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Pyridoxal-Catalyzed Racemization of α-Aminoketones Enables 
the Stereodivergent Synthesis of 1,2-Amino Alcohols Using 
Ketoreductases
Jingzhe (Bill) Cao, and Todd K. Hyster*

Department of Chemistry, Princeton University, Frick Chemical Laboratory, Princeton, NJ 08544

ABSTRACT: Differentially substituted 1,2-amino alcohols are a 
prevalent motif in a variety of pharmaceutical and agrochemical 
molecules. Dynamic kinetic resolutions (DKRs) that involve the 
asymmetric reduction of -amino ketones are an attractive strategy 
for preparing this motif, however, methods for racemizing the 
stereogenic α-carbon under mild conditions are underdeveloped. 
Here we report a chemoenzymatic DKR involving ketoreductases 
(KREDs), where pyridoxal-5-phosphate (PLP) is used to catalyze 
racemization of the starting racemic -aminoketone. This strategy 
enables access to a variety of 1,2-amino alcohols with high levels 
of diastereo- and enantioselectivity. Using commercial available 
KREDs, all four possible stereoisomers can be accessed, 
highlighting a benefit to this approach.

Keywords: biocatalysis, dynamic kinetic resolution, 
racemization, pyridoxal, ketoreductase

Vicinal amino alcohols are ubiquitous in natural products 
and pharmaceutically important molecules.1 The 
prevalence of this motif has spurred the development of 
catalytic methods for preparing 1,2-amino alcohols with 
high levels of stereoselectivity. Among these methods, the 
aminohydroxylation of alkenes and nucleophilic opening of 
epoxides and aziridines catalyzed by enzymes and small 
molecule catalysts are the most well developed. 2,3,4 While 
these methods are highly effective, they involve 
stereospecific reaction mechanisms, limiting their use to 
the synthesis of specific stereoisomers. Alternatively, 
asymmetric reductive amination. The asymmetric 
reduction of 𝛼-aminoketones is an attractive alternative to 
these approaches because it is not mechanistically 
restricted to providing certain stereochemical outcomes.5 
When coupled to a mechanism for 𝛼-aminoketone 
racemization,6 stereoselective reduction catalysts can, in 
theory, be employed in to access all possible stereochemical 
outcomes from racemic starting materials.7,8 To achieve this 
goal, however, catalysts scaffolds need to be identified that 
are capable of furnishing all possible stereoisomers while 
also tolerating under the basic conditions required for 
racemization.

Ketoreductases (KREDs) are ideal catalysts for 
stereoselective carbonyl reductions because of their 
substrate promiscuity and ability to be tuned, using 
directed evolution, to provide desired stereochemical 
outcomes.9 Thanks to these features, collections of 
structurally diverse KREDs have been compiled for use in 
chemical synthesis.10 These panels have been applied to a 

variety of synthetic scenarios,11 including in dynamic 
kinetic resolutions. KREDs generally operate in a relatively 
narrow pH window (pH 6-8), consequently substrates for 
DKRs require acidic α-protons site with pKa’s between 7-12 
(Figure 1a).12 As most �-aminoketones have less acidic α-
protons, only substrates containing addition electron 
withdrawing groups can be racemized under these 
conditions.13
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Figure 1. Biocatalytic Dynamic Kinetic Resolutions and 
Pyridoxal-5-Phosphate Catalysis (as a strategy for labializing 
the 𝛼-amino proton). A. Substrates for Biocatalytic Dynamic 
Kinetic Resolutions. B. Existing Protein Engineering Strategy. C. 
This Work using Pyridoxal-Catalyzed Racemization.

Efforts to overcome the pKa limitation have primarily 
focused on engineering KREDs to function under more basic 
conditions (Figure 1b). In their synthesis of Vibegron, 
Merck & Co. partnered with Codexis to demonstrate that a 
KRED could be evolved to operate at pH =10.0, enabling 
racemization of Boc-protected 𝛼-aminoarylketones.14 We 
imagined that the need for protein engineering could be 
overcome by developing a strategy for racemizing 𝛼-
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aminoketones at neutral pH. This would enable 
commercially available kits of structurally diverse KREDs to 
be rapidly deployed in DKRs to prepare 1,2-amino alcohols, 
thereby eliminating the need to engineer a base-tolerant 
KREDs.15

Amine activation via aldehyde catalysis is widely used 
in nature to facilitate amine metabolism. Nature’s aldehyde 
of choice is pyridoxal-5-phosphate (PLP), a cofactor found 
in a host of enzyme classes,16 including transaminase, 
tryptophan synthase, threonine aldolase, tyrosine 
decarboxylase, and alanine racemase.17 In these enzymes, 
PLP forms a Schiff base with the amine enabling 
stabilization of negative charge generated at the α-position 
of the amine (Figure 1c).18 It is calculated that PLP can 
increase the acidity of the α-position of glycine by 18 orders 
of magnitude.19 Inspired by this profound effect, we 
questioned whether PLP could catalyze the racemization of 
-aminoketones in the absence of protein at neutral pH. 
Previous reports demonstrate that PLP can mediate the 
racemization of -aminoesters in 95% organic solvent.20 In 
the presence of solvent stable hydrolases, a dynamic kinetic 
resolution is achieved to prepare enantioenriched amino 
acids which precipitated from solution to prevent further 
racemization.21We hypothesized that PLP should also be 
able catalyze the racemization of α-aminoketones under 
aqueous conditions. When run in the presence of KREDs, an 
enantio- and diastereoselective synthesis of 1,2-amino 
alcohols would be achieved, with the decreased acidity of 
the α-amino proton in the product precluding product 
epimerization.

Figure 2. Pyrazine Formation and Dynamic Kinetic Resolution 
Development 

At the outset, we recognized that a challenge inherent 
to the proposed reactivity was dimerization of the α-
aminoketone to afford a dihydropyrazine, which upon 
oxidation would provide the pyrazine (Figure 2). We 
hypothesized that under aerobic reaction conditions, 
formation of the dihydropyrazine is reversible, while the 
oxidation to form the pyrazine is irreversible. Based on this 
understanding, we reasoned that anaerobic reaction 
conditions should diminish formation of the undesired 

pyrazine side product.22 To test this hypothesis, we 
explored the reduction of phenylalanine-derived methyl 
ketone 1 with a panel of KREDs purchased from Codexis® 
under aerobic conditions and observed pyrazine 3 as the 
major product, with < 5% formation of the desired 1,2-
amino alcohol 2 (Figure 2). When the same reaction was 
tested under anaerobic conditions, KRED P2-D11 provided 
the desired 1,2-amino alcohol 2 in 32% yield with 6:1 dr and 
>99:1 er, with the remaining mass balance being unreacted 
starting material (Figure 2).

Figure 3. PLP-Catalyzed Substrate Racemization

With a promising enzyme in hand, we shifted our 
attention to developing conditions to racemize the -
aminoketone 1. In preliminary experiments, we found that 
the starting material does not racemize in buffer at pH’s 
ranging from 6.5-9.5 (Figure 3). Upon addition of PLP (10 
mol %) to 2-(N-morpholino)ethanesulfonic acid buffer 
(MES) at pH 6.5, racemization of the starting material from 
96% ee to 20% ee occurred within two hours (Figure 3). We 
recognized that enhanced rates of racemization could be 
necessary for more kinetically active KREDs. Snell and 
coworkers previously demonstrated that metal salts can 
enhance the rate of pyridoxal catalyzed -aminoester 
racemization by forming stable metal chelates.23 After 
testing a small collection of metal salt additives, we found 
that addition of catalytic NiSO4 (15 mol %) enabled 
complete racemization within 90 minutes. With ideal 
racemization conditions in hand, we explored the impact 
these conditions have on the stereochemical integrity of 
amino alcohol 2. We found that the product did not 
decompose or epimerize under the reaction conditions, 
presumably due to the insufficient acidity of the α-amino 
proton (Scheme S1). Having identified optimal conditions 
for substrate racemization, we tested the racemization 
conditions in the presence of ketoreductase P2-D11 and 
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achieved an effective dynamic kinetic resolution of 1 to 
afford 1,2-aminoalcohol 2 in 85% yield as an 11:1 dr and 
99:1 er (Figure 3).

Table 1. Substrate Scope

 
The scope and limitations of the transformation were 

tested on a variety of substrates (Table 1). Codexis® KRED 
P1-B05 proved most effective for phenylalanine-derived 
methyl ketones, with various functional groups appended 
to the aromatic ring being well-tolerated in this reaction. 
Electron donating groups provided slightly higher levels of 
diastereoselectivity by comparison to electron withdrawing 
substituents (Table 1, 4-10).  Differences in 
diastereoselectivity are due to either a change in the rate of 
racemization or variations in the rate and selectivity of 
ketone reduction. Substrates with ortho- substituents are 
also compatible with the reaction conditions. Beyond 
simple aromatics, heteroaromatics, such as pyridine and 
thiophene, are well-tolerated, affording product with good 
yields and selectivities. More sterically demanding naphthyl 
substituted ketones are also effective substrates for this 
reaction.

Next, we tested a series of substrates lacking aromatic 
substituents. While a different KRED was required for high 
levels of selectivity, n-hexyl glycine and derived c-
hexylalanine derived -aminoketone afforded product in 
high yields, diastereoselectivities and enantioselectivities. 
(17, 19). Leucine-derived -aminoketone is also an 
effective substrate for this reaction, although product is 
formed with slightly diminished diastereoselectivity 18 
(90% yield, 8:1 dr, >99:1 er).

An attractive feature of this approach is the possibility 
to access all four possible stereoisomeric products simply 
by exchanging the KRED involved in the kinetic resolution. 
We found that by screening the collection of the 24 
ketoreductases in the Codexis® kit, enzymes can be 
identified that provide all possible stereoisomers in high 
yield and enantioselectivity and with good to excellent 
levels of diastereoselectivity (Figure 4). The general 
selectivity trends with these enzymes are observed with 
structurally related substrates (Figure S1).  These examples 
demonstrate the possibility of novel racemization 
mechanisms to be paired with curated collections of 
enzymes to provide rapid access to the desired 1,2-amino 
alcohol stereoisomer.  

As a demonstration of the versatility of this method, 
we sought to utilize this reaction to prepare amino alcohols 
found in medicinally important molecules. We recognized 
that amino alcohol motif found in HIV antiviral drugs 
Darunavir24 and Atazanavir25 could be accessed using this 
approach via conversion of a chloroaminoketone into an 
amino alcohol. After screening the commercial collection of 
KREDs, we found that KRED P1-B10 provided product in 
excellent yield, enantioselectivity and diastereoselectivity.
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Figure 4. Stereodivergent Enzymes and Synthetic Applications 

 In conclusion, by merging nonenzymatic PLP 
racemization and diastereoselective reduction using 
ketoreductases, we developed a dynamic kinetic resolution 
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process for the preparation of chiral aminoalcohols from -
aminoketone starting materials. Utilizing commercially 
available KREDs, all four possible stereoisomers can be 
accessed using the same protocol, highlight the advantage 
of this approach by comparison to existing amino alcohols 
syntheses. As this racemization strategy operates at neutral 
conditions, it should be compatible with many evolved and 
naturally occurring KREDs, enabling it to be applied to the 
synthesis of a range of structurally diverse -
aminoalcohols.26
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