

Tetrahedron Letters 44 (2003) 835-837

TETRAHEDRON LETTERS

$Mo(CO)_6$ -Catalyzed oxidation of furan derivatives to E- and Z-enediones by cumyl hydroperoxide

Antonio Massa, Maria Rosaria Acocella, Margherita De Rosa, Annunziata Soriente, Rosaria Villano and Arrigo Scettri*

> Dipartimento di Chimica, Università di Salerno, 84081 Baronissi (Salerno), Italy Received 28 October 2002; revised 19 November 2002; accepted 20 November 2002

Abstract—*E*- and *Z*-Enediones are easily accessible by controlled oxidation of 2,5-disubstituted furans with $Mo(CO)_6/cumyl$ hydroperoxide system. The use of *t*-butyl hydroperoxide, as oxygen donor, leads to the formation of 2*H*-pyran-3(6*H*)-one derivatives. © 2003 Elsevier Science Ltd. All rights reserved.

Furan derivatives represent important synthetic substrates because of their latent enedicarbonyl functionality that can be easily disclosed by a variety of oxidative photochemical,^{1,2} electrochemical³ and chemical methodologies. In particular, as regards the chemical conversion of furans 1 into products 2 very satisfactory results have been obtained by using epoxidizing agents (*m*-chloroperbenzoic acid,⁴ dioxirane,⁵ magnesium monoperoxyphtalate,⁶ methyltrioxorhenium/ureahydrogen peroxide adduct⁷), metal oxidants (pyridinium chlorochromate,⁸ cerium(IV) ammonium nitrate⁹), or by a two step sequence involving the previous conversion of 1 into the corresponding 2,5dialkoxy-2,5-dihydrofurans, followed by controlled hydrolysis to 2 under acidic conditions.¹⁰ Furthermore, it is noteworthy that 2 can be obtained in the desired Eor Z C=C geometry by a careful choice of the reagents and/or the experimental conditions (Scheme 1).

The wide availability of procedures can be surely attributed to the important synthetic value of compounds 2, used as key-intermediates in the preparation

Scheme 1.

of several classes of compounds, as cyclopentenone derivatives^{11,12} (rethrolones,³ prostaglandins¹³), chiral polyfunctional open-chain systems,¹⁴ variously substituted furans,¹⁵ 3(2H)-furanones,¹⁶ 2(3H)-furanones,¹⁷ 2,5-dihydrofurans.¹⁸

Now, we wish to report a very simple procedure, based on the employment of $Mo(CO)_6/cumyl$ hydroperoxide (CHP) system as mild oxidant of 2,5-dialkyl furans of type 1, that allows to get alternatively *E*- or *Z*-enediones 2 in satisfactory yields (Scheme 2).

In fact, when the starting materials **1** were submitted to treatment with CHP (1 equiv.) in CHCl₃ solution under the conditions reported in Scheme 2 and Table 1 (entries a–d), the formation of E-**2** was found to take place in a satisfactory way.

Since all the previously reported procedures involving the use of epoxidizing agents afforded exclusively Zenediones 2, we supposed that, under the conditions of Proc. A, a ready $Z \rightarrow E$ isomerization could be promoted by the slightly acidic reaction medium. In fact, when the same experiments were performed in the presence of anhydrous Na₂CO₃ (1 equiv.), Proc. B, products 2 could be isolated as Z geometrical isomers (entries e-h, Table 1).

Furthermore, it has to be noted that when t-butyl hydroperoxide (TBHP) was used in substitution of CHP, very complex mixtures of products were obtained in consequence of the unexpected high reactivity of compounds 2 under the standard conditions. However, under more controlled conditions involving treatment

0040-4039/03/\$ - see front matter @ 2003 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)02636-9

^{*} Corresponding author. Tel.: +39-89-965-374; fax: +39-89-965-296; e-mail: scettri@unisa.it

Proc. A: CHP (1eq), Mo(CO)₆ (0.1eq), CHCl₃, 50°C Proc. B: CHP (1eq), Mo(CO)₆ (0.1eq), CHCl₃, Na₂CO₃ (1eq), 50°C

Scheme 2.

Table 1. Mo(CO)₆-catalyzed oxidation of 2,5-dialkyl furans 1 with CHP

Entry	R	Reac. time (h)	Procedure	Product	Yield (%) ^a
a	$n-C_4H_9$	20	А	E-2a	65
b	$n-C_7H_{15}$	16	А	E- 2 b	67
с	$n-C_9H_{19}$	20	А	E-2c	63
d	-Н	24	А	E- 2d	93
e	$n-C_4H_9$	20	В	Z-2a	64
f	$n-C_7H_{15}$	20	В	Z-2b	61
g	$n-C_{o}H1_{o}$	24	В	Z-2c	63
h	-H	12	В	Z-2d	53

^a All the yields refer to isolated chromatographically pure compounds whose structures were confirmed by IR and ¹H NMR data and by comparison with authentic samples prepared through known procedures.^{4,8}

with TBHP (1 equiv.), in CHCl₃ solution at 40°C, in the presence of a very reduced amount of $Mo(CO)_6$ (0.01 equiv.), the formation of *E*-**2** enediones was again found to occur in appreciable yields (Table 2) although incomplete conversion was required in order to minimize the formation of the additional reaction products **4** (Scheme 3).

It is noteworthy that, when 3 equiv. of TBHP were used

in order to get the complete conversion of the starting material (entry d, Table 2) the corresponding products E-2b and 4b were obtained in 45 and 55% yield, respectively.

A set of experiments has then allowed to disclose an unprecedented reactivity both of Z- and E-2 and furthermore, to obtain useful information on the reaction pathway leading to compounds 4. In fact, irrespective

Table	2	$M_0(CO)_{-}$	catalyzed	oxidation	of dialky	l furans 1	l with	TRHP
I abic	4.	$10(00)_{6}$	catalyzeu	Unitation	UI UIAIKY	i iurans i	i wiui	IDIII

Entry	R	Reac. time (h)	Conv. (%)	<i>E</i> -2 Yield (%) ^a	4 Yield(%) ^b
a	$n-C_4H_9$	24	80	52	10
b	$n - C_7 H_{15}$	24	82	50	4
c	$n - C_9 H_{19}$	32	83	52	10
d	$n - C_7 H_{15}$	8	100 ^c	45 ^b	55 ^b

^a All the yields refer to isolated chromatographically pure compounds whose structures were confirmed by IR and ¹H NMR data and by comparison with authentic samples obtained by previously reported procedures.^{8,19}

^b In this entry the yields were calculated by ¹H NMR analysis on the crude reaction mixture.

^c In this entry 3 equiv. of TBHP were used.

Scheme 3.

Scheme 4.

Table 3. $Mo(CO)_6$ -catalyzed oxidation of 2 to 5 with TBHP

Entry	Substrate	Reac. time (h)	Conversion (%)	5 Yield (%) ^a
a	Z-2b	62	91	58
b	E- 2 b	60	88	57
с	E-2c	64	87	59
d	<i>E</i> -2d	64	90	63

^a All the yields refer to isolated chromatographically pure compounds and are calculated on the starting materials. Structural determination is based on IR, ¹H and ¹³C NMR and by comparison with authentic samples obtained by a previously reported procedure.¹⁹ In all entries mixed peroxides of type **4** were obtained as less abundant products (8–10% yields).

of the C=C bond geometry, enediones **2** were smoothly converted into the peroxypyranone derivatives **5** under the usual oxidative conditions [TBHP (3 equiv.), $Mo(CO)_6$ (0.01 equiv.) in CHCl₃ solution at rt for 72 h] (Scheme 4, Table 3).

Although the mechanistic aspects have not been fully clarified, the involvement of intermediates 3b and 4b in the oxidative conversion of Z-2b (chosen as representative substrate) into 5b has been supported by the achievement of the synthetic sequence reported in Scheme 5.

In conclusion, both E- and Z-enediones are readily accessible by a simple and convenient procedure and, furthermore, products **2** prove to be useful intermediates in the preparation of furan and 2H-pyran-3(6H)- one derivatives.

Typical procedure for the oxidation of 1 to enediones 2 by CHP

A mixture of 1 (2 mmol), $Mo(CO)_6$ (0.2 mmol), CHP (2 mmol), anhydrous Na_2CO_3 (2 mmol) (required for the synthesis of Z-2) CHCl₃ (4 ml) was stirred at 50°C for

the time reported in Table 1. Then, a 0.1N aqueous solution of $Na_2S_2O_3$ (15 ml) was added and the mixture was stirred at rt for 1 h. The absence of unreacted hydroperoxide was established with acidified starch–iodide test paper, according to Sharpless' report.²⁰ Then, diethyl ether (50 ml) was added and the organic phase was washed with brine (3×10 ml) until neutrality. After drying over anhydrous Na_2SO_4 , the solvent was removed under a reduced pressure and the resulting crude product **2** was purified by silica gel column chromatography by elution with *n*-hexane–diethyl ether mixtures.

References

- 1. Feringa, B. L. Recl. Trav. Chim. Pays-Bas 1987, 106, 469.
- 2. Graziano, M. L.; Iesce, M. R.; Carli, B.; Scarpati, R. *Synthesis* **1983**, 125.
- Shono, T.; Matsumura, Y.; Hamaguchi, H.; Nakamura, K. Chem Lett. 1976, 1249.
- 4. Kobayashi, Y.; Katsuno, H.; Sato, F. Chem Lett. 1983, 1771.
- Adger, B.; Barrett, C.; Brennan, J.; McKervey, M. A.; Murray, R. W. J. Chem. Soc., Chem. Commun. 1991, 1553.
- Dominguer, C.; Csaky, A. G.; Plumet, J. Tetrahedron Lett. 1990, 31, 7669.
- 7. Finlay, J.; McKervey, M. A.; Nimal-Gunaratne, H. Q. *Tetrahedron Lett.* **1998**, *39*, 5651.
- 8. Piancatelli, G.; Scettri, A.; D'Auria, M. *Tetrahedron* 1980, 36, 661.
- 9. Lepage, L.; Lepage, Y. Synthesis 1983, 1018.
- 10. Hirsch, J. A. J. Heterocyclic Chem. 1972, 9, 523.
- Shinoara, T.; Kurata, T.; Kitano, Y.; Matsumoto, K.; Takahashi, I.; Hosoi, S.; Ota, T.; Hatanaka, M. Synlett 2002, 8, 1245.
- 12. Kitano, Y.; Minami, S.; Morita, T.; Matsumoto, K.; Hatanaka, M. Synthesis 2002, 6, 739.
- 13. Floyd, M. B. J. Org. Chem. 1978, 43, 1641.
- 14. Raczko, J. Polish J. Chem. 1999, 73, 77.
- 15. Antonioletti, R.; D'Auria, M.; Piancatelli, G. J. Chem. Soc., Perkin 1 1981, 2398.
- 16. Antonioletti, R.; Bonadies, F.; Scettri, A. Tetrahedron Lett. 1987, 28, 2297.
- 17. D'Auria, M.; De Mico, A.; Piancatelli, G.; Scettri, A. *Tetrahedron Lett.* **1982**, *38*, 1661.
- D'Annibale, A.; Scettri, A. Tetrahedron Lett. 1995, 36, 4659.
- 19. Antonioletti, R.; Arista, L.; Bonadies, F.; Locati, L.; Scettri, A. *Tetrahedron Lett.* **1993**, *34*, 7089.
- 20. Sharpless, K. B. Aldrichim. Acta 1979, 12, 63 (see Ref. 80).

Scheme 5. Reagents and conditions: (a) TBHP (3 equiv.), Mo(CO)₆ (0.01 equiv.), CHCl₃, 24 h, rt.