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Enantioselective acyclic stereoselection under catalyst control -III. 
A very short asymmetric synthesis of the bryostatin C&9 segment 

using the chiral oxazaborolidinone-promoted aldol reaction t 

Syun-ichi Kiyooka * and Hirofumi Maeda 

Department of Chemistry, Kochi University, Akebono-cho, Kochi 780, Japan 

Abstract: A very short asymmetric synthesis of the bryostatin C,-Cs segment 
was achieved by three sequential chiral oxazaborolidinone-promoted aldol reactions 
under ‘catalyst control’. This synthetic methodology is based on a direct asymmetric 
incorporation of two acetate and one isobutyrate synthones into the framework. Q 1997 
Elsevier Science Ltd 

The bryostatins including bryostatin 7 exhibit high levels of antineoplastic activity and their unique 
macrolide skeleton has attracted synthetic interest.* The bryostatin backbone was retrosynthetically 
reduced to an acetate-derived oxygenation pattern. 3 The retrosynthesis allows us to construct the 
Ct-Cg segment by three sequential excellent aldol reactions, as depicted by slant lines in Scheme 1. 
A straightforward synthetic strategy might provide a simple, general way toward the stereoselective 
synthesis of compounds containing such 1,3-polyol units. The superior chiral oxazaborolidinone (1 
and 2) promoted aldol reaction is susceptible to the facile synthesis of enantiomerically homogeneous 
acetate aldols using silyl nucleophile 3 having an eliminable sulfur substituent.4 An example is shown 
in Scheme 2 where the aldol reaction time was revised to be 8 h for improving yields because of the 
inherent low reactivity of 3; in our preceding paper, reaction with 3, which is a viable method for 

constructing contiguous acetate aldol frameworks under ‘catalyst control’, was reported under catalytic 
conditions,but stoichiometric conditions are strongly recommended for the same reason.’ We disclose 
herein a very short asymmetric synthesis of the bryostatin c1-C~ segment (the partially protected B) 
under catalyst-based stereocontrol using the chiral oxazaborolidinone-promoted aldol reaction. 

Scheme 1. 

Reaction of 3benzyloxypropanal5 with 3 quite easily gave the aldol having a dithiolane moiety 
at the a position in the presence of a stoichiometric amount of chiral oxazaborolidinone promoter 2, 
derived from D-vahne, followed by desulfurization with nickel boride under a hydrogen atmosphere 

t See reference 1. 
* Corresponding author. Email: kiyo@cc.kochi-u.acjp 
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Scheme 2. 

to give the first aldol 6 in 64% yield (from 5) with >98% ee (determined using HPLC with Daicel 
Chiralcel OD):  For the effective desulfurization, nickel boride should be prepared in situ in ethanol 
from large excesses of anhydrous nickel chloride (20 mol equiv.), which was finely ground to a 
powder, and sodium borohydride (10 mol equiv.) under a hydrogen atmosphere. Enantiomerically pure 
13-silyloxy aldehyde 7 could be furnished via the successful silyl protection and DIBAL reduction 
in 85% yield (from 6). Exposure of 7 to the second aldol reaction with promoter 1, derived from 
L-valine, (under similar conditions to the first reaction) resulted in the formation of an anti-1,3-diol 
system in almost complete diastereoselectivity. After desulfurization, the enantiomerically pure second 
aldol 8 was obtained in 58% yield (from 7). 5 By the usual method of subsequent TBS protection and 
DIBAL reduction, aldehyde 9 was prepared in 71% yield (from 8). The third aldol reaction of 9 was 
examined on introducing a stereogenic center adjacent to a quarternary carbon unit using popular silyl 
nucleophile 4 in the presence of promoter 2 (the reaction time, 3 h, is adequate in this case). Then 
the highly enantioselective aldol reaction enabled the almost completely diastereoselective formation 
of the desired 1,3,5-anti,anti-triol ester 10 in enantiomerically pure state in 82% yield (from 9). 5 

Scheme 3 demonstrates the useful strategy of the asymmetric aldol reactions repeated three times 
under 'catalyst control' toward a novel and excellent short asymmetric synthesis of the bryostatin 
CI-C9 segment. Thus our synthetic strategy has the fruitful prospect of developing a new field of 
application. In addition, the facial selectivity can be simply explained by using the crucial idea, 
introduced by Corey, of hydrogen bonding between an aldehyde hydrogen and a heteroatom involved 
in the applied Lewis acid, as depicted in A (on the first aldol reaction) and B (on the second aldol 
reaction) of Figure 1.6 

Further applications of this work are in progress. 
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Figure 1. 

10: IH NMR (500 MHz, CDCI3): 8 (ppm) 0.06 (s, 3H), 0.07 (s, 3H), 0.09 (s, 6H), 0.87 (s, 9H), 
0.88 (s, 9H), 1.13 (s, 3H), 1.17 (s, 3H), 1.23 (t, 3H, J=7.02), 1.45 (ddd, 1H, J=l.5, 5.5, 14.0), 1.59 
(ddd, 1H, J=3.0, 11.0, 14.0), 1.65-1.72 (m, 1H), 1.75-1.86 (m, 3H), 3.33 (d, 2H, J=3.36), 3.55 
t, 2H, J=6.71), 3.86 (ddd, 1H, J=3.4, 7.0, 12.5),4.06 (m, 2H), 4.12 (q, 2H, J=7.02), 4.46 (AB d, 
1H, J=l 1.9), 4.49 (AB d, 1H, J=l 1.9), 7.32 (s, 5H). 13C NMR (125 MHz, CDCI3) ~ (ppm) -4.7, 
-4.4, -4.1, 14.2, 17.9, 18.0, 20.4, 21.3, 25.8, 25.9, 36.9, 37.2, 44.9, 46.9, 60.4, 66.8, 67.3, 68.9, 
72.7, 73.0, 127.5, 127.6, 128.3, 138.5, 177.1. [0t]D 19 --21 (C 1.45, CHCI3). 
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