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The unprecedented nucleophilic tribromomethylation of N-(tert-butanesulfinyl)imines with bromoform
has been shown to be a highly stereoselective and practical method for the synthesis of enantiomerically
pure a-tribromomethyl amines. THF has proven to be the best solvent in this addition reaction. By chang-
ing the reaction solvent from THF to DMF, 2,2-dibromoaziridines can also be synthesized directly from
bromoform and N-(tert-butanesulfinyl)imines under similar reaction conditions.

� 2012 Elsevier Ltd. All rights reserved.
Introduction

Considered bizarre and rare only about 50 years ago, more than
2100 brominated natural products of both marine and terrestrial
origin have been discovered to date. These compounds exhibit a
wide range of biological activity, including antitumor, antibiotic
or cytotoxic and analgesic activity.1 Even though the concentration
of bromide is only 0.3% of that for chloride in sea water, organobro-
mine compounds are more prevalent in marine organisms than
organochlorine derivatives, which can be attributed to the easier
oxidation of bromide to the equivalent of bromonium ion (Br+)
by peroxidase.2 As our understanding of the function and toxicity
of natural organobromines continues to unfold and novel natural
organobromine compounds are discovered and evaluated for their
biological activity, it holds promise that new brominated antibiot-
ics, anticancer and antifungal agents and medicinal drugs will be
discovered.3

The tribromomethyl group existed in a lot of bioactive
compounds, and it was found to be the key component for potent
activity in some cases.4 For example, 1-tribromomethyl-1,2,3,4-tet-
rahydro-b-carboline (TaBro) has been shown to be the most potent
toxin in vitro and in vivo, compared with its 1-trifluromethyl- and
1-trichloromethyl-1,2,3,4-tetrahydro-b-carboline counterparts.4a

Moreover, the tribromomethyl group is synthetically very useful,
which can undergo many synthetically useful transformations such
ll rights reserved.

x: +86 21 67791432.
s@gmail.com (Z. Sun).
as substitution and elimination.5 While brominated natural prod-
ucts are attracting increasing attention as targets for chemical syn-
thesis, the development of methods for the stereoselective
introduction of the tribromomethyl group or bromine atom(s) into
organic compounds significantly lags behind.6 To the best of our
knowledge, we are not aware of any reports of stereoselective tri-
bromomethylation. The lack of sophistication in this area, coupled
with the broad range of important brominated natural and non-nat-
ural products, drives our laboratory to develop new methods for the
stereoselective introduction of the tribromomethyl group into or-
ganic scaffolds. Herein, we wish to disclose the highly stereoselec-
tive and practical tribromomethylation reaction using bromoform
and Ellman’s N-(tert-butanesulfinyl)imines which has enabled us
to efficiently synthesize enantiomerically pure a-tribromomethyl
amines.

Results and discussion

Very recently, our group has successfully developed a highly
efficient and practical method for the asymmetric synthesis of a-
trichloromethyl amines based on nucleophilic trichloromethyla-
tion of N-(tert-butylsulfinyl)imines with chloroform.7 The trichlo-
romethyl anion generated in situ from chloroform and sodium
bis(trimethylsilyl)amide (NaHMDS) in THF solvent at a low reac-
tion temperature showed reasonable thermal stability and very
good nucleophilicity. This remarkable trichloromethylation reac-
tion inspired us to investigate whether bromoform could act as
the tribromomethyl anion source in a similar manner to afford
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Scheme 1. Tribromomethylation of 2a using HCBr3.
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Table 1 (continued)

EntrySulfinylimine 2 Product 3 Yielda

(%)
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11 tBu
S
N

O H

2k
Ph tBu

S
N
H

CBr3

3k
Ph

O

72 90:10

12 tBu
S
N

O H

2l

tBu
S
N
H

O CBr3

3l

51 90:10

13 tBu
S
N

O H

2m
tBu

S
N
H

O CBr3

3m

62 Nc

a Yields of isolated pure material.
b Diastereomeric ratios were determined by 1H NMR spectroscopy and HPLC–MS

analysis on the crude reaction mixture. For more details, see the Supplementary
data.

c Not determined.
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the corresponding a-tribromomethyl amines. It should be pointed
out that, currently, the few known methods for the synthesis of a-
tribromomethyl amines are mainly based on the use of 2,2,2-trib-
romoethanimine derivatives as precursors or a tribromomethyl an-
ion equivalent such as tribromoacetic acid.8 With this in mind,
compound 2a was used as a model compound and its tribromom-
ethylation reaction was carried out under similar reaction condi-
tions for the above mentioned trichloromethylation reaction. As
expected, this addition reaction proceeded smoothly and the corre-
sponding product 3a could be obtained in 82% yield with diastere-
oselectivity up to 93:7 (Scheme 1). Further optimization using
different bases such as lithium bis(trimethylsilyl)amide (LiHMDS)
and potassium bis(trimethylsilyl)amide (KHMDS) did not get bet-
ter results. The yield for this addition reaction was lower as com-
pared to its trichloromethylation analogue, which can be
associated with the relatively weak nucleophilicity of this bulky
anion and the facile decomposition of the tribromomethyl anion
to dibromocarben at room temperature and even below.

Next, we used the reaction conditions shown in Scheme 1 as the
standard condition, and studied the scope of the reaction between
bromoform and a variety of structurally diverse imines.9 The re-
sults are shown in Table 1. In most cases, the tribromomethylated
products 3 were obtained in very good isolated yields with high
diastereoselectivities (except 3l and 3m). A remarkable feature of
this reaction is that it works pretty well for non-enolizable imines
(entries 1–11). For enolizable imines (2l and 2m), this reaction
proceeded to give expected product in moderate to good yields,
which is in contrast to our reported chloroform chemistry: trichlo-
romethylation of enolizable imines (such as 2l and 2m) usually
delivered the addition products in very good yields.7b Also, the
electronic donating/withdrawing nature of the substituents
(including methoxy, methyl, chloro and extremely electron-with-
drawing nitro group) on the aromatic ring had little effect on both
the yield and diastereoselectivity. The configuration of the addition
product was assigned to be (Rs, S), based on our recent research on
trichloromethylation that a similar non-chelation controlled
transition state was proposed in which the tribromomethyl anion
attack the Re face of the imine leading to the Cram products
(Fig. 1).7 The sulfinyl oxygen in s-cis arrangement with respect to
the C@N bond is supposed to be the most stable conformation
mainly due to the contribution of intramolecular hydrogen bond-
ing of the oxygen with the iminic hydrogen, based on recent
computational studies.7a,10



Table 2
Synthesis of 2,2-dibromoaziridines 4 from imines 2 and bromoform
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Figure 2. The X-ray crystal structure of compound 4a.
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Figure 1. Depiction of its stereoselective formation of compound 3a.
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The chemical outcome of the reaction between bromoform and
imine is highly solvent-dependent. When DMF was used as the
reaction solvent, compound 4a was the sole isolable new com-
pound (58% yield) and the tribromomethylated product 3a could
not be detected even by NMR spectroscopy on the crude reaction
mixture. Table 2 shows the scope of the reaction.11 As indicated,
this reaction can be applied to both non-enolizable and enolizable
imines. Generally, moderate to good yields can usually be obtained
for imines with electron-donating or moderate electron-withdraw-
ing substituents on the aromatic ring.

The reaction of imine 2e containing a strong electron-with-
drawing nitro group also gave the expected product 4c, albeit in
lower yield (39%). To our knowledge, this is the first case for asym-
metric synthesis of 2,2-dibromoaziridines.12 The structure and
configuration of the cyclization product were determined by sin-
gle-crystal X-ray analysis (Fig. 2).13

Next we went on to explore whether iodoform could undergo
similar reactions. However, the addition reaction between iodo-
form and imine 2a cannot proceed at all, which may be due to
the ready decomposition of the triiodomethyl anion generated un-
der the specified reaction conditions as indicated by the dark
brown solution once the base was added to the reaction mixture.

In conclusion, we have developed a highly practical and stereo-
selective synthesis of a-tribromomethyl amines and 2,2-dibro-
moaziridines from bromoform. Nucleophilic tribromomethylation
of N-(tert-butanesulfinyl)imines with bromoform in THF solvent
affords a-tribromomethyl amines in very good yields with high
diastereoselectivities. By simply changing the reaction solvent to
DMF, 2,2-dibromoaziridines can be synthesized directly from
bromoform and N-(tert-butanesulfinyl)imines under similar reac-
tion conditions.
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