz, 1H), 8.19 – 8.11 (m, 2H), 7.74 – 7.65 (m, 2H), 7.64 (t, J = 8.1Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 6.98 (t, J = 54.4 Hz, 1H), 4.10 (s, 3H). <sup>13</sup>C {<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ 158.3, 151.0 (t, J = 25.8 Hz), 143.0, 130.4, 128.5, 128.4, 128.0, 128.0, 124.8, 124.5, 124.3, 118.5, 118.5 (t, J = 4.7 Hz), 118.5 (t, J =244.1 Hz), 112.1, 55.9. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) δ -111.6 (d, J = 54.5 Hz).

6-(difluoromethyl)-7-methoxyphenanthridine (3ap).<sup>15</sup> Following general procedure, **3ap** was purified by silica gel chromatography (PE/EA = 30/1) as a white solid (10.2 mg, 40%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.53 (d, J = 7.8 Hz, 1H), 8.30 (d, J = 8.7 Hz, 1H), 8.25 (d, J = 8.3 Hz, 1H), 7.81 – 7.75 (m, 2H), 7.74 – 7.70 (m, 1H), 7.70 (t, J = 54.8 Hz, 1H), 7.13 (d, J = 8.0 Hz, 1H), 4.08 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ 157.2, 149.9 (t, J = 20.2 Hz), 142.5, 135.8, 131.7, 130.8, 129.3, 128.4, 124.2, 122.5, 115.1, 114.9, 112.1 (t, J = 240.7 Hz), 108.6, 56.1. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) δ -118.8 (d, J = 54.8 Hz).

6-(difluoromethyl)-9-methoxyphenanthridine (3ap').<sup>15</sup> Following general procedure, **3ap'** was purified by silica gel chromatography (PE/EA = 30/1) as a white solid (12.0 mg, 47%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.56 – 8.47 (m, 2H), 8.19 (d, J = 7.8 Hz, 1H), 7.97 (d, J = 2.5 Hz, 1H), 7.78 (t, J =8.2, 1.3 Hz, 1H), 7.73 (t, J = 8.2, 1.3 Hz, 1H), 7.35 (dd, J = 9.1, 2.5 Hz, 1H), 7.01 (t, J = 54.4 Hz, 1H), 4.07 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ 161.7, 150.9 (d, J = 26.4 Hz), 136.2, 130.5, 129.2, 128.4 (t, J = 4.3 Hz), 128.1, 124.7, 122.2, 118.3 (d, J = 243.1 Hz), 118.1, 117.3, 103.1, 55.6. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) δ -110.8 (d, J = 54.5 Hz).

6-(difluoromethyl)-7,8,9-trimethoxyphenanthridine (3aq). Following general procedure, **3aq** was purified by silica gel chromatography (PE/EA = 20/1) as a white solid (12.5 mg, 39%). Mp: 124.7-126.1 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.41 (d, *J* = 7.8 Hz, 1H), 8.26 – 8.20 (dd, *J* = 8.1, 0.8 Hz, 1H), 7.76 (s, 1H), 7.74 – 7.69 (m, 1H), 7.68 – 7.63 (m, 1H), 7.65 (t, *J* = 54.9 Hz, 1H), 4.13 (s, 3H), 4.12 (s, 3H), 3.99 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ 156.8, 150.7, 149.0 (t, *J* = 20.6 Hz), 142.5, 142.4, 131.8, 130.9, 128.9, 128.0, 123.8, 121.8, 113.9, 112.3 (t, *J* = 240.5 Hz), 98.7, 61.7, 61.1, 56.2. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) δ -118.1 (d, *J* = 55.0 Hz). HRMS (ESI) m/z [M+H]<sup>+</sup> calculated for C<sub>17</sub>H<sub>16</sub> F<sub>2</sub>NO<sub>3</sub> 320.1093; found 320.1092.

### 6-(difluoromethyl)-[1,3]dioxolo[4,5-j]phenanthridine

(3ar).<sup>12a</sup> Following general procedure, **3ar** was purified by silica gel chromatography (PE/EA = 30/1) as a white solid (19.4 mg, 71%). Mp: 179.8-181.6 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.37 (d, J = 8.1 Hz, 1H), 8.15 (d, J = 7.8 Hz, 1H), 7.94 (s, 1H), 7.88 (s, 1H), 7.76 – 7.66 (m, 2H), 6.98 (t, J = 54.4 Hz, 1H), 6.19 (s, 2H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  151.5, 149.9 (t, J = 26.3 Hz), 148.5, 142.2, 132.0, 130.4, 128.4, 128.2, 125.1, 122.0, 118.9, 118.6 (t, J = 243.5 Hz), 103.6 (t, J = 4.9 Hz), 102.2, 100.2. <sup>19</sup>F NMR (471 MHz,

CDCl<sub>3</sub>)  $\delta$  -111.3 (d, J = 54.6 Hz). HRMS (ESI) m/z [M+H]<sup>+</sup> calculated for C<sub>15</sub>H<sub>9</sub>F<sub>2</sub>NO<sub>2</sub> 274.0674; found 274.0671.

6-(difluoromethyl)-3-methylphenanthridine (3ba).<sup>15</sup> Following general procedure, **3ba** was purified by silica gel chromatography (PE/EA = 30/1) as a white solid (19.2 mg, 79%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.53 (d, J = 8.3 Hz, 1H), 8.47 (d, J = 8.2 Hz, 1H), 8.36 (d, J = 8.4 Hz, 1H), 7.90 (s, 1H), 7.78 (ddd, J = 8.2, 7.1, 1.1 Hz, 1H), 7.62 (ddd, J = 8.2, 7.1, 1.0 Hz, 1H), 7.48 (dd, J = 8.3, 1.4 Hz, 1H), 6.94 (t, J = 54.4 Hz, 1H), 2.51 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ 151.3 (t, J = 26.5 Hz), 142.5, 139.4, 133.9, 131.2, 130.4, 130.0, 127.3, 126.4 (t, J = 4.1 Hz), 122.6, 122.2, 122.1 (t, J = 1.7 Hz), 121.9, 118.3 (t, J = 243.4 Hz), 21.5. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) δ -111.0 (d, J = 54.4 Hz).

6-(difluoromethyl)-3-methoxyphenanthridine (3bb).<sup>15</sup> Following general procedure, **3bb** was purified by silica gel chromatography (PE/EA = 30/1) as a white solid (19.5 mg, 75%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.54 (t, J = 9.8 Hz, 2H), 8.45 (d, J = 9.1 Hz, 1H), 7.84 (ddd, J = 8.3, 7.1, 1.1 Hz, 1H), 7.66 (ddd, J = 8.2, 7.1, 1.1 Hz, 1H), 7.58 (d, J = 2.7 Hz, 1H), 7.37 (dd, J = 9.0, 2.7 Hz, 1H), 7.01 (t, J = 54.4 Hz, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ 160.3, 151.7 (t, J = 26.2Hz), 144.1, 134.0, 131.2, 126.7, 126.3 (t, J = 4.1 Hz), 123.3, 121.9, 121.5, 119.9, 119.1, 118.2 (t, J = 243.5 Hz), 110.0, 55.7. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) δ -111.2 (d, J = 54.2 Hz).

6-(difluoromethyl)-3-fluorophenanthridine (3bc).<sup>15</sup> Following general procedure, **3bc** was purified by silica gel chromatography (PE/EA = 30/1) as a white solid (18.6 mg, 75%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.60 – 8.54 (m, 2H), 8.54 – 8.48 (m, 1H), 7.89 (t, J = 7.7 Hz, 1H), 7.83 (d, J = 9.3Hz, 1H), 7.73 (t, J = 7.6 Hz, 1H), 7.49 (t, J = 8.4 Hz, 1H), 7.01 (t, J = 54.4 Hz, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ 162.7 (d, J = 249.4 Hz), 152.6 (t, J = 26.6 Hz), 143.6 (d, J =12.0 Hz), 133.6, 131.6, 127.6, 126.5 (t, J = 4.3 Hz), 124.1 (d, J =9.4 Hz), 122.1, 121.9 (d, J = 1.3 Hz), 121.6 (d, J = 1.8 Hz), 118.1 (t, J = 243.5 Hz), 117.8 (d, J = 23.8 Hz), 115.0 (d, J =20.6 Hz). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) δ -111.3 (d, J = 54.6Hz, 2F), -111.6 (m, 1F).

3-chloro-6-(difluoromethyl)phenanthridine (3bd).<sup>14,15</sup> Following general procedure, 3bd was purified by silica gel chromatography (PE/EA = 30/1) as a white solid (17.9 mg, 68%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.55 (t, J = 7.7 Hz, 2H), 8.43 (d, J = 8.8 Hz, 1H), 8.15 (d, J = 2.0 Hz, 1H), 7.87 (d, J =8.0 Hz, 1H), 7.74 (t, J = 7.7 Hz, 1H), 7.65 (dd, J = 8.8, 2.0 Hz, 1H), 6.99 (t, J = 54.3 Hz, 1H). <sup>13</sup>C {<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ 152.5 (t, J = 26.6 Hz), 143.0, 134.7, 133.3, 131.6, 129.7, 129.1, 128.7, 128.0, 126.5 (t, J = 4.3 Hz), 123.4, 123.3, 122.2, 118.1 (t, J = 243.8 Hz). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) δ -111.3 (d, J = 54.4 Hz).

6-(difluoromethyl)-3-(trifluoromethyl)phenanthridine (**3be**).<sup>14,15</sup> Following general procedure, **3be** was purified by silica gel chromatography (PE/EA = 30/1) as a white solid (16.4mg, 55%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.86 (s, 1H), 8.79 (d, J = 8.7 Hz, 1H), 8.62 (d, J = 8.1 Hz, 1H), 8.25 (d, J = 8.0 Hz, 1H), 8.10 (d, J = 8.7 Hz, 1H), 7.87 (t, J = 7.5 Hz, 1H), 7.85 (t, J = 54.2 Hz, 1H). <sup>13</sup>C {<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ 151.2 (t, J = 26.8 Hz), 143.0, 135.9, 130.8, 130.3, 129.7 (d, J = 32.9 Hz), 129.3, 127.1 (q, J = 3.2 Hz), 124.0 (q, J = 4.0 Hz), 124.0, 123.5, 123.8 (q, J = 272.4 Hz), 122.5, 121.7 (t, J = 1.8 Hz), 118.1 (t, J = 243.6 Hz). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) δ -63.0 (s, 3F), -110.4 (d, J = 54.2 Hz, 2F).

49

50

51

52

53

54

55

56

57

58 59

60

6-(difluoromethyl)-3-nitrophenanthridine (**3bf**).<sup>15</sup> Following general procedure, **3bf** was purified by silica gel chromatography (PE/EA = 10/1) as a white solid (8.8 mg, 32%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.96 (d, J = 2.3 Hz, 1H), 8.63 (d, J = 8.9 Hz, 2H), 8.57 (d, J = 8.3 Hz, 1H), 8.44 (dd, J =9.0, 2.4 Hz, 1H), 7.96 – 7.92 (m, 1H), 7.84 – 7.80 (m, 1H), 6.94 (t, J = 54.2 Hz, 1H). <sup>13</sup>C {<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ 153.8 (t, J = 26.9 Hz), 147.6, 141.8, 132.7, 132.2, 129.9, 129.4, 126.9 (t, J = 4.4 Hz), 126.3, 123.7, 123.3, 123.3, 122.2, 117.8 (t, J = 244.1 Hz). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) δ -111.6 (d, J =54.3 Hz).

*Methyl* 6-(*difluoromethyl*)*phenanthridine-3-carboxylate* (*3bg*). Following general procedure, **3bg** was purified by silica gel chromatography (PE/EA = 10/1) as a white solid (18.7 mg, 62%). Mp: 117.2-119.1 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.89 (d, *J* = 1.7 Hz, 1H), 8.70 (d, *J* = 8.3 Hz, 1H), 8.62 (t, *J* = 7.3 Hz, 2H), 8.37 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.96 (t, *J* = 7.7 Hz, 1H), 7.83 (t, *J* = 7.7 Hz, 1H), 7.04 (t, *J* = 54.3 Hz, 1H), 4.50 (q, *J* = 7.1 Hz, 2H), 1.50 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C {<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>) δ 166.0, 152.3 (t, *J* = 26.6 Hz), 141.9, 133.2, 132.5, 131.6, 130.9, 128.8, 128.5, 128.1, 126.6 (t, *J* = 4.3 Hz), 123.0, 122.4, 118.1 (t, *J* = 243.8 Hz), 61.5, 14.4. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -110.8 (d, *J* = 54.3 Hz). HRMS (ESI) m/z [M+H]<sup>+</sup> calculated for C<sub>17</sub>H<sub>14</sub>F<sub>2</sub>NO<sub>2</sub> 302.0988; found 302.0980.

6-(difluoromethyl)indolo[1,2-a]quinoxaline (3ca). Following general procedure, 3ca was purified by silica gel chromatography (PE/EA = 20/1) as a white solid (20.9 mg, 78%). Mp: 112.0-114.1 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.47 (d, J = 8.4 Hz, 1H), 8.43 (d, J = 8.7 Hz, 1H), 8.01 (t, J =9.3 Hz, 2H), 7.68 (t, J = 7.8 Hz, 1H), 7.59 (t, J = 7.8 Hz, 1H), 7.52 – 7.42 (m, 3H), 6.79 (t, J = 54.1 Hz, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ 148.8 (t, J = 27.4 Hz), 134.4, 132.6, 131.1, 131.0, 130.2, 129.2, 125.1, 124.9, 124.3, 123.2, 123.1, 115.5 (t, J = 240.5 Hz), 114.8, 114.4, 101.2 (t, J = 2.7 Hz). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -117.9 (d, J = 54.3 Hz). HRMS (ESI) m/z [M+H]<sup>+</sup> calculated for C<sub>16</sub>H<sub>11</sub>F<sub>2</sub>N<sub>2</sub> 269.0885; found 269.08790.

4-(difluoromethyl)pyrrolo[1,2-a]quinoxaline (3cb). Following general procedure, 3cb was purified by silica gel chromatography (PE/EA = 30/1) as a white solid (11.6 mg, 53%). Mp: 92.8-94.5 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.98 (dd, J = 2.6, 1.1 Hz, 1H), 7.97 (dd, J = 8.1, 1.3 Hz, 1H), 7.85 (dd, J = 8.3, 1.0 Hz, 1H), 7.57 (td, J = 7.7, 1.3 Hz, 1H), 7.46 (td, J = 7.7, 1.3 Hz, 1H), 7.21 – 7.16 (m, 1H), 6.94 (dd, J = 4.0, 2.7 Hz, 1H), 6.71 (t, J = 54.3 Hz, 1H). <sup>13</sup>C [<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ 147.3 (t, J = 27.3 Hz), 134.5, 130.6, 129.3, 128.0, 125.5, 122.0, 115.4 (t, J = 242.3 Hz), 115.0, 114.6, 113.8, 107.7 (t, J = 2.4 Hz). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) δ -117.7 (d, J = 54.5 Hz). HRMS (ESI) m/z [M+H]<sup>+</sup> calculated for C<sub>12</sub>H<sub>9</sub>F<sub>2</sub>N<sub>2</sub> 219.0729; found 219.0724.

6-(difluoromethyl)benzo[4,5]thieno[3,2-c]quinolone (3cc).<sup>15</sup> Following general procedure, **3cc** was purified by silica gel chromatography (PE/EA = 20/1) as a white solid (14.1 mg, 49%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.66 (d, J = 8.5 Hz, 1H), 8.16 (d, J = 8.3 Hz, 1H), 8.05 (d, J = 4.0, 0.8 Hz, 1H), 7.93 – 7.88 (m, 1H), 7.71 (ddd, J = 8.4, 7.0, 1.3 Hz, 1H), 7.64 – 7.60 (m, 1H), 7.51 (td, J = 8.3, 7.7, 1.4 Hz, 1H), 7.47 (td, J = 7.6, 1.3 Hz, 1H), 7.08 (t, J = 54.8 Hz, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ 147.9, 145.9 (t, J = 28.6 Hz), 142.0, 137.7, 132.4, 129.4, 128.9, 127.6, 126.0, 124.9 (t, J = 8.0 Hz), 124.8, 124.6, 123.7, 122.9, 121.7, 117.1 (t, J = 243.0 Hz). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -114.6 (d, J = 54.9 Hz).

6-(difluoromethyl)benzo[4,5]thieno[3,2-k]phenanthridine (3cd).<sup>15</sup> Following general procedure, **3cd** was purified by silica gel chromatography (PE/EA = 20/1) as a white solid (16.5 mg, 49%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 9.14 (d, J = 8.3 Hz, 1H), 8.70 (d, J = 8.7 Hz, 1H), 8.50 (d, J = 8.7 Hz, 1H), 8.32 (t, J = 8.5 Hz, 2H), 8.02 (dd, J = 6.2, 2.2 Hz, 1H), 7.92 (t, J = 7.6 Hz, 1H), 7.87 (t, J = 7.5 Hz, 1H), 7.62 – 7.56 (m, 2H), 7.12 (t, J = 54.4 Hz, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (151 MHz, CDCl<sub>3</sub>) δ 151.4 (t, J = 26.2 Hz), 143.4, 140.2, 137.9, 134.2, 134.0, 131.1, 130.4, 128.9, 128.8, 127.8, 125.5, 125.2, 124.5, 122.8 (t, J = 4.9 Hz), 122.3, 122.3, 122.2, 121.3, 118.6 (t, J = 244.2 Hz). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) δ -110.1 (d, J = 54.6 Hz).

*Methyl 1-(difluoromethyl)-4-phenylisoquinoline-3carboxylate* (*3da*). Following general procedure, **3da** was purified by silica gel chromatography (PE/EA = 10/1) as a white solid (19.8 mg, 63%). Mp: 119.1-120.8 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.64 (d, *J* = 8.3 Hz, 1H), 7.83 – 7.77 (m, 1H), 7.77 – 7.71 (m, 2H), 7.58 – 7.51 (m, 3H), 7.40 – 7.33 (m, 2H), 7.09 (t, *J* = 54.1 Hz, 1H), 3.73 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>) δ 166.8, 150.6 (t, *J* = 27.2 Hz), 140.1, 137.0, 136.9, 135.4, 131.3, 129.5, 129.5, 128.4, 128.3, 127.3, 125.5, 125.4 (t, *J* = 4.0 Hz), 117.8 (t, *J* = 242.8 Hz), 52.6. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -109.6 (d, *J* = 54.4 Hz). HRMS (ESI) m/z [M+H]<sup>+</sup> calculated for C<sub>18</sub>H<sub>14</sub>F<sub>2</sub>NO<sub>2</sub> 314.0988; found 314.0986.

*Methyl 1-(difluoromethyl)-7-methyl-4-(p-tolyl)isoquinoline-3-carboxylate (3db)*. Following general procedure, **3db** was purified by silica gel chromatography (PE/EA = 10/1) as a white solid (15.0 mg, 44%). Mp: 130.5-131.7 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.38 (s, 1H), 7.65 (d, J = 8.7 Hz, 1H), 7.56 (dd, J = 8.7, 1.5 Hz, 1H), 7.34 (d, J = 7.8 Hz, 2H), 7.25 – 7.20 (m, 2H), 7.06 (t, J = 54.2 Hz, 1H), 3.75 (s, 3H), 2.63 (s, 3H), 2.49 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ 167.0, 149.5 (t, J = 27.1 Hz), 134.0, 139.3, 138.0, 137.1, 135.4, 133.5, 132.5, 129.3, 129.0, 127.1, 125.8, 124.1 (t, J = 3.8 Hz), 118.0 (t, J = 242.5 Hz), 52.6, 22.1, 21.4. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -109.9 (d, J = 54.0 Hz). HRMS (ESI) m/z [M+H]<sup>+</sup> calculated for C<sub>20</sub>H<sub>18</sub>F<sub>2</sub>NO<sub>2</sub> 342.1301; found 342.1300.

Methvl 1-(difluoromethyl)-7-fluoro-4-(4*fluorophenyl*)*isoquinoline-3-carboxylate* (3dc).Following general procedure, 3dc was purified by silica gel chromatography (PE/EA = 10/1) as a white solid (14.7 mg, 42%). Mp: 131.8-134.0 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.26 - 8.20 (m, 1H), 7.71 (dd, J = 9.4, 5.4 Hz, 1H), 7.52 (ddd, J = 9.5, 7.9, 2.5 Hz, 1H), 7.33 - 7.28 (m, 2H), 7.25 - 7.21 (m, 2H), 7.03 (t, J = 54.0 Hz, 1H), 3.74 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR  $(151 \text{ MHz}, \text{CDCl}_3) \delta 166.4, 162.9 \text{ (d}, J = 248.8 \text{ Hz}), 162.1 \text{ (d},$ J = 254.3 Hz), 150.2 (td, J = 27.3, 5.7 Hz), 139.8, 135.9, 134.2, 131.2 (d, J = 8.1 Hz), 130.9 (d, J = 3.5 Hz), 130.1 (d, J = 9.0Hz), 126.6 (d, J = 9.7 Hz), 122.1 (d, J = 25.3 Hz), 118.4 (d, J = 242.7 Hz), 115.7 (d, J = 21.7 Hz), 109.6 (dt, J = 23.1, 4.2 Hz), 52.7. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) δ -106.6 (m, 1F), -110.83 (d, J = 54.9 Hz, 2F), -113.1 (m, 1F). HRMS (ESI) m/z  $[M+H]^+$  calculated for  $C_{18}H_{12}F_4NO_2$  350.0799; found 350.0795.

Methyl 7-bromo-4-(4-bromophenyl)-1-(difluoromethyl)isoquinoline-3-carboxylate (3dd). Following general procedure, 3dd was purified by silica gel chromatography (PE/EA = 10/1) as a white solid (23.9 mg, 51%). Mp: 188.8-189.9 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ 

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

8.79 – 8.71 (m, 1H), 7.81 (dd, J = 9.1, 1.9 Hz, 1H), 7.70 – 7.64 (m, 2H), 7.53 (d, J = 9.1 Hz, 1H), 7.23 – 7.17 (m, 2H), 7.02 (t, J = 53.9 Hz, 1H), 3.76 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  166.2, 149.9 (t, J = 27.6 Hz), 140.1, 135.8, 135.4, 135.2, 133.7, 131.8, 131.0, 128.6, 127.8 (t, J = 4.4 Hz), 126.3, 124.7, 123.1, 117.5 (t, J = 243.0 Hz), 52.8. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -110.2 (d, J = 53.9 Hz). HRMS (ESI) m/z [M+H]<sup>+</sup> calculated for C<sub>18</sub>H<sub>12</sub>Br<sub>2</sub>F<sub>2</sub>NO<sub>2</sub> 469.9198, 471.9177, 473.9157; found 469.9193, 471.9176, 473.9155.

*Methyl 4-(difluoromethyl)furo*[*3*,*2-c*]*pyridine-6-carboxylate* (*3de*). Following general procedure, **3de** was purified by silica gel chromatography (PE/EA = 10/1) as a white solid (7.7 mg, 34%). Mp: 87.3-89.0 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.46 – 8.41 (m, 1H), 7.93 (d, *J* = 2.3 Hz, 1H), 7.21 (dd, *J* = 2.0, 1.1 Hz, 1H), 6.95 (t, *J* = 54.5 Hz, 1H), 4.06 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (151 MHz, CDCl<sub>3</sub>) δ 165.2, 160.8, 149.4, 146.7 (t, *J* = 29.2 Hz), 142.6, 124.7, 115.0 (t, *J* = 239.8 Hz), 111.2, 105.4 (t, *J* = 2.2 Hz), 53.2. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) δ -114.0 (d, *J* = 54.5 Hz). HRMS (ESI) m/z [M+H]<sup>+</sup> calculated for C<sub>10</sub>H<sub>8</sub>F<sub>2</sub>NO<sub>3</sub> 228.0467; found 228.0462.

*Methyl 1-(difluoromethyl)-9-methyl-9H-pyrido[3,4-b]indole-3-carboxylate* (*3df*). Following general procedure, **3df** was purified by silica gel chromatography (PE/EA = 10/1) as a white solid (12.0 mg, 41%). Mp: 161.0-163.0 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.98 (s, 1H), 8.21 (d, *J* = 7.8 Hz, 1H), 7.70 (ddd, *J* = 8.3, 7.2, 1.1 Hz, 1H), 7.57 (d, *J* = 8.4 Hz, 1H), 7.41 (t, *J* = 7.5 Hz, 1H), 7.17 (d, *J* = 54.7 Hz, 1H), 4.15 (t, *J* = 2.2 Hz, 3H), 4.08 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ 165.9, 143.0, 135.7, 135.6, 134.8 (t, *J* = 29.8 Hz), 131.9, 129.7, 121.5, 121.3, 121.1, 119.7, 118.2 (d, *J* = 240.4 Hz), 110.3, 52.9, 32.8 (t, *J* = 8.2 Hz). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) δ -104.5 (d, *J* = 54.7 Hz). HRMS (ESI) m/z [M+H]<sup>+</sup> calculated for C<sub>15</sub>H<sub>13</sub>F<sub>2</sub>N<sub>2</sub>O<sub>2</sub> 291.0940; found 291.0937.

### **Cyclic Voltammetry Studies of reagent 2**

The cyclic voltammetry measurements were performed on a CHI660E electrochemical workstation, using a standard threeelectrode setup with a platinum wire counter electrode, and a glassy carbon electrode as the working electrode) and a SCE (the saturated calomel electrode) as the reference electrode. The solution were prepared with reagent **2** (0.05 mmol) in the supporting electrolyte *n*-Bu<sub>4</sub>NPF<sub>6</sub> in dry acetonitrile (50 mL, 0.1 M). Solutions thoroughly bubbled with dry nitrogen for 15 min to remove oxygen before any experiment and kept under positive pressure of nitrogen. Cyclic voltammetry (CV) with the following settings: Scan Rates= 0.1 V/s, Sweep Segments = 4, Sample Interval = 0.001 V, Quiet Time = 2 sec.

## ASSOCIATED CONTENT

### Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Detailed experimental procedures, characterization data, <sup>1</sup>H, <sup>13</sup>C, <sup>19</sup>F NMR spectra, and HRMS (PDF)

### AUTHOR INFORMATION

Corresponding Author

\* E-mail: gkliu@szu.edu.cn.

### ORCID

Guo-Kai Liu: 0000-0001-7617-4267

### Notes

The authors declare no competing financial interest.

### ACKNOWLEDGMENT

This work was financially supported by the Natural Science Foundation of Shenzhen (No. KQJSCX20180328095508144) and the Natural Science Foundation of Guangdong Province (No. 2020A1515010874). We thank the Instrumental Analysis Center of Shenzhen University for analytical work.

### REFERENCES

(1) (a) Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology, Blackwell, Oxford, **2009**, and references therein.(b) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001–2011), *Chem. Rev.* **2014**, *114*, 2432-2506, and references therein. (c) Bassetto, M.; Ferla, S.; Pertusati, F. Polyfluorinated groups in medicinal chemistry. *Future Med. Chem.* **2015**, *7*, 527-549, and references therein.

(2) (a) Goure, W. F.; Leschinsky, K. L.; Wratten, S. J.; Chupp, J. P. Synthesis and herbicidal activity of N-substituted 2,6bis(polyfluoromethyl)dihydropyridine-3,5-dicarboxylates. *J. Agric. Food Chem.* **1991**, *39*, 981-986. (b) Pérez, R. A.; Sánchez-Brunete, C.; Miguel, E.; Tadeo, J. L. Analytical methods for the determination in soil of herbicides used in forestry by GC–NPD and GC/MS. *J. Agric. Food Chem.* **1998**, *46*, 1864-1869.

(3) (a) Kirsch, P.; Bremer, M. Nematic liquid crystals for active matrix displays: molecular design and synthesis. *Angew. Chem., Int. Ed.* **2000**, *39*, 4216-4239. (b) Tasaka, T.; Takenaka, S.; Kabu, K.; Morita, Y.; Okamoto, H. Smectic phase exhibited by dissymmetric liquid crystals: effect of a terminal fluoromethyl group on mesomorphic properties. *Ferroelectronics* **2002**, *276*, 83-92. (c) Boltalina, O. V.; Nakajima, T. New Fluorinated Carbons: Fundamentals and Applications, Elsevier, Amsterdam, **2016**.

(4) (a) Shimizu, M.; Hiyama, T. Modern synthetic methods for fluorine - substituted target molecules. *Angew. Chem. Int. Ed.* 2005, 44, 214-231. (b) Müller, K.; Faeh; C.; Diederich, F. Fluorine in pharmaceuticals: looking beyond intuition. *Science* 2007, 317, 1881-1886. (c) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Fluorine in medicinal chemistry. *Chem. Soc. Rev.* 2008, 37, 320-330. (d) Bégué, J.-P.; Bonnet-Delpon, D. *Bioorganic and Medicinal Chemistry of Fluorine*, Wiley-VCH, Weinheim, 2008. (e) Hu, J.; Zhang, W.; Wang, F. Selective difluoromethylation and monofluoromethylation reactions. *Chem. Commun.* 2009, 7465-7578. (f) Kirsch, P. *Modern Fluororganic Chemistry: Synthesis, Reactivity, Applications*, 2nd Ed., Wiley-VCH, Weinheim, 2013.

(5) (a) Prakash, G. K. S.; Mandal, M.; Schweizer, S.; Petasis, N. A.; Olah, G. A. Stereoselective synthesis of anti-α-(Difluoromethyl)-βamino alcohols by boronic acid based three-component condensation. stereoselective preparation of (2S,3R)-difluorothreonine. *J. Org. Chem.* **2002**, *67*, 3718-3723. (b) Chowdhury, M. A.; Abdellatif, K. R. A.; Dong, Y.; Das, D.; Suresh, M. R.; Knaus, E. E. Synthesis of celecoxib analogues possessing a N-difluoromethyl-1,2-dihydropyrid-2-one 5-lipoxygenase pharmacophore: biological evaluation as dual inhibitors of cyclooxygenases and 5-lipoxygenase with antiinflammatory activity. *J. Med. Chem.* **2009**, *52*, 1525-1529. (c) Meanwell, N. A. Synopsis of some recent tactical application of bioisosteres in drug design. *J. Med. Chem.* **2011**, *54*, 2529-2591, and references therein.

(6) (a) Erickson, J. A.; McLoughlin, J. I. Hydrogen bond donor properties of the difluoromethyl group. *J. Org. Chem.***1995**, *60*, 1626-1631. (b) Zafrani, Y.; Yeffet, D.; Sod-Moriah, G.; Berliner, A.; Amir, D.; Marciano, D.; Gershonov, E.; Saphier. S. Difluoromethyl Bioisostere: Examining the "Lipophilic Hydrogen Bond Donor" Concept. *J. Med. Chem.***2017**, *60*, 797-804. (c) Zafrani, Y.; Sod-Moriah, G.; Yeffet, D.; Berliner, A.; Amir, D.; Marciano, D.; Elias, S.; Katalan, S.; Ashkenazi, N.; Madmon, M.; Gershonov, E.; Saphier, S. CF<sub>2</sub>H, a functional group-dependent hydrogen-bond donor: Is it a more or less lipophilic bioisostere of OH, SH, and CH<sub>3</sub>?. *J. Med. Chem.***2019**, *62*, 5628-5637.

(7) For the progress in photochemical radical difluoromethylation,

see the recent review: (a) Barata-Vallejo, S.; Bonesi, S. M.; Postigo, A. Photocatalytic fluoroalkylation reactions of organic compounds, *Org. Biomol. Chem.* **2015**, *13*, 11153. (b) Rong, J.; Ni, C.; Wang, Y.; Kuang, C.; Gu, Y.; Hu, J. Radical fluoroalkylation of aryl alkenes with fluorinated sulfones by visible-light photoredox catalysis, *Acta Chim. Sinica* **2017**, *75*, 105. (c) Koike, T.; Akita, M. Recent progress in photochemical radical di- and mono-fluoromethylation. Org. Biomol. Chem. **2019**, *17*, 5413-5419, and references therein.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

57

58 59

60

(8) (a) Tang, X. J.; Thomoson, C. S.; Dolbier Jr., W. R. Photoredoxcatalyzed tandem radical cyclization of N-arylacrylamides: general methods To construct fluorinated 3,3-disubstituted 2-oxindoles using fluoroalkylsulfonyl chlorides. Org. Lett. 2014, 16, 4594-4597. (b) Tang, X. J.; Dolbier Jr., W. R. Efficient Cu-catalyzed atom transfer radical addition reactions of fluoroalkylsulfonyl chlorides with electron-deficient alkenes induced by visible light. Angew. Chem. Int. Ed. 2015, 54, 4246-4249. (c) Tang, X. J.; Zhang, Z.; Dolbier Jr., W. R. Direct photoredox-catalyzed reductive difluoromethylation of electron-deficient alkenes. Chem. - Eur. J. 2015, 21, 18961-18965. (d) Zhang, Z.; Tang, X. J.; Thomoson, C. S.; Dolbier Jr., W. R. Photoredox-catalyzed intramolecular aminodifluoromethylation of unactivated alkenes. Org. Lett. 2015, 17, 3528-3531. (e) Zhang, Z.; Tang, X. J.; Dolbier Jr., W. R. Photoredox-catalyzed intramolecular difluoromethylation of N-benzylacrylamides coupled with a dearomatizing spirocyclization: Access to CF2H-containing 2azaspiro[4.5]deca-6,9-diene-3,8-diones. Org. Lett. 2016, 18, 1048-1051. (f) Zhang, Z.; Martinez, H.; Dolbier Jr., W. R. Photoredox catalyzed intramolecular fluoroalkylarylation of unactivated alkenes. J. Org. Chem. 2017, 82, 2589-2598.

23 (9) (a) Lin, Q.-Y.; Xu, X.-H.; Zhang, K.; Qing, F.-L. Visible-lighthydrodifluoromethylation of alkenes with induced 24 bromodifluoromethylphosphonium bromide. Angew. Chem. Int. Ed. 25 2016, 55, 1479-1483. (b) Lin, Q.-Y.; Ran, Y.; Xu, X.-H.; Qing, F.-L. 26 Photoredox-catalyzed bromodifluoromethylation of alkenes with 27 (difluoromethyl)triphenylphosphonium bromide. Org. Lett. 2016, 18, 2419-2422. (c) Ran, Y.; Lin, Q.-Y.; Xu, X.-H.; Qing, F.-L.Visible 28 oxydifluoromethylation of styrenes light Induced with 29 difluoromethyltriphenylphosphonium bromide. J. Org. Chem. 2016, 30 81, 7001-7007. (d) Hu, W.-Q.; Xu, X.-H.; Qing, F.-L. Visible light 31 induced hydrodifluoromethylation of alkenes derived from oxindoles with (difluoromethyl)triphenylphosphonium bromide. J. Fluorine 32 Chem. 2018, 208, 73-79. 33

(10) (a) Arai, Y.; Tomita, R.; Ando, G.; Koike, T.; Akita, M. 34 Oxydifluoromethylation of alkenes by photoredox catalysis: simple 35 synthesis of CF2H-containing alcohols. Chem. Eur. J. 2016, 22, 1262-1265. (b) Noto, N.; Koike, T.; Akita, M. Metal-free di- and tri-36 fluoromethylation of alkenes realized by visible-light-induced 37 perylene photoredox catalysis. Chem. Sci. 2017, 8, 6375-6379. (c) 38 Noto, N.; Tanaka, Y.; Koike, T.; Akita, M. Strongly reducing 39 (diarylamino)anthracene catalyst for metal-free visible-light 40 photocatalytic fluoroalkylation. ACS Catal. 2018, 8, 9408-9419. (d) Nakayama, Y.; Ando, G.; Abe, M.; Koike, T.; Akita, M. Keto-41 difluoromethylation of aromatic alkenes by photoredox catalysis: 42 step-economical synthesis of  $\alpha$ -CF<sub>2</sub>H-substituted ketones in flow. 43 ACS Catal. 2019, 9, 6555-6563.

44 (11) (a) Suffness, M.; Cordell, G. A. The Alkaloids; Academic Press: New York, 1985, 25, 178. (b) Nakanishi, T.; Suzuki, M. J. 45 Revision of the structure of fagaridine based on the comparison of UV 46 and NMR data of synthetic compounds. J. Nat. Prod. 1998, 61, 1263-47 1267. (c) Nakanishi, T.; Suzuki, M.; Saimoto, A.; Kabasawa, T. J. 48 Structural considerations of NK109. an antitumor 49 benzo[c]phenanthridine alkaloid. J. Nat. Prod. 1999, 62, 864-867. (d) Nakanishi, T.; Suzuki, M. Synthesis and cytotoxic activities of a new 50 benzo[c]phenanthridine alkaloid, 7-hydroxynitidine, and some 9-51 oxygenated benzo[c]phenanthridine derivatives. Org. Lett. 1999, 1, 52 985-988. (e) Nakanishi, T.; Masuda, A.; Suwa, M.; Akiyama, Y.; 53 Hoshino-Abe, N.; Suzuki, M. Synthesis of derivatives of NK109, 7-OH Benzo[c]phenanthridine alkaloid, and evaluation of their 54 cytotoxicities and reduction-resistant properties. Bioorg. Med. Chem. 55 Lett. 2000. 10. 2321-2323. 56

(12) (a) Gu, J.-W.; Zhang, X. Palladium-catalyzed difluoroalkylation of isocyanides: Access to difluoroalkylated phenanthridine derivatives.

Org. Lett. 2015, 17, 5384-5387. (b) Wan, W.; Ma, G.; Li, J.; Chen, Y.; Hu, Q.; Li, M.; Jiang, H.; Deng, H.; Hao, J. Silver-catalyzed oxidative decarboxylation of difluoroacetates: efficient access to C-CF2 bond formation. Chem. Commun. 2016, 52, 1598-1601. (c) Wan, W.; Xu, X.; Chen, Y.; Jiang, H.; Wang, Y.; Deng, H.; Hao, J. Aglprmoted difluoromethylation of isocyanides to give difluoromethylate d phenanthridines. Eur. J. Org. Chem. 2017, 3145-3151. (d) Liu, Y.; Zhang, K.; Jiang, W.; Yang, Y.; Jiang, Y.; Liu, X.; Xie, Y.; Wu, J.; Cai, J.; Xu, X.-H. Synthesis of 1-difluoroalkylated isoquinolines via palladium-catalyzed radical cascade difluoroalkylation-cyclization of vinyl isocyanides with bromodifluoroacetic derivatives. Chem. Asian J. 2017, 12, 568-576. (e) Liu, X.; Wu, C.; Zhang, J.; Shi, Y.; Zhang, S.; Geng, Y.; Tung, C.-H.; Wang, W. Cobalt-catalyzed radical cyclization of isocyanides forming phenanthridine derivatives. Org. Chem. Front. 2018, 5, 2997-3002. (f) Ma, X.; Mai, S.; Zhou, Y.; Cheng, G.-J.; Song, Q. Dual role of ethyl bromodifluoroacetate in the formation of fluorine-containing heteroaromatic compounds. Chem. Commun. 2018. 54. 8960-8963.

(13) Xiao, P.; Rong, J.; Ni, C.; Guo, J.; Li, X.; Chen, D.; Hu, J. Radical (phenylsulfonyl)difluoromethylation of isocyanides with PhSO<sub>2</sub>CF<sub>2</sub>H under transition-metal-free conditions. *Org. Lett.* **2016**, *18*, 5912-5915.

(14) Sun, X., Yu, S. Visible-light-mediated fluoroalkylation of isocyanides with ethyl bromofluoroacetates: unified synthesis of mono- and difluoromethylated phenanthridine derivatives. *Org. Lett.* **2014**, *16*, 2938-2941.

(15) Rong, J.; Deng, L.; Tan, P.; Ni, C.; Gu, Y.; Hu, J. Radical fluoroalkylation of isocyanides with fluorinated sulfones by visible-light photoredox catalysis. *Angew. Chem. Int. Ed.* **2016**, *55*, 2743-2747.

(16) Zhang, Z.; Tang, X.; Dolbier Jr., W. R. Photoredox-catalyzed tandem insertion/cyclization reactions of difluoromethyl and 1,1-difluoroalkyl radicals with biphenyl isocyanides. *Org. Lett.* **2015**, *17*, 4401-4403.

(17) (a) Lu, S.-L.; Li, X.; Qin, W.-B.; Liu, J.-J.; Huang, Y.-Y.; Wong, H. N. C.; Liu, G.-K. Air- and light-stable S-(difluoromethyl)sulfonium salts: C-selective electrophilic difluoromethylation of  $\beta$ -ketoesters and malonates. *Org. Lett.* **2018**, 20, 6925-6929. (b) Liu, G.-K.; Li, X.; Qin, W.-B.; Peng, X.-S.; Wong, H. N. C.; Zhang, L.; Zhang, X. Facile difluoromethylation of aliphatic alcohols with an S-(difluoro-methyl)sulfonium salt: reaction, scope and mechanistic study. *Chem. Commun.* **2019**, 55, 7446-7449. (c) Liu, G.-K.; Qin, W.-B.; Li, X.; Lin, L.-T.; Wong, H. N. C. Difluoromethylation of phenols and thiophenols with the S -(difluoromethyl)sulfonium salt: reaction, scope, and mechanistic study. J. Org. Chem. **2019**, 84(24), 15948-15957.

(18) (a) Ali, A. A.; El Sayed, H. M.; Abdallah, O. M.; Steglich, W. Oxocrinine and other alkaloids from Crinum americanum. *Phytochemistry* **1986**, *25*, 2399-2401. (b) Viladomat, F.; Selles, M.; Codina, C.; Bastida, J. Alkaloids from Narcissus asturiensis. *Planta Med.* **1997**, *63*, 583-583. (c) Abdel-Halim, O. B.; Morikawa, T.; Ando, S.; Matsuda, H.; Yoshikawa, M. New crinine-type alkaloids with inhibitory effect on induction of inducible nitric oxide synthase from crinum yemense. *J. Nat. Prod.* **2004**, *67*, 1119-1124. (d) Sripada, L.; Teske, J. A.; Deiters, A. Phenanthridine synthesis via [2+2+2] cyclotrimerization reactions. *Org. Biomol. Chem.* **2008**, *6*, 263-265.

(19) C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. *Chem. Rev.* **2013**, *113*, 5322-5363.

(20) (a) Q. Wang, X. Dong, T. Xiao and L. Zhou, PhI(OAc)<sub>2</sub>mediated synthesis of 6-(Trifluoromethyl)phenanthridines by oxidative cyclization of 2-isocyanobiphenyls with CF<sub>3</sub>SiMe<sub>3</sub> under metal-free conditions. *Org. Lett.* **2013**, *15*, 4846-4849. (b) H. Jiang, Y. Cheng, R. Wang, Y. Zhang and S. Yu, Synthesis of isoquinolines *via* visible light-promoted insertion of vinyl isocyanides with diaryliodonium salts. *Chem. Commun.*, **2014**, *50*, 6164-6167. (c) F. Ding, Y. Jiang, K. Lin and L. Shi, Tandem radical cyclization for the construction of 1-difluoroalkylated isoquinolines *via* Cu catalyzed and visible light-promoted pathways.*Org. Biomol. Chem.*, **2018**, *16*, 1812-1815.

ACS Paragon Plus Environment