
A

W.-W. Ying et al. LetterSyn  lett

SYNLETT0 9 3 6 - 5 2 1 4 1 4 3 7 - 2 0 9 6
© Georg Thieme Verlag  Stuttgart · New York
2017, 28, A–E
letter
en

yr
ig

ht
ed

 m
at

er
ia

l.
C(sp3)–H Peroxidation of 3-Substituted Indolin-2-ones under 
Metal-Free Conditions
Wei-Wei Ying◊ 
Wen-Ming Zhu◊ 
Zhanghua Gao 
Hongze Liang 
Wen-Ting Wei*

School of Materials Science and Chemical Engineering, 
Ningbo University, Ningbo 315211, P. R. of China
weiwenting@nbu.edu.cn

◊ These authors contributed equally to this work

17 Examples, 61–92% yield

Metal-free

C(sp3)–H peroxidation

t-BuOOH+
DCE, air, 85 °C

Metal-Free

N
O

R2

R1

R3

N
O

R2

R1

R3

OOt-Bu

R1 = H, OMe, Cl, Br
R2 = Ph, 2,5-Me2C6H3

        Me, Et, n-Pr
R3 = H, Me, Bn, Ph, Boc
D
ow

nl
oa

de
d 

by
: C

al
ifo

rn
ia

 In
st

itu
te

 o
f T

ec
hn

ol
og

y 
(C

A
LT

E
C

H
).

 C
op
Received: 09.09.2017
Accepted after revision: 29.10.2017
Published online: 11.12.2017
DOI: 10.1055/s-0036-1591520; Art ID: st-2017-w0679-l

Abstract A C(sp3)–H peroxidation of 3-substituted indolin-2-ones
through radical coupling reaction has been developed under metal-free
conditions. Using tert-butyl hydroperoxide both as an oxidant and as a
peroxidation reagent to couple with the C(sp3)–H bonds of 3-substitut-
ed indolin-2-ones can form a new C–O bond without using any addi-
tives. This simple strategy provides a green and efficient approach to
3-peroxyindolin-2-ones in moderate to excellent yields. The resulting
3-peroxyindolin-2-ones could be further transformed into 3-hydroxy-
indolin-2-ones.

Key words C(sp3)–H peroxidation, metal-free, 3-substituted indolin-
2-ones, tert-butyl hydroperoxide

The direct and selective functionalization of C(sp3)–H
bond is a ‘young’ and rapid-developing area in synthetic
chemistry.1 Transition-metal-catalyzed methods have re-
cently become the mainstream of C(sp3)–H functionaliza-
tion.2 However, from green chemistry and environmental
points of view, establishing a metal-free approach to
C(sp3)–H functionalization would be a more elegant strate-
gy.3 Thus, the metal-free methods have emerged as a pow-
erful ‘chemical weapon’ because it can overcome the draw-
backs of the expensive and poisonous properties of metals
or organometallics.4

Organic peroxides are ubiquitous and indispensable and
are present in biologically active compounds with antima-
larial,5 anthelmintic,6 and antitumor 7 activity. tert-Butyl
hydroperoxide (t-BuOOH) plays a dual role as an oxidant
and as a peroxidation reagent in the synthesis of organic
peroxides. While significant results have been accom-
plished in the field of difunctionalization of alkenes by the
use of t-BuOOH,8 reactions involving direct peroxidation of
C(sp3)–H bonds remain rare. One efficient example was re-
ported by Urabe and co-workers, who reported a Fe-pro-

moted C(sp3)–H bond functionalization of benzyl ethers
with t-BuOOH. Various tert-butyl peroxyacetals were readi-
ly prepared from benzyl ethers, t-BuOOH, and a catalytic
amount of Fe(acac)3 at 80 °C (Scheme 1, a).9 Very recently,
M. Stoltz and co-workers developed a Cu-catalyzed C(sp3)–
H peroxidation of oxindole derivatives with t-BuOOH by us-
ing CuCl as a catalyst and dichloromethane (CH2Cl2) as sol-
vent (Scheme 1, b).10

Scheme 1  C(sp3)–H peroxidation using t-BuOOH

However, to the best of our knowledge, no example of
metal-free direct C(sp3)–H peroxidation has been de-
scribed. In this regard, it is important to seek for a simple
and efficient method to broaden this area. As part of our
continuing efforts in modification indolin-2-ones and re-
cent interests in the C(sp3)–H peroxidation,11 herein we
present a C(sp3)–H peroxidation of 3-substituted indolin-2-
ones using t-BuOOH under metal-free conditions (Scheme
1, c). It is worth noting that this simple metal-free approach
successfully provides a versatile method for obtaining a
wide range of 3-peroxyindolin-2-ones.
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Initially, the reaction of 3-phenylindolin-2-one (1a)
with t-BuOOH (70% in water, 2a) was chosen as a model re-
action for optimizing the reaction conditions including sol-
vent and temperature (Table 1). The reaction proceeded un-
der the commonly used solvent dichloroethane (DCE) un-
der air at 85 °C, and an unknown product was obtained in
91% yield that after identification turned out to be 3-(tert-
butylperoxy)-3-phenylindolin-2-one (3a, Table 1, entry 1).
In the light of this result, we turned our attention to exam-
ine the reaction temperature. While a lower reaction tem-
perature only gave the desired product 3a in 30% yield (Ta-
ble 1, entry 2), a higher reaction temperature gave the same
result as that at 85 °C (Table 1, entry 3). Notably, the
amount of t-BuOOH affected the reaction: A decrease to 2.0
equiv was not beneficial to the formation of product 3a (Ta-
ble 1, entry 4), whereas an increase to 3.0 equiv only result-
ed in an identical result to that of 2.4 equiv t-BuOOH (Table
1, entry 5). Finally, the effect of solvent on the reaction per-
formance was evaluated. When the reaction was carried
out in MeCN, THF, and EtOH, the efficiency was lower than
in DCE (Table 1, entry 1 vs entries 6–8). On the basis of
these results, entry 1 represents the best conditions.

Having optimized the reaction conditions, the scope of
the C(sp3)–H peroxidation reaction by different 3-substitut-
ed indolin-2-ones with t-BuOOH was investigated (Table
2).12 It is satisfactory that under the optimum reaction con-
ditions, the 3-phenylindolin-2-one gave the desired prod-
uct 3a in 91% yield. In addition, introduction of an aryl- or
alkyl-substituent at the C3-position of indolin-2-ones did

not significantly affect the yield (products 3b–e), giving the
corresponding products in 70–81% yields (Table 2, entries
2–5). Next, we studied the effect of the aryl rings on this re-
action. A range of the 3-substituted indolin-2-ones bearing
an electron-donating group (R = OMe) or an electron-with-
drawing groups (R = Cl, Br) in the 5-position of the aryl
rings underwent the peroxidation and afforded the desired
products with up to 92% yield (3f–h, Table 2, entries 6–8).
Particularly noteworthy was the smooth transformation of
the aryl halide substrates, thus allowing further modifica-
tions via cross-coupling reactions. To our delight, a large va-
riety of functional groups (N-Me, N-Bn, and N-Ph substitu-
ents) as N-substituents of the 3-substituted indolin-2-ones
were tolerated and gave the corresponding products in 87%,
86%, and 82% yields, respectively (3i–k, Table 2, entries 9–
11). Moreover, the N-Boc-substituted substrate also reacted
effectively with 2a to give the corresponding product 3l in
66% yield after prolonging the reaction time (Table 2, entry
12). It is interesting to note that this method was also effec-
tive for the synthesis of  3-peroxyindolin-2-ones 3m–p and
gave the peroxidation products in moderate yields (Table 2,
entries 13–16). Unfortunately, indolin-2-one has poor se-
lectivity for this peroxidation reaction and was converted
into indoline-2,3-dione in 81% yield under the standard re-
action conditions (Table 2, entry 17). In general, this meth-
od was successfully applied to a variety of 3-substituted in-
dolin-2-ones, and these substrates were smoothly convert-
ed into the corresponding 3-peroxyindolin-2-ones in
moderate to excellent yields.

The study findings of transformations on the 3-peroxy-
indolin-2-ones are shown in Scheme 2. 3-Hydroxyindolin-
2-ones were obtained in 72–76% yields when 3-peroxyin-
dolin-2-ones were subjected to reduction conditions.13

To obtain information about the reaction mechanism,
several control experiments were carried out as shown in
Scheme 3. When 3-phenylindolin-2-one (1a) and 2-(tert-
butylperoxy)-2-methylpropane (t-BuOOt-Bu, 2b) reacted
under the standard reaction conditions, the desired product
3r was not detected at all, and 95% of 1a was recovered
(Scheme 3, a). Subsequently, two radical inhibitors, 2,2,6,6-
tetramethylpiperidinyloxyl (TEMPO) and 2,6-di-tert-butyl-
4-methyl phenol (BHT), were added to the C(sp3)–H peroxi-
dation reaction: Adding 3.0 equiv of TEMPO or BHT com-
pletely inhibited the conversion of 1a, which indicated that
a radical process might be involved in this reaction (Scheme
3, b and c). However, a hydroxylation product 4d was ob-
tained in 32% yield when 3.0 equiv of TEMPO were added
(Scheme 3, b). In addition, t-BuOOH was transformed by
BHT into 3,5-di-tert-butyl-4-(tert-butylperoxy)-4-methyl-
cyclohexa-2,5-dien-1-one (5a) in 71% yield, which suggest
that a t-BuOO radical is involved (Scheme 3, c).14

Table 1  Optimization of the Reaction Conditionsa

Entry Solvent Temp. (°C) Yield (%)b

1 DCE  85 91

2 DCE  50 30

3 DCE 100 91

4c DCE  85 78

5d DCE  85 92

6 MeCN  85 77

7 THF  85 20

8 EtOH  85  5
aReaction conditions: 1a (0.3 mmol), 2a (70% in water, 0.72 mmol, 2.4 
equiv), and solvent (2 mL) under air for 12 h.
bIsolated yields.
c 2a (0.6 mmol, 2.0 equiv).
d 2a (0.9 mmol, 3.0 equiv).
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Table 2  Reaction Scope of C(sp3)–H Peroxidationa

Entry Substrate Product Yield (%)

1

1a 3a

91

2

1b 3b

81

3

1c 3c

76

4

1d 3d

73

5

1e 3e

70

6

1f 3f

92

7

1g 3g

83

8

1h 3h

73

9

1i 3i

87
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Table 2 (continued)

10

1j 3j

86

11

1k 3k

82

12

1l 3l

66b

13

1m 3m

73

14

1n 3n

71

15

1o 3o

82

16

1p 3p

61b

17

1q
3q

tracec

aReaction conditions: 1 (0.3 mmol), t-BuOOH (70% in water, 0.72 mmol), 
and DCE (2 mL) under air at 85 °C for 12 h.
b For 24 h.
c Indoline-2,3-dione was obtained in 81% yield.
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Scheme 2  Synthesis application of 3-peroxyindolin-2-ones

The mechanism for the metal-free C(sp3)–H peroxida-
tion was proposed on the basis of present results and relat-
ed works (Scheme 4).15–17 Initially, the t-BuO and t-BuOO
radicals were generated from the present system.15 Subse-
quently, the t-BuO radical abstracts a hydrogen atom from
substrate 1 to generate a key intermediate radical A.16 Final-
ly, radical A couples with a t-BuOO radical to afford the per-
oxidation product 3.17

In summary, we have demonstrated a simple, efficient,
and green sequence for C(sp3)–H peroxidation. In this pro-
cess, t-BuOOH was used as a peroxidation reagent which
coupled with the C(sp3)–H bonds of 3-substituted indolin-

2-ones without using any metal catalysts. This method pro-
vides a practical route to 3-peroxyindolin-2-ones and ex-
hibits a broad substrate scope with good functional group
tolerance. Applications of this method toward asymmetric
synthesis of 3-peroxyindolin-2-ones are the subject of on-
going investigations in our laboratory.
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