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SUMMARY

The BCL-2 family is composed of anti- and pro-
apoptotic members that respectively protect or
disrupt mitochondrial integrity. Anti-apoptotic over-
expression can promote oncogenesis by trapping
the BCL-2 homology 3 (BH3) ‘‘killer domains’’ of
pro-apoptotic proteins in a surface groove, blocking
apoptosis. Groove inhibitors, such as the relatively
large BCL-2 drug venetoclax (868 Da), have emerged
as cancer therapies. BFL-1 remains an undrugged
oncogenic protein and can cause venetoclax resis-
tance. Having identified a unique C55 residue in the
BFL-1 groove, we performed a disulfide tethering
screen to determine if C55 reactivity could enable
smaller molecules to block BFL-1’s BH3-binding
functionality. We found that a disulfide-bearing N-
acetyltryptophan analog (304 Da adduct) effectively
targeted BFL-1 C55 and reversed BFL-1-mediated
suppression of mitochondrial apoptosis. Structural
analyses implicated the conserved leucine-binding
pocket of BFL-1 as the interaction site, resulting in
conformational remodeling. Thus, therapeutic tar-
geting of BFL-1 may be achievable through the
design of small, cysteine-reactive drugs.

INTRODUCTION

The response to physiologic or pathologic stress is regulated

by BCL-2 family proteins, which render a cellular life or death

decision that is processed at the mitochondrial outer membrane

(MOM) (Kalkavan and Green, 2018). Stress-induced activation of

pro-apoptotic proteins, such as BAX or BAK, leads to transient

exposure of their BCL-2 homology 3 (BH3) helices, which partic-

ipate in converting BAX/BAK monomers into toxic oligomers
Ce
that pierce the MOM and release apoptogenic factors into

the cytosol (Walensky and Gavathiotis, 2011). Anti-apoptotic

BCL-2 proteins contain a surface groove that can bind and

trap the exposed BH3 helices of BAX and BAK, and thereby

neutralize the killing mechanism (Sattler et al., 1997). An addi-

tional layer of regulation involves the BH3-only members, a

heterogeneous subclass of pro-apoptotic BCL-2 proteins that

only share homology in the BH3 region (O’Connor et al., 1998;

Wang et al., 1996; Yang et al., 1995). BH3-only proteins can

deploy their conserved helices to directly trigger pro-apoptotic

BAX and BAK or serve as decoys to block the anti-apoptotic

grooves (Cheng et al., 2001). The latter inhibit-the-inhibitor

mechanism of BH3-only pro-apoptotic activity provided a blue-

print for the development of small-molecule drugs to reactivate

apoptosis in cancer by targeting the anti-apoptotic groove

(Oltersdorf et al., 2005).

Of the six anti-apoptotic BCL-2 family targets, small molecules

have been developed to effectively block BCL-2, BCL-XL, and

MCL-1. A selective BCL-2 inhibitor, venetoclax, is Food

and Drug Administration-approved for the treatment of CLL,

and other BCL-XL and MCL-1 inhibitors are currently in clinical

trials (Kotschy et al., 2016; Souers et al., 2013; Tse et al.,

2008). Suchmolecules aremimics of BH3 peptide helices, which

engage a large, flat, and shallow groove on the surface of anti-

apoptotic BCL-2 proteins. Correspondingly, the inhibitory mole-

cules are relatively large (e.g., venetoclax, molecular weight

[MW] 868; navitoclax, MW 975; S63845, MW 829), which can

pose ‘‘beyond-the-rule-of-5’’ (bRo5) pharmacologic challenges

during development (DeGoey et al., 2018). BFL-1 (also known

as BCL2A1 or A1) is another BCL-2 family anti-apoptotic protein

that has been implicated in the pathogenesis of human cancers,

including leukemia, lymphoma, melanoma, and gastric cancer

(Choi et al., 1995; Fan et al., 2010; Haq et al., 2013; Morales

et al., 2005). BH3 helices have been shown to engage individual,

dual, or multiple anti-apoptotic targets (Certo et al., 2006; Chen

et al., 2005; Stewart et al., 2010) and, therefore, a tunable spec-

trum of molecular targeting capability may be achievable. Never-

theless, the current trend favors selectivity to avoid the potential
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toxicity of broad targeting. For example, the dual BCL-2/BCL-XL

inhibitor, nativoclax, was found to induce rapid thrombocyto-

penia as a result of on-mechanism toxicity associated with

blockade of BCL-XL in platelets, motivating the development of

selective BCL-2 inhibitors to avoid the risk of hemorrhage in

cancer patients (Mason et al., 2007; Souers et al., 2013). How-

ever, resistance against precision anti-apoptotic inhibitors like

venetoclax has already emerged, including BCL-2 protein

mutations and alternative anti-apoptotic expression, such as

MCL-1 and BFL-1, portending a ‘‘whack-a-mole’’ challenge for

the field (Birkinshaw et al., 2019; Yecies et al., 2010). Thus,

developing molecular inhibitors for the complete array of anti-

apoptotic proteins, particularly those like BFL-1 that remain

undrugged, is a high priority goal.

In surveying design opportunities for selective BFL-1 target-

ing, we noted a cysteine within its BH3-binding groove (Huhn

et al., 2016). Strikingly, no other BCL-2 family protein has an

analogous cysteine at the critical regulatory groove. Guided by

a native cysteine pair in the complex between NOXA BH3 and

BFL-1 (PDB: 3MQP), we generated a series of cysteine-reactive

stabilized a helices of BCL-2 domains (SAHBs), which were

shown by biochemical, structural, and cellular means to target

BFL-1 through combined covalent and non-covalent interaction,

and thereby reactivate apoptosis in BFL-1-driven cancers

(Guerra et al., 2018; Harvey et al., 2018; Huhn et al., 2016). To

investigate if small molecules could do the same, we turned to

disulfide tethering, which has emerged as a powerful screening

method for identifying molecular fragments that engage a target

binding site in the vicinity of a natural or installed cysteine residue

(Erlanson et al., 2000; Ostrem et al., 2013). We were especially

interested in determining if much smaller compounds, when en-

dowed with a cysteine-reactive moiety, could achieve BH3-

mimetic functionality. Here, we surprisingly identified a disul-

fide-bearing N-acetyltryptophan analog that forms an adduct

of only 304 Da in size upon C55 targeting yet exerts structural

and biochemical consequences analogous to BH3-mediated

BFL-1 inhibition.

RESULTS

A Disulfide Tethering Screen Identifies Molecular
Fragments that Conjugate to BFL-1 C55
We performed a disulfide tethering screen to identify molecules

capable of engaging the BH3-binding groove of BFL-1 in the

context of disulfide formation with BFL-1 C55 (Figure 1A). Spe-

cifically, we tested a 1,600-member library (Burlingame et al.,

2011; Hallenbeck et al., 2018) for interaction with BFL-1DC

C4S/C19S, a construct lacking the C-terminal a9 helix and the

two native cysteine residues located outside of the BH3-binding

groove. Compounds were incubated with BFL-1 protein at room

temperature for 1 hour in the presence of 500 mM b-mercaptoe-

thanol and then percent tethering was determined by intact

mass spectrometry. We identified 31 compounds with percent

tethering values of two standard deviations above the mean, re-

flecting 51%–73% BFL-1 derivatization under the reducing

experimental conditions (Figure 1B). A common theme among

the chemical structures of the hits is the presence of an aryl,

benzyl, pyridyl, or indolyl group separated from the reactive

cysteine by a linker of four to six bond lengths (Table S1). To
2 Cell Chemical Biology 27, 1–10, June 18, 2020
verify the hits and identify themost potent molecular competitors

of BH3/BFL-1 interaction, we performed a fluorescence polari-

zation (FP) secondary screen based on the comparative binding

of a fluoresceinated BID BH3 peptide to apo versus fragment-

conjugated BFL-1 protein. Whereas all of the identified com-

pounds shifted the fluorescein isothiocyanate (FITC)-BID BH3

binding isotherm to the right upon BFL-1 conjugation, 4E14, an

N-acetyltryptophan analog of 408 Da, emerged as the most

effective competitor (�56-fold shift in EC50) (Figure 1C). Intact

mass spectrometry documented complete conjugation of 4E14

to BFL-1DC (M + 304) under the experimental conditions (Fig-

ure 1D). To evaluate the C55 dependence of 4E14 binding

activity and compound selectivity, we repeated the competitive

FP using BFL-1 protein that lacked C55 but retained the native

C4 and C19 residues (BFL-1DC C55S), and alternative anti-

apoptotic members, BCL-XLDC and MCL-1DNDC, which

contain cysteine residues but not within their BH3-binding

grooves. In each case, exposing the proteins to 4E14 under

conjugating conditions had no effect on the capacity of FITC-

BID BH3 to bind to the respective anti-apoptotic targets (Figures

1E and 1F). Thus, disulfide tethering yielded a lead molecular

fragment capable of direct and selective C55 derivatization

under reducing conditions, resulting in impaired BH3-binding

interaction at the canonical BFL-1 groove.

Conformational Consequences of the Covalent 4E14/
BFL-1 Interaction
To assess the impact of disulfide bond formation between 4E14

and C55 on the structural dynamics of BFL-1DC C4S/C19S, we

performed hydrogen/deuterium exchange mass spectrometry

(HXMS) analyses (Barclay et al., 2015; Engen, 2009; Lee et al.,

2016). HXMS interrogates the conformation of proteins by

measuring the relative deuterium uptake of backbone amides.

Protein regions involved in ligand interaction can become pro-

tected or structured, resulting in decreased deuterium exchange

of the corresponding backbone amide hydrogens. In contrast,

deuterium exchange increases in areas of a protein that become

deprotected, unstructured, or more dynamic upon ligand inter-

action. Here, we incubated BFL-1DC C4S/C19S with 4E14 or

vehicle at room temperature for 1 h and then performed HXMS

analyses at 10 s and 10 min of deuteration. A reducing agent

(tris(2-carboxyethyl)phosphine) was included in the quench

buffer to remove C55-bound 4E14, thereby allowing for peptide

comparisons between the vehicle and 4E14 conditions. In the

presence of 4E14, the distal region of a2 and proximal portion

of a3 were strongly protected from deuterium exchange at the

10 s labeling time point, indicative of molecular engagement of

the very structures that comprise the upper portion of the canon-

ical groove, including C55 (Figures 1A, 2A, and 2B; Table S2;

Data S1). At 10 min of deuterium labeling, additional adjacent

regions become protected from deuterium exchange, including

a portion of the a1-a2 loop, proximal a2, and the middle of a4

(Figures 2A and 2C; Table S2; Data S1). These data are consis-

tent with 4E14 targeting the canonical groove and reducing the

conformational dynamics of the associated components, span-

ning from the a1-a2 loop to a4 (Figures 2B and 2C; Table S2;

Data S1).

Next, to distinguish between the influence of 4E14 interaction

with BFL-1DC in the presence and absence of disulfide bond
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Figure 1. A Disulfide Tethering Screen Iden-

tifies Covalent BFL-1 Inhibitor Molecules

that Disrupt BH3-Binding Activity

(A) Crystal structure of the complex between anti-

apoptotic BFL-1DC (gray) and a cysteine-reactive

stapled NOXA BH3 peptide (cyan) (PDB: 5WHH),

highlighting the site of covalent attachment to C55

(orange) and interaction at the canonical BH3-

binding groove (purple).

(B) A disulfide tethering screen of 1,600 disulfide

fragments against BFL-1DC C4S/C19S yielded 31

fragments with percent tethering of at least two

standard deviations above the mean, as measured

by mass spectrometry.

(C) Fluorescence polarization (FP) assays

comparing the relative capacity of the 31 identified

fragments to compete with FITC-BID BH3 peptide

for interaction at the BFL-1DC C4S/C19S groove.

4E14 emerged as the most potent competitive in-

hibitor of the FITC-BID BH3/BFL-1 interaction (EC50:

FITC-BID BH3/BFL-1, 23 nM; FITC-BID BH3/BFL-

1–4E14, 1.3 mM). Data are mean ± SD for experi-

ments performed in technical triplicate and repeated

two times with independent preparations of ligand

and protein with similar results.

(D) Complete derivatization of His6-BFL-1DC

by 4E14, as measured by intact mass spectrom-

etry (molecule:protein, 20:1). Left peak (black):

18,473 Da (BFL-1 minus Met plus H2O); right peak

(red): 18,777 Da (M + 304).

(E and F) FP analysis evaluating the capacity of 4E14

to compete with FITC-BID BH3 for interaction with

BFL-1DC C55S (E) and BCL-XLDC and MCL-

1DNDC (F). Data are mean ± SEM for experiments

performed in technical triplicate and repeated two

times with independent preparations of ligand and

protein with similar results.

See also Table S1.
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formation, we repeated the HXMS analysis with BFL-1DC C55S.

In contrast to the prominent protection of the C55 region of

the canonical groove upon disulfide bond formation, 4E14

engagement of BFL-1DC in the absence of disulfide formation

caused subtle deprotection of the proximal portion of a2 (Fig-

ure S1; Table S2; Data S1). Since initial non-covalent interaction

at the canonical groove by individual BH3 helices and small

molecules is believed to open the groove to allow for ligand ac-

commodation (Harvey et al., 2018; Lee et al., 2007), it is plausible

that the subtle a2 deprotection observed by HXMS could reflect

an analogous structural perturbation upon weak non-covalent

binding of 4E14 in the absence of C55.

Structure of the 4E14/BFL-1 Complex
In an effort to determine the binding mode of the 4E14/BFL-1

interaction at the canonical groove, we solved a crystal structure

of the complex at 1.74 Å resolution (Figure 3A; Table 1, PDB:

6VO4). Notably, BFL-1 a3 residues 55–57 and the molecular

fragment itself were not visualized, likely due to flexibility of the

disulfide linkage and/or 4E14 binding mode. Nevertheless,

alignment with the structure of apo BFL-1 (PDB: 5WHI) and the
complex between BFL-1 and the cysteine-reactive stapled

peptide D-NA-NOXA SAHB (PDB: 5WHH) revealed that the

positioning of a2 in the 4E14/BFL-1 complex is intermediate be-

tween unbound and BH3-bound BFL-1 (Figure 3B). This sug-

gests that 4E14 is capable of inducing a conformational opening

of the BFL-1 canonical pocket in a manner similar to that

observed for a BH3 helix (Harvey et al., 2018). Integrating the

crystallography and HXMS results, it appears that non-covalent

4E14 binding may remodel and transiently expose a2 to ‘‘open’’

the groove, followed by conformational stabilization of the

region upon disulfide bond formation between 4E14 and C55

and thus reinforcement of molecular interaction at the groove

(Figures 2, S1, 3A, and 3B).

To calculate a model structure of the 4E14 binding interaction,

we performed a covalent docking analysis using the structure

of BFL-1 bound to NOXA BH3 (PDB: 3MQP). The preferred

pose, in addition to molecular dynamics simulations based on

the docking analysis, positioned the indole moiety of 4E14 in

the ‘‘p2’’ binding pocket of BFL-1, where the universally

conserved leucine of BH3 domain helices engages anti-

apoptotic targets (Acoca et al., 2011). 4E14 is predicted to
Cell Chemical Biology 27, 1–10, June 18, 2020 3
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(A) A deuterium difference plot showing the relative deuterium incorporation of BFL-1DCC4S/C19S conjugated to 4E14minus that of apo BFL-1DC, asmeasured

at the indicated time points. Each identified peptide is listed in order on the x axis with the relative protection displayed on the y axis. The changes outside of the
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See also Figure S1, Table S2, and Data S1.
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interact with hydrophobic BFL-1 residues V48, L52, V74, and F95

of the p2 region, with the indole hydrogen forming a hydrogen

bond with E78 (Figures 3C–3E and S2). With the exception of

F95 of a5, peptides that contain these a2-a4 residues were

all observed to have reduced deuterium exchange by HXMS

analysis (Figure 2), supporting the calculated model structure.

Taken together, our HXMS, crystallography, and computational

studies suggest that upon disulfide bond formation with C55,

4E14 engages the adjacent p2 binding pocket of BFL-1, resulting

in focal conformational stabilization of select canonical groove

helices, with a2maintaining an intermediate opening position be-

tween that of the apo and BH3-liganded conformations of BFL-1.

Functional Activity of the Covalent 4E14 Interaction
To generate a series of 4E14 analogs for functional testing, we

developed a facile solid phase synthetic scheme involving four

reaction phases, namely resin transformation, linker addition,

monophore core coupling, and cleavage from the resin by

disulfide exchange (Figure 4A). The first four synthetic steps

transformed the resin’s amine functional group into a thiol that

remained on the resin for the duration of the synthesis. The

desired disulfide tethering linker was added in steps five and

six by first activating the thiol by disulfide exchange with 2,20-di-
pyridyldisulfide and then exchanging the activated disulfide
4 Cell Chemical Biology 27, 1–10, June 18, 2020
with a thiol bearing a linker of desired length. The monophore

core of interest was then attached to the linker by HATU coupling

(step 7), yielding the disulfide fragment after cleavage from

the resin by disulfide exchange (step 8) and LC-MS purification.

Using this scheme, we generated 4E14 and a series of deriva-

tives, including N-acetyl-D-tryptophan (D-4E14), N-acetyl-5-

methyl-tryptophan (5-Me-4E14), and N-acetyl-D-2-naphthylala-

nine (D-Nal-4E14) (Figure 4B).

To determine if the covalent 4E14 interaction with BFL-1

had functional consequences beyond mitigating BH3-domain

binding, as detected by competitive FP (Figure 1C), we evalu-

ated the effect of 4E14 and its analogs on mitochondrial cyto-

chrome c release. We purified BAX/BAK-deficient mitochondria

from the livers of AlbCreposBaxfl/flBak�/� mice (Walensky et al.,

2006) and treated them with monomeric full-length BAX, tBID,

or the BAX/tBID combination in the presence or absence of

BFL-1DC C4S/C19S. Whereas monomeric BAX or tBID alone

had little to no effect on the mitochondria, the combination

induced robust cytochrome c release, which was significantly

suppressed by the addition of BFL-1 (Figure 4C). Conditions

that support complete conversion of BFL-1 to the fully 4E14-

conjugated form effectively blocked the anti-apoptotic function-

ality of BFL-1 (Figure 4C), allowing freed catalytic tBID to trigger

BAX, which propagates the signal through autoactivation and
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Figure 3. Structural Analyses of the 4E14/BFL-1DC Interaction

(A) Structure of His6-BFL-1DCC4S/C19Swhen conjugated to 4E14 via C55 (PDB: 6VO4). Amino acid residues 55–57 of a3, including the 4E14-C55 conjugate, are

not resolved in the structure and instead represented by the green dotted line.

(B) Overlay of the a2 region in the crystal structures of apo BFL-1DC (PDB: 5WHI), and the complexes between BFL-1DC and D-NA-NOXA SAHB (PDB: 5WHH)

and 4E14 (PDB: 6VO4), highlighting the dynamic nature of this region upon small molecule and peptide helix engagement.

(C) Calculated model structure of the 4E14/BFL-1DC interaction as determined by covalent docking and molecular dynamics simulations.

(D) Molecular interactions of 4E14 at the docked site on BFL-1DC, highlighting engagement of the indole moiety at the hydrophobic p2 region of BFL-1 and

proximity of E78 to the indole NH, suggestive of a hydrogen-bonding interaction.

(E) Side views of the interaction between the BH3-binding groove of BFL-1 and 4E14 (top) and D-NA-NOXA SAHB (PDB: 5WHH) (bottom), demonstrating the

covalent bond between C55 and the respective compounds, in addition to engagement of the disulfide linker (top) and D-nipecotic acid moiety (bottom) with the

cryptic site that forms upon ligand-target interaction.

See also Figure S2.
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resultant cytochrome c release. Importantly, the observed inhib-

itory activity of 4E14 was abrogated upon C55S mutagenesis of

BFL-1DC C4S/C19S (Figure S3). Taken together, these data

suggest that a small molecular fragment that engages the

groove and is reinforced by covalent attachment to C55 can

inhibit BFL-1 function.

Finally, we tested several analogs of 4E14 to evaluate potential

differences in conjugation and selectivity of functional engage-
ment. Intriguingly, the D-enantiomer of 4E14 fully conjugated

to BFL-1 but was �30% less effective at inhibiting BFL-1 in the

cytochrome c release assay compared with the L-enantiomer

(Figure 4C), perhaps due to a less effective binding mode for

BH3 competition, as suggested by docking analysis (Figures

S4A–S4D). A 5-methylated analog of 4E14 likewise conjugated

fully to BFL-1 but was even less active (Figure 4C), indicating

that the added methyl group may have altered the indole
Cell Chemical Biology 27, 1–10, June 18, 2020 5



Table 1. Data Collection and Refinement Statistics

Structure Name BFL-1/4E14

RCSB accession code 6VO4

Data Collectiona

Space group P21

Cell dimensions

a, b, c (Å) 39.55, 43.24, 43.49

a, b, g (�) 90.0, 104.9, 90.0

Resolution (Å) 32.78–1.74 (1.80–1.74)b

Rpim 0.03546 (1.003)

I/sI 11.20 (0.73)

Completeness (%) 91.91 (87.60)

Redundancy 3.2 (3.2)

Structure Solution

PDB entries used for molecular

replacement

3WHH

Refinement

No. reflections, unique 13,520 (1,286)

Rwork/Rfree 0.2383/0.2830

No. of atoms 1,089

Protein 1,069

Water 20

B factors 60.06

Protein 60.09

Water 58.46

Root-mean-square deviation

Bond lengths (Å) 0.007

Bond angles (�) 0.86

Ramachandran plot (%)

Preferred 96.2

Allowed 3.8

Not allowed 0.0
aSingle crystal was used to collect data for the reported structure.
bValues in parentheses are for highest-resolution shell.
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interaction in a manner that further impaired BH3 competition

(Figures S4E and S4F). Of note, aside from 4E14, no fused ring

structures or substituted analogs thereof were found among

the 31 hits from the screen (Table S1), consistent with these

data. To evaluate the effect of increased hydrophobic bulk and

elimination of the indole hydrogen, we replaced the indolemoiety

of the 4E14 D-enantiomer with naphthalene, which resulted in

complete abrogation of conjugation and BFL-1-inhibitory activity

(Figures 4C and S4G). These data support the relative specificity

of 4E14 for functional BFL-1 interaction, with impairment of

activity by only minor modifications of the chemical structure

indicative of a discrete structure-activity relationship.

DISCUSSION

BFL-1 is an undrugged BCL-2 family protein implicated in both

the pathogenesis and chemoresistance of human cancers (Fan

et al., 2010; Haq et al., 2013; Mahadevan et al., 2005; Yecies

et al., 2010). Thus, like BCL-2, BCL-XL, and MCL-1, BFL-1 is a
6 Cell Chemical Biology 27, 1–10, June 18, 2020
high-priority therapeutic target. Whereas relatively large small

molecules have been developed to inhibit the canonical BH3-

binding grooves of BCL-2, BCL-XL, and MCL-1 by non-covalent

targeting, here we explored whether incorporating a covalent re-

action with the unique C55 of the BFL-1 groove could enable

smaller molecules to effectively block anti-apoptotic activity.

Indeed, a disulfide tethering screen identified a series of small

molecules that effectively competed with BID BH3 for binding

to the BFL-1 groove. 4E14, a small N-acetyltryptophan analog

of 408 Da that derivatized BFL-1 with a 304 Da moiety, surpris-

ingly emerged as a lead fragment capable of effective BFL-1

blockade.

From a structural standpoint, 4E14 induced conformational

changes in the BFL-1 groove that resembled those induced by

a cysteine-reactive stapled peptide modeled after the NOXA

BH3 domain (D-NA-NOXA SAHB), namely displacement of a2

to open and inhibit the groove. The amphipathic BH3 helices

bind tightly to the canonical anti-apoptotic grooves by a series

of hydrophobic contacts, which are reinforced by a perimeter

of complementary charge-charge and hydrophilic interactions

(Sattler et al., 1997; Stewart et al., 2010). One of the key hydro-

phobic interactions involves a leucine residue that is conserved

across all BCL-2 family BH3 domains. Our calculated model

structure of the 4E14/BFL-1 complex suggests that the indole

moiety of 4E14 is positioned to both engage the conserved

leucine-binding or p2 pocket and participate in a hydrogen-

bonding interaction with E78 of BFL-1 a4. Interestingly, the

installation of an indole moiety in venetoclax (based on the

fortuitous interaction of W30 from an adjacent BCL-2 molecule

with the p4 pocket seen in crystal packing) tailored its selectivity

for BCL-2 by a hydrogen-bonding interaction between the

indole moiety and D103 of BCL-2 a2 (Souers et al., 2013). In

addition to the 4E14 indole interaction at the BFL-1 p2 pocket,

the disulfide linker is observed to engage an adjacent cryptic

site (involving L52, L56, V74, and F95) that forms below C55

upon covalent (Harvey et al., 2018) or non-covalent (PDB:

3MPQ) NOXA BH3 engagement of BFL-1. Importantly, this

newfound hydrophobic pocket does not form upon NOXA BH3

interaction with MCL-1 (Harvey et al., 2018) and thus provides

a further design opportunity to achieve selective targeting of

BFL-1 by cysteine-reactive small molecules.

The incorporation of a cysteine-reactive moiety into a stapled

NOXA BH3 peptide enabled truncation of the original template

sequence from 22 amino acids (aa: 22–43) to 15 amino acids

(aa: 26–40) (Guerra et al., 2018; Huhn et al., 2016). Whereas

the shortened stapled sequence showed little to no non-covalent

interaction with MCL-1 or BFL-1, incorporation of an acrylamide

warhead conferred robust and BFL-1-selective binding activity

(Guerra et al., 2018; Harvey et al., 2018). Here, we find that

4E14 reaction with BFL-1 C55 produces an M + 304 Da adduct

that is capable of blocking both BH3 interaction and the capacity

of BFL-1 to suppress BAX-mediated cytochrome c release.

Thus, our current dataset suggests that incorporation of a

cysteine-reactive moiety into a matured non-covalent inhibitor

of the anti-apoptotic groove could yield potent and selective

molecular inhibitors of BFL-1 that are appreciably smaller

than venetoclax, navitoclax, and S63845 molecules and poten-

tially bypass the challenges associated with bRo5 compounds

(DeGoey et al., 2018).
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Figure 4. Covalent Targeting by 4E14 Blocks BFL-1 Suppression of BAX-Mediated Mitochondrial Apoptosis

(A) Solid-phase synthetic scheme for the production of diverse disulfide tethering molecular fragments on resin.

(B) Chemical structures of 4E14 and analogs.

(C) Percent cytochrome c release from BAX/BAK-deficient mouse liver mitochondria treated with tBID, BAX, and/or BFL-1DC C4S/C19S in the presence or

absence of 4E14 and its analogs. Data are mean ± SEM for experiments performed in technical triplicate and repeated (biological duplicate) with independent

preparations of compounds, protein, andmitochondria with similar results. BAX, 100 nM; BFL-1DC C4S/C19S, 1 mM; tBID, 40 nM; 4E14 and analogs conjugated

to BFL-1 at molecule:protein ratio of 5:1. ***, p < 0.0001 by unpaired Student’s t test.

See also Figures S3 and S4.
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Disulfide tethering rapidly provided a starting point for

proof-of-concept experiments to determine the feasibility of

small-molecule covalent targeting of BFL-1. To expand the di-

versity of analogs, we developed a synthetic scheme for pro-

ducing monophores using the solid phase, which enables

high-throughput production of analogs, robust molecular

diversification, and minimal purification requirements. For

example, our use of solid-phase synthetic methods eliminated

the need for aqueous workups and column chromatography,

with residual solvents and salts removed upon high-perfor-
mance liquid chromatography purification. Furthermore, the

method was amenable to automation, with mixing and

washing steps performed on an automated peptide synthe-

sizer, which allowed for multiple syntheses to be readily per-

formed in parallel. Thus, incorporating solid-phase methods

to further diversify disulfide tethering libraries may help

expand the discovery potential of cysteine-reactive fragments

that engage BFL-1 and the myriad of other targets that harbor

cysteines in or around functionally relevant sites of protein

interaction.
Cell Chemical Biology 27, 1–10, June 18, 2020 7
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SIGNIFICANCE

BCL-2 family proteins maintain the critical balance between

cellular life and death and, when deregulated, can contribute

to the development, maintenance, and chemoresistance of

human cancer. Anti-apoptotic BCL-2 proteins suppress

cell death by capturing the essential BH3 helix of pro-

apoptotic proteins in a surface groove. Relatively large small

molecules (800–1,000 Da) effectively target the groove but

necessitated overcoming beyond-the-rule-of-5 challenges

during clinical development. Harnessing a unique cysteine

in the canonical groove of anti-apoptotic BFL-1, we per-

formed a disulfide tethering screen that identified a lead

small-molecule fragment capable of derivatizing BFL-1

with a 304-Da moiety, effectively blocking its BH3-binding

and anti-apoptotic functionality. Thus, we demonstrate

that disulfide tethering and a solid-phase synthetic scheme

to expand disulfide tethering libraries can provide a starting

point for the development of selective, covalent inhibitors of

BFL-1.
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Phaser McCoy et al., 2007 https://www.phenix-online.org/

documentation/reference/phaser.html

Phenix Adams et al., 2010 https://www.phenix-online.org/

Coot Emsley and Cowtan, 2004 https://www2.mrc-lmb.cam.ac.uk/

personal/pemsley/coot/

Schrodinger Maestro Schrodinger,

Version 2016-2

Schrodinger, LLC

Pymol The PyMol Molecular Graphics

System, Version 1.7.4.0

Schrodinger, LLC

ProteinLynx Global Server (PLGS) 3.0.1 Waters Corporation http://www.waters.com/waters/en_US/

ProteinLynx-Global-SERVER-(PLGS)/

nav.htm?cid=513821&locale=en_US

DynamX 3.0 Waters Corporation http://www.waters.com/waters/

library.htm?cid=511436&lid=

134832928&locale=en_US

Other

Superdex 75 10/300 GL size exclusion

column

GE Healthcare Life Sciences Cat# 29148721
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact Loren

Walensky (loren_walensky@dfci.harvard.edu).

Materials Availability
Plasmids and compounds generated in this study are available upon request to the lead contact.

Data and Code Availability
The data supporting the findings of this study are available within the article and its supplementary materials. X-ray crystallography

data was deposited to the PDB under accession number 6VO4 (BFL-1DC C4S/C19S / 4E14 complex).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Microbe Strains
Recombinant proteins were expressed in either E. coli LOBSTR BL21(DE3) or E. coli BL21(DE3) bacteria, which were grown in Luria

Broth (LB) and respectively maintained at 16�C and 37�C after induction, with shaking at 220 rpm.
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METHOD DETAILS

Peptide Synthesis
Synthetic BID BH3 (DIIRNIARHLAQVGDSBDRSI) peptide derivatized at the N-terminus with FITC-b-Ala was synthesized, purified,

and quantified as previously described in detail (Bird et al., 2008; Lee et al., 2016). Briefly, FITC-BID BH3 peptide was synthesized

by sequential amino acid addition to Rink Amide AM resin (EMD Millipore) using Fmoc chemistry and N-terminal derivatization

with FITC, followed by peptide deprotection, cleavage from the resin, purification by reverse phase high performance liquid chroma-

tography-mass spectrometry (LC-MS), and quantitation by amino acid analysis.

Recombinant Protein Expression and Purification
Recombinant, N-terminal hexahistidine-tagged BFL-1DC (aa 1-151) and the indicated cysteine-mutant analogs generated by Q5

site-directed mutagenesis (New England Biolabs) were cloned into pET17b (Novagen), expressed in E. coli LOBSTR BL21(DE3) cells

(Kerafast) overnight at 16�C, and purified by sequential Ni-affinity and size-exclusion chromatography (Harvey et al., 2018). Protein

expression was induced using 0.5 mM isopropyl b-D-1-thiogalactopyranoside (IPTG, Gold Biotechnology). Bacterial pellets were re-

suspended in lysis buffer (20 mM Tris pH 7.5, 250 mM NaCl) containing two complete protease inhibitor tablets (Roche). Bacteria

were lysed using a microfluidizer (M-110L, Microfluidics) and centrifuged at 20,000 x RPM for 45 minutes to remove insoluble debris.

Clarified lysate was passed over a Ni-NTA (Qiagen) column equilibrated with lysis buffer. The column was sequentially washed with

lysis buffer and then lysis buffer containing 10 mM, 20 mM, 35 mM, and 50 mM imidazole. His-BFL-1DC was eluted in buffer con-

taining 150 mM imidazole. The BFL-1 containing fraction was then dialyzed overnight in lysis buffer, concentrated, and purified by

size exclusion chromatography using a Superdex S-75 (GEHealthcare) gel filtration system. Protein purity and identity was confirmed

by Coomassie staining and western blot analysis using a mouse monoclonal anti-His6 tag antibody (Abcam, RRID: Ab_444306) and

sheep anti-mouse secondary antibody (Biorad, RRID: 321929).

Recombinant anti-apoptotic BCL-XLDC (aa 1-212) and MCL-1DNDC (aa 172-329) were cloned into pGEX-4T-1 (GE Healthcare),

expressed in E. coli BL21(DE3) cells (Invitrogen) for four hours at 37�C, and purified by sequential glutathione affinity and size exclu-

sion chromatography (Harvey et al., 2018; Huhn et al., 2016; Pitter et al., 2008). After bacterial lysis and centrifugation, GST-tagged

BCL-XLDC and MCL-1DNDC were purified using a glutathione chromatography column equilibrated with PBS containing 1% Triton

X-100. The column was washed twice with PBS/1% Triton X-100 and then two more times with PBS alone. BCL-XLDC and

MCL-1DNDC were cleaved from their GST tags using thrombin (12-15 units) dissolved in PBS. Eluted protein was concentrated

and purified by size exclusion chromatography using a Superdex S-75 (GE Healthcare) gel filtration system. Protein purity and

identity was confirmed by Coomassie staining and western blot analysis using a goat polyclonal anti-GST antibody (GE Healthcare,

RRID: 771432) and donkey anti-goat secondary antibody (Santa Cruz Biotechnology, RRID: Ab_631728).

Disulfide Tethering Fragment Screening by Mass Spectrometry
A 1600-member disulfide fragment library (Burlingame et al., 2011; Hallenbeck et al., 2018) was screened by incubating BFL-1DC

C4S/C19S protein (1 mM) with each compound (100 mM) for 1 hour at room temperature in the presence of 500 mM BME (Thermo

Fisher Scientific). Each well was then screened by UPLC-MS for a change in mass that corresponded with the individual fragment.

The compounds were then ranked based on percent tethering to C55 by comparing the relative abundance of conjugated vs. uncon-

jugated BFL-1DC C4S/C19S protein. The criteria for pursuing a hit was set at a percent tethering value of at least two standard

deviations above the mean for the 1600 fragments tested.

Solid Phase Synthesis of Disulfide Tethering Fragments
Disulfide tethering fragments were synthesized in accordance with the scheme presented in Figure 4A. Briefly, 0.5 mmol Rink Amide

AM resin was rinsed once with dimethylformamide (DMF) and then dichloromethane (DCM), deprotected with 20% piperidine in

DMF for 10 minutes, and then washed three times with DMF. Glutarylation was performed by adding 2.5 mmol (5 eq) glutaric anhy-

dride dissolved in 5 mL DMF to the deprotected resin, stirring the mixture for 45 minutes, and then washing the resin three times with

DMF. Cysteamine was then used to amidate the glutarylated resin as follows: N,N-diisopropylethylamine (DIEA; 1.5 mmol [3 eq]) in

5 mL DCM was added to the resin, stirred for 5 minutes, and removed by vacuum filtration; the resin was then mixed with HATU

(1.5 mmol [3 eq]) in 5 mL DMF, the solution removed after 10 min, and then cysteamine HCl (2.5 mmol [5 eq]) added with 4 mL

DMF, 0.33 mmol DIEA, and water (dropwise) until the solids dissolved. The mixture was stirred for 45 minutes and the resin washed

three times with DMF. To reverse any oxidation of the nascent free thiol, TCEP reduction of the resin was performed for 30 minutes

using TCEP HCl (0.5 mmol) dissolved in a degassed solution of 1:1 DMF:water. To remove residual TCEP and cysteamine, the resin

was washed three times with the following sequence of solvents: DMF, methanol, water, methanol, DMF. Next, the thiol was con-

verted to an activated sulfide by mixing the resin with 2,2’dithiodipyridine (2.5 mmol [5 eq]) dissolved in 5 mL DMF for 20 minutes

to afford the 2-thiopyridyl disulfide adduct. To remove excess 2-thiopyridyl disulfide, the resin was washed 5 times with a sequence

of DMF and DCM. Next, cysteamine HCl (1 mmol [2 eq]) dissolved in 5 mL of DMF, with minimal water (dropwise addition) for sol-

ubility, was used to exchange disulfides for 30 minutes. Following disulfide exchange, the resin was washed 5 times with a sequence

of DMF and DCM. At this step of the synthesis, the resin was divided for monophore diversification. Monophore core conjugation to

the tether was carried out by adding 3 equivalents of the appropriate carboxylic acid ((S)-2-acetamido-3-(1H-indol-3-yl)propanoic

acid for 4E14; (R)-2-acetamido-3-(1H-indol-3-yl)propanoic acid for D-4E14; 2-acetamido-3-(5-methyl-1H-indol-3-yl)propanoic
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acid for 5-Me-4E14; and (R)-2-acetamido-3-(naphthalen-2-yl) propanoic acid for D-Nal-4E14) and 3.5 eq of HATU and 3.5 eq of DIEA

in 5 mL DMF to the resin, followed by mixing overnight for 16 hours. Cleavage of disulfide tethering fragments from the resin was

performed using Bis(2-dimethylaminoethyl) disulfide dihydrochloride (1.75 mmol [3.5 eq]) dissolved in a degassed solution of

DMF:water (5 mL, 1:1), triethylamine (TEA) (3.5 mmol [7 eq]), and TCEP HCl (0.25 mmol [0.5 eq]). Compounds were purified on an

Agilent 1260 Infinity HPLC-MS using a C18 column and a 5-95% acetonitrile gradient in water with 0.1% formic acid, and identities

confirmed by high-resolution MS and proton (1H) NMR. 1H NMR was performed using a 500 MHz Bruker Avance III instrument

outfitted with a BBFO room-temperature probe. 1H frequencies were referenced to tetramethylsilane (TMS). Proton spectra were ac-

quired with a 45� pulse and a 4.3-s recycle delay at 0.3 Hz per point resolution.

(S)-2-acetamido-N-(2-((2-(dimethylamino)ethyl)disulfanyl)ethyl)-3-(1H-indol-3-yl)propanamide (4E14). 1H NMR (500MHz,

MeCN-d3) d = 9.17 (br. s., 1 H), 7.52 (d, J = 7.9 Hz, 1 H), 7.31 (d, J = 8.2 Hz, 1 H), 7.06 - 7.03 (m, 2 H), 6.99 - 6.95 (m, 1 H), 6.85

(br. s., 1 H), 6.66 (d, J = 7.3 Hz, 1 H), 4.48 - 4.43 (m, 1 H), 3.35 - 3.26 (m, 2 H), 3.11 (dd, J = 6.0, 14.5 Hz, 1 H), 3.00 (dd, J = 7.3,

14.6 Hz, 1 H), 2.84 (d, J = 9.8 Hz, 4 H), 2.68 - 2.57 (m, 2 H), 2.39 (s, 6 H), 1.77 (s, 3 H).

(R)-2-acetamido-N-(2-((2-(dimethylamino)ethyl)disulfanyl)ethyl)-3-(1H-indol-3-yl)propanamide (D-4E14). 1H NMR (500MHz,

MeCN-d3) d = 9.14 (br. s., 1 H), 7.51 (d, J = 7.9 Hz, 1 H), 7.30 (d, J = 7.9 Hz, 1 H), 7.06 - 7.01 (m, 2 H), 6.98 - 6.94 (m, 1 H), 6.78

(br. s., 1 H), 6.60 (d, J = 7.3 Hz, 1 H), 4.46 - 4.42 (m, 1 H), 3.35 - 3.23 (m, 2 H), 3.09 (dd, J = 6.0, 14.5 Hz, 1 H), 2.98 (dd, J = 7.5,

14.8 Hz, 1 H), 2.82 - 2.76 (m, 2 H), 2.67 - 2.62 (m, 2 H), 2.62 - 2.53 (m, 2 H), 2.26 (s, 6 H), 1.76 (s, 3 H).

2-acetamido-N-(2-((2-(dimethylamino)ethyl)disulfanyl)ethyl)-3-(5-methyl-1H-indol-3-yl)propanamide (5-Me-4E14). 1H NMR (500

MHz, DMSO-d6) d = 10.65 (d, J = 2.4 Hz, 1H), 8.30 (s, 1H), 8.13 (t, J = 5.7 Hz, 1H), 8.02 (d, J = 8.2 Hz, 1H), 7.35 (dd, J = 1.7,

0.9 Hz, 1H), 7.20 (d, J = 8.1 Hz, 1H), 7.06 (d, J = 2.3 Hz, 1H), 6.88 (dd, J = 8.3, 1.6 Hz, 1H), 4.44 (td, J = 8.5, 5.4 Hz, 1H), 3.39 -

3.25 (m, 2H), 3.05 (dd, J = 14.5, 5.4 Hz, 1H), 2.87 (d, J = 8.7 Hz, 1H), 2.86 - 2.80 (m, 2H), 2.75 - 2.63 (m, 2H), 2.48 (s, 1H), 2.38 (s,

3H), 2.15 (s, 6H), 1.79 (s, 3H).

(R)-2-acetamido-N-(2-((2-(dimethylamino)ethyl)disulfanyl)ethyl)-3-(naphthalen-2-yl)propanamide (D-Nal-4E14). 1H NMR (500 MHz,

DMSO-d6) d = 8.37 (s, 3H), 8.28 - 8.14 (m, 1H), 7.90 - 7.77 (m, 3H), 7.75 - 7.68 (m, 1H), 7.53 - 7.38 (m, 3H), 6.28 (s, 1H), 4.55 (td,

J = 8.9, 5.3 Hz, 1H), 3.18 (s, 2H), 3.12 (dd, J = 13.7, 5.3 Hz, 3H), 2.95 - 2.87 (m, 2H), 2.87 - 2.77 (m, 2H), 2.74 - 2.62 (m, 2H), 2.47

(d, J = 6.9 Hz, 2H), 2.39 - 2.31 (m, 1H), 2.18 - 2.09 (m, 6H), 1.80 - 1.73 (m, 3H).

Synthesis of 4E14-2-thiopyridine
4E14-2-thiopyridine was generated to maximize 4E14 conjugation to BFL-1DC C4S/C19S for X-ray crystallography by replacing the

N,N-dimethylcysteamine leaving group with the more efficient 2-mercaptopyridyl leaving group (i.e. molecule:protein ratio reduced

to 4:1, allowing for decreased DMSO content in droplets). The synthesis of 2-(pyridin-2-yldisulfanyl)ethanamine was performed as

previously reported (Lelle et al., 2017). Briefly, 2.5 g of 2,2’-dithiodipyridine (11.5 mmol, 5.75 eq) in 8 mL of methanol was degassed

followed by dropwise addition under nitrogen of a cysteine solution, which was generated by adding 225 mg of cysteamine hydro-

chloride (2 mmol) to 8 mL of degassed methanol. The mixture was stirred at room temperature overnight. The solution was concen-

trated in vacuo, resuspended in 5 mL methanol, and then precipitated three times from 100 mL ice cold ether. The product, an off-

white solid, was collected via filtration (260 mg, 62% yield). The NMR spectrum matched the published data (Lelle et al., 2017). To

generate (S)-2-acetamido-3-(1H-indol-3-yl)-N-(2-(pyridin-2-yldisulfanyl)ethyl) propanamide (4E14-2-thiopyridine), 100 mg of 2-(pyr-

idin-2-yldisulfanyl)ethanamine (537 mmol, 1 eq) was dissolved in 5 mL DMF, followed by 100 mg N-acetyltryptophan (400 mmol, 0.75

eq), 220 mg HATU (580 mmol, 0.9 eq), and 0.25 mL of N,N-diisopropylethylamine (1.5 mmol, 3 eq). The mixture was stirred overnight

at room temperature. The DMF solution was poured into 50 mL of ethyl acetate and washed 3 times with 50 mL HCl (0.2 M). The

organic layer was dried over sodium sulfate, concentrated, and HPLC purified as described above to afford 46 mg of yellow oil

(25% yield). 1H NMR (500 MHz ,DMSO-d6) d = 10.81 (br. s., 1 H), 8.47 (d, J = 4.3 Hz, 1 H), 8.19 (t, J = 5.5 Hz, 1 H), 8.07 (d, J =

7.9 Hz, 1 H), 7.81 (dd, J = 1.7, 7.5 Hz, 1 H), 7.78 - 7.72 (m, 1 H), 7.58 (d, J = 7.6 Hz, 1 H), 7.32 (d, J = 8.2 Hz, 1 H), 7.25 (dd, J =

4.9, 6.7 Hz, 1 H), 7.14 (d, J = 2.1 Hz, 1 H), 7.09 - 6.92 (m, 2 H), 4.47 (d, J = 5.5 Hz, 1 H), 3.38 - 3.25 (m, 2 H), 3.10 (dd, J = 5.3,

14.5 Hz, 1 H), 2.96 - 2.87 (m, 1 H), 2.84 - 2.72 (m, 2 H), 1.80 (s, 3 H). 13C NMR (126 MHz, DMSO-d6) d = 172.3, 169.6, 159.6,

150.1, 138.3, 136.5, 127.8, 124.0, 121.7, 121.3, 119.7, 118.9, 118.6, 111.8, 110.7, 53.8, 38.4, 37.6, 28.4, 23.1

Fluorescence Polarization Assays
The indicated BFL-1DC constructs, MCL-1DNDC, or BCL-XLDC (1 mM) were incubated with 25x 4E14 for one hour at room temper-

ature. The proteins were then serially diluted into fluorescence polarization assay buffer (50 mM Tris pH 8, 100 mM NaCl) and incu-

bated with FITC-peptide (60 nM). Fluorescence polarization was measured at equilibrium using a SpectraMaxM5microplate reader,

and nonlinear regression analysis of dose-response curves was performed using Prism software 7 (GraphPad).

Mitochondrial Cytochrome c Release Assays
Livermitochondria fromAlbCreBaxf/fBak-/-micewere isolated by dounce homogenization and release assays performed as described

(Walensky et al., 2006). Briefly, the indicated BFL-1DC construct was incubated with 4E14 or its analogs (molecule: protein, 5:1) or

vehicle for 1 hour and then desalted into BFL-1 FPLC buffer using Micro Bio-Spin 6 columns (Biorad) to remove excess 4E14. Mito-

chondria (1 mg/mL) were incubated with recombinant BAX (100 nM) in the presence or absence of tBID (40 nM) and BFL-1 protein

(1 mM) for 45 minutes at room temperature in experimental buffer (200 mM mannitol, 68 mM sucrose, 10 mM HEPES-KOH pH 7.4,

110mMKCl, 1 mMEDTA, protease inhibitor). The pellet and supernatant fractions were isolated by centrifugation, and cytochrome c
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was quantitated using a colorimetric Rat/Mouse Cytochrome c Quantikine ELISA assay (R&D Systems), per the manufacturer’s

protocol. Briefly, cytochrome c conjugate (75 mL) and sample (50 mL) were added to the ELISA plate and incubated at room temper-

ature for 2 hours. Each well was then aspirated and washed four times using the manufacturer-supplied wash buffer. Substrate

solution (100 mL) was added to the plate, which was incubated in the dark for 30 minutes. Stop solution (100 mL) was then added

and absorbance read at 450 nm with wavelength correction at 540 nm using a SpectraMax M5 microplate reader. Percent

cytochrome c released into the supernatant (%cyto c release) was calculated according to the following equation: %cyto c release =

[cyto csup]/ [cyto cmax]*100, where cyto csup and cyto cmax represent the amount of cytochrome c detected in the supernatant upon

treatment with the indicated conditions or 1% (v/v) Triton X-100, respectively.

X-ray Crystallography
Apo His6-BFL-1DC C4S/C19S was expressed and purified as described (Harvey et al., 2018) and buffer exchanged into 20 mM

HEPES pH 7.5, 300 mM NaCl, 10% glycerol, and 50 mM arginine. His6-BFL-1DC C4S/C19 in complex with 4E14 was generated

by incubating 4E14-2-thiopyridine with His-BFL-1DC C4S/C19 (250 mM) at room temperature for 1 hour. Intact mass spectrometry

was used to confirm complete BFL-1 labeling by 4E14. An equal volume (100 nL) of 4.65 mg/mL (250 mM) His6-BFL-1DCC4S/C19S–

4E14 complex was mixed with reservoir buffer (2.8 M sodium acetate trihydrate, pH 7.0), and crystals were prepared in hanging

drops at 20�C. The crystals were transferred into crystallization buffer containing 25% glycerol prior to flash-freezing in liquid nitro-

gen. Diffraction data from crystals of His6-BFL-1DC C4S/C19S conjugated to fragment 4E14 were collected at beamline 24ID-C of

the NE-CAT at the Advanced Photon Source (Argonne National Laboratory), and data sets were integrated and scaled with the XIA2

package, which uses the programs Pointless and XDS (Evans, 2006; Kabsch, 2010; Winter et al., 2010). The structure was solved by

molecular replacement using the program Phaser (McCoy et al., 2007) and the search model PDB: 5WHH. Iterative manual model

building and refinement using Phenix (Adams et al., 2010) and Coot (Emsley and Cowtan, 2004) led to a model with excellent statis-

tics, including maximum diffraction of 1.74 Å (Table 1, PDB: 6VO4).

Molecular Dynamics Simulation and Docking
Computational analyses were performed using the Schrödinger software suite (Version 2016-2). The 4E14 molecule was built

and conformations were generated using MacroModel and the OPLS3 forcefield (Harder et al., 2016). BFL-1DC (PDB: 3MQP)

was prepared using default parameters in the PrepWiz wizard in Maestro (Sastry et al., 2013). Briefly, the bound peptide and all water

molecules were removed, the H-bond network of the protein was optimized, and the protein was subjected to an impref minimization

using the OPLS3 forcefield. Protonation states were those predicted to occur at pH 7.0 using the Epik module (Shelley et al., 2007).

The receptor grid (radius 1 nm) was defined at the center of C55. Docking was performed using the pose predictionmode of CovDock

in Schrödinger, with the protein structure minimized in a 0.3 nm radius surrounding the docked molecule (Zhu et al., 2014).

Molecular dynamics calculations were performed using the 4E14/BFL-1 complex generated by molecular docking. The protein

was prepared using the default parameters of the Protein Preparation Workflow in Maestro software (Schrödinger version 2016-

2). Protonation states were those predicted to occur at pH 7.0 using the Epik module. Each protein was pre-soaked in a cubic

box of TIP3P water molecules using the System Builder workflow in Desmond. The box was sized to leave all peptide atoms at least

1 nm from the boundaries. All overlapping solvent molecules were removed, the system was charge neutralized with appropriate

counterions and 150 mM NaCl was added to simulate buffer conditions. All MD simulations were performed using the Desmond

package (Jorgensen et al., 1983), with the OPLS3 forcefield used to model all interactions. Periodic boundary conditions were main-

tained throughout. Long-range electrostatic interactions were calculated using the particle-mesh Ewald method (Essmann et al.,

1995), and van der Waals and short-range electrostatic interactions were smoothly truncated at 0.9 nm. Constant system temper-

ature of 300 K was maintained using Nose-Hoover thermostats (Hoover, 1985), and system pressure was maintained at 1 atm using

the Martyna-Tobias-Klein method (Martyna et al., 1994). The equations of motion were integrated using the RESPA integrator, with a

2.0 fs timestep for bonded and short-range interactions and a 6.0 fs timestep for non-bonded interactions beyond the 0.9 nm cutoff.

The default parameters in Desmondwere used to relax the system prior to simulation (Guo et al., 2010) and a 100 ns production simu-

lation was then run. All simulations were judged to have converged on the basis of radius of gyration calculations and RMSD.

Hydrogen Deuterium Exchange Mass Spectrometry
His-BFL-1DC C4S/C19S or His-BFL-1DC C55S (25 mM) were conjugated with 4E14 (20x) or vehicle for 1 hour at room temperature.

Samples (25 pmol, 1 mL) were deuterated for the indicated time points using an 18-fold excess of labeling buffer (50 mMTris, 150mM

NaCl, pD 7.6), and labeling was stopped with an equal volume of quench buffer (4M guanidinium chloride, 200 mM potassium phos-

phate, 0.72MTCEP, H2O, pH 2.34) (Table S2 andData S1). Proteolysis of BFL-1 protein was conducted using an online pepsin diges-

tion column. Digested protein was injected into aWaters UPLC HDX system (Wales et al., 2008) maintained at 0�C to minimize back-

exchange. Peptic peptides underwent a 3 min trap and desalting step using a VanGuard pre-column trap (2.1 x 5 mm, ACQUITY

UPLC BEH C18, 1.7 mm) flowing at 100 mL/min. Peptides were then separated using an ACQUITY UPLC HSS T3, 1.8 mm, 1.0 x

50 mm analytical column (Waters Corporation) with a 5-35% gradient of increasing acetonitrile (0.1% formic acid) over 6 min at a

flow rate of 100 mL/min. Mass spectra were acquired using a Synapt G2-Si (Waters) in MSE (data independent acquisition) mode

with 0.4 scans/sec over a 50-2000 m/z range with ion mobility engaged. BFL-1 peptides were identified using Protein Lynx Global

Server (PLGS 3.0.1, Waters Corporation, RRID: SCR_016664) with undeuterated BFL-1 protein as a reference. Data analysis was

performed using DynamX 3.0 (Waters Corporation), which included determination of centroid masses for each isotopic distribution,
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generation of deuterium uptake plots, and comparison between experimental states. Relative deuterium uptake for each

peptide was determined by subtracting the average mass of each undeuterated peptide from the average mass of each deuterated

peptide. Deuterium exchange was not corrected for back-exchange and thus expressed as relative deuterium uptake (Wales and

Engen, 2006).

QUANTIFICATION AND STATISTICAL ANALYSIS

The number of technical and biological replicates for each experiment are indicated in the corresponding figure legend. Mean ± S.D.

or S.E.M. values were calculated using Prism software (Graphpad).
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