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Microwave assisted water mediated benzylic C–H functionalization
of methyl aza-arenes and nucleophilic addition to aromatic
aldehydes
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Scheme 1. sp3 C–H activation of methyl aza-arene and nucleophilic ad
aromatic aldehydes.

Table 1
Screening of solvents and temperaturea

Entry Solvent Temperature (�C) Yiel

1 THF 90 NRc

2 CH3CN 90 NRc

3 DCE 110 NRc

4 DMF 110 30
5 DMSO 110 40
6 Ionic liquid 110 60
7 PEG-400 110 60
8 D2O 105 70
9 H2O 80 50

10 H2O 105 85
11 H2O 120 60

a Reaction conditions: methylquinoline (1.8 mmol) and 4-nitrobenz
(1 mmol) in 2 mL of the solvent for 20 min under MW irradiation.

b Isolated yield.
c No reaction.
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A highly efficient method is described for the sp3 C–H bond functionalization of methyl aza-arenes in the
presence of water under microwave irradiation and subsequent addition to aromatic aldehydes. This
transformation represents an efficient way to synthesize 2-alkyl aza-arene derivatives from simple
starting materials.
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Formation of carbon–carbon bond by sp3 C–H functionalization
is an important transformation in organic chemistry.1 In particular,
the benzylic sp3 C–H functionalization of 2-alkyl aza-arenes is a
challenging task due to less reactivity of alkyl groups. This type
of reaction is particularly important because, alkyl aza-arene deriv-
atives are known to possess a wide range of pharmaceutical activ-
ities, such as anti-inflammatory agents, anti cancer, anti-HIV
agents, and usage as molecular probes.2 Consequently, many ap-
proaches have been developed for the activation of sp3 C�H bond
of alkyl aza-arenes catalyzed by transition metals,3 Lewis acids4

and Bronsted acids.5 In addition, different protocols have been re-
ported for the sp3 C–H activation of methyl aza-arenes involving
highly reactive carbonyl compounds.6 It was reported that Lewis
acid catalyzed reaction of methyl aza-arenes with aldehydes at ele-
vated temperatures produced dehydrated products.7 To the best of
our knowledge only one method is known for the benzylic C–H
bond functionalization of aza-arenes promoted by Bronsted acid.5b

Indeed, this protocol is limited only to aromatic aldehydes bearing
electron withdrawing groups. Though the reported methods are
satisfactory, they suffer from certain drawbacks like the use of
expensive catalysts, toxic metals, extended reaction times, and
environmentally hazardous organic solvents. In view of this, the
development of a mild and highly efficient method for the direct
sp3 C–H functionalization of alkyl aza-arenes is desirable.
aldehyde
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Microwave irradiation has become a complementary tool in the
development of green chemistry.8 Microwave irradiation with
water as reaction medium is a highly reliable and sustainable
chemical approach. Water is a clean and safe solvent which is
cheap, non-toxic, non-combustible, non-explosive, and the most
benign environmentally.9 However, water has been rarely used
as a solvent for organic reactions due to the poor solubility of most
of the organic compounds in water. But at elevated temperatures
under microwave irradiation, the physical and chemical properties
of water are altered in such a way that it behaves both as a pseudo-
organic solvent and a phase transfer catalyst too.10

In continuation of our research on sp3 C–H functionalization,11

herein we wish to report a novel, efficient, and catalyst-free meth-
od for the sp3 C–H bond activation of methyl aza-arene and nucle-
ophilic addition to aromatic aldehydes (Scheme 1).
Table 2
sp3 C–H activation of methyl quinoline and nucleophilic addition to various aromatic alde
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a All the products were characterized by 1H NMR, IR,13C NMR, mass, HRMS.
b Yield refers to isolated products after purification.
c Starting materials were recovered.
Reaction of 2-methyl quinoline (1a) with p-nitro benzalde-
hyde (2k) in the presence of water under microwave irradiation
proceeded smoothly to give the expected product in excellent
yield (3k). To check the efficiency of water as a solvent under
similar conditions, a study has been made by varying the solvent
system of the reaction. As seen in Table 1, a variety of reaction
conditions were employed to find out the optimal reaction
conditions.

The result of which revealed that solvents such as tetrahydrofu-
ran, acetonitrile, and 1,2-dichloroethane are not suitable for this
reaction as there is no formation of the desired product even in a
trace quantity (Table 1, entries 1–3). When N,N-dimethylformam-
ide and dimethylsulfoxide were employed as reaction media, the
desired product was obtained in lower yields (Table 1, entries 4
and 5). However, moving on to check some alternative greener
hydes
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Table 3
sp3 C–H activation of methyl aza-arenes and nucleophilic addition 4-nitrobenzaldehydel
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a All the products were characterized by IR, mass, HRMS, 1H and 13C NMRS.
b Yield refers to pure products after purification.
c Starting materials were recovered.
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media such as ionic liquid and PEG-400 produced the product in
moderate yields (Table 1, entries 6 and 7). Also, a reaction carried
out under neat condition led to an inseparable mixture of various
products. In addition, among the wide range of solvent systems
tested, the water mediated reactions were the most effective in
terms of yields. Furthermore, varying the temperature below or
above the optimal 105 �C temperature led to a decrease in yields
(Table 1, entries 9 and 11). The time duration of the reaction was
particularly important as longer reaction time, will result in the
formation of the by-products.

Having the optimized reaction conditions in hand,12 the scope
of the reaction with regard to the electronic structure of aldehydes
was screened (Table 2). It was found that all aromatic aldehydes
bearing an electron withdrawing group as well as electron-releas-
ing groups underwent smooth coupling though the latter was less
efficient compared to the former. The present protocol is found to
be advantageous over the previous report which only worked with
aromatic aldehyde bearing electron withdrawing groups.5b Reac-
tion of methyl quinoline 1a with aromatic aldehydes bearing elec-
tron neutral and electron-donating substituents led to a modest
yield of the product (Table 2, entries 1–4). Aromatic aldehydes at-
tached to electron-withdrawing substituents proceeded effectively
and provided the desired products in excellent yields (Table 2, en-
tries 8 and 9). Aromatic aldehydes bearing halogen substituents
were well tolerated and gave a good yield of the products (Table
2, entries 5–7). Furthermore, we extended the scope of aldehydes
to hetero aromatic aldehydes. Hetero aromatic aldehydes gave
the corresponding product in good yield (Table 2, entry 10). Next,
an attempt was made to examine the reactivity of aliphatic alde-
hydes and benzophenones, they however failed to give the desired
product.

Next we moved onto check the scope of 2-alkyl aza-arenes and
the results are summarized in Table 3. Various substituents on the
aromatic ring of the 2-alkyl aza-arenes were well tolerated and the
reaction was found comparable to the unsubstituted aza-arenes.
Both electron-poor (Table 3, entries 2 and 3) and electron-rich (Ta-
ble 2, entry 5) substituted 2-alkyl aza-arenes were effective to fur-
nish the desired products. It was remarkable that halide
substituent was tolerated in the quinoline ring (Table 3, entry 4).
When 2-methyl-quinoxaline was used as the substrate, the yield
of the corresponding adduct was only modest (Table 3, entry 6).
Therefore, this process was not only applicable to quinolines and
quinoxalines but also to 2, 6-lutidine and 2-picoline though with
modest yields (Table 3, entries 7 and 8). Pyrimidine and pyrazines
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Scheme 2. A plausible mechanism of the reaction.
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failed to react with aromatic aldehydes under the optimized
conditions.

We presume that under microwave irradiation, the acidity of
aza-allylic protons and the ligating ability of the nitrogen atom
of 2-methyl aza-arene (1) were increased and facilitated the enam-
ine formation. The nucleophilic addition of enamine intermediate
to aromatic aldehyde (2) would afford the desired adduct. An
experiment was conducted to check the deuterium exchange dur-
ing the reaction. The reaction was performed in deuteriated water
which did not result in any deuteriated product and thereby elim-
inating any assumption of a proton exchange from the medium
during the course of the reaction (see Scheme 2).

In summary, we have developed a mild, highly efficient, and
water mediated protocol for the sp3 C–H functionalization of
methyl quinolines with aromatic aldehydes. The method is exten-
sively applicable for the rapid preparation of a library of biologi-
cally active pyridine and quinoline derivatives.
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