Paper

Highly Stereoselective Synthesis of Fluoroalkene Dipeptides via the Novel Chromium(II)-Mediated Carbon–Fluorine Bond Cleavage/New Carbon–Carbon Bond Formation

865

Takashi Nihei^a Yuji Nishi^a Natsumi Ikeda^a Saya Yokotani^a Takashi Ishihara^a Satoru Arimitsu^b Tsutomu Konno^{*}

^a Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan konno@kit.ac.jp

^b Department of Chemistry Biology and Marine Science, University of the Ryukyus, Nishihara, Okinawa 903-0123, Japan

Received: 02.10.2015 Accepted after revision: 20.11.2015 Published online: 29.12.2015 DOI: 10.1055/s-0035-1560390; Art ID: ss-2015-f0577-op

Abstract An efficient chromium(II)-mediated reductive coupling reaction of various CBrF₂-containing molecules and aldehydes has been developed. This reaction proceeds presumably via the monofluorinated dichromium(III) intermediate generated by the carbon–fluorine bond activation, and provides a general and straightforward access to synthesize a variety of (*E*)- or (*Z*)- β -fluoroallylic alcohols in a highly stereoselective manner. Based on the novel reductive coupling, four types of fluoroalkene dipeptide analogues could be stereoselectively prepared.

Key words β -fluoroallylic alcohol derivatives, carbon–fluorine bond activation, chromium(II) chloride, stereoselective, fluoroalkene bioisosteres

Fluoroalkenes have been well recognized as among the most important and valuable peptide bond bioisosteres because the fluoroalkene and the peptide bond frameworks are closely similar in the structural and electronic properties. More specifically, an amide bond in bioactive peptides is sometimes easily hydrolyzed by an enzyme in vivo, resulting in the inactivation of the peptide, but due to hydrolytic stability of the fluoroalkene framework, peptidomimetics, in which the amide bond is replaced with the fluoroalkene unit, maintain the original bioactivity and often simultaneously provoke very interesting additional biological activities.¹ For this reason, a large number of synthetic methods, such as electrophilic fluorination of various vinylmetal species,² Horner-Wadsworth-Emmons reaction of monofluorinated phosphonate with aldehydes,³ S_N2' reaction of α, α -difluoroallylic compounds with organocopper reagents,⁴ and others,⁵ have been developed for the incorporation of a fluoroalkene skeleton into a wide range of bioactive peptides. Although such synthetic procedures absolutely play an important role in synthesizing a variety of stereochemically defined fluoroalkenes, they also have various drawbacks, like difficulties on the preparation of the substrates, narrow range of applicable substrates, etc. As a consequence, it has still been a very important subject to explore a new methodology for constructing fluoroalkene frameworks stereoselectively.

Carbon–fluorine (C–F) bond has a very large bond energy and has been known as the most chemically stable bond. Accordingly, reactions that efficiently cleave this C–F bond and subsequently create a new carbon–carbon (C–C) bond are significantly attractive from the viewpoint of a new synthetic methodology. In recent years, such carbon elongations have come under the spotlight.⁶

In this article, we describe a highly stereoselective synthesis of various (*E*)- or (*Z*)- β -fluoroallylic alcohols based on C–F bond cleavage of CBrF₂-containing molecules in the presence of the early transition metal, chromium(II)⁷ followed by the addition reaction of the resultant α -fluorovinyl chromium species with various aldehydes in detail.⁸ Additionally, we also report the stereoselective synthesis of various fluoroalkene dipeptides through the above Cr(II)-mediated reductive coupling reaction.

Scope and Limitations

For this investigation, we first selected several CBrF₂containing substrates, such as the imide 1,⁹ the esters 2^{10} and 4,¹¹ the silyl ethers 3 and 5,¹⁰ and also the alkane 6.¹² These substrates were easily prepared as shown in Scheme 1. Treatment of 3,3,3-trifluoropropanoyloxazolidinone with

866

1.5 equivalents each of TMSOTf and Et₃N in CH₂Cl₂ at 0 °C for 0.5 hour afforded the corresponding silyl enol ether, which was subsequently subjected to 2.0 equivalents of TiBr₄ in CH₂Cl₂ at -20 °C for 2 hours, leading to 3-(3-bromo-3,3-difluoropropanoyl)-2-oxazolidinone (1) in 75% isolated yield over two steps. The radical addition of CBr₂F₂ toward ethyl vinyl ether in the presence of NaHCO₃ and Na₂S₂O₄ in EtOH at the reflux temperature for 2 hours, followed by treating the resultant reaction mixture with an excess amount of Caro's acid for 24 hours, gave ethyl 3-bromo-3,3difluoropropionate (2) in 36% combined yield. This ester 2 was reduced with 2.3 equivalents of DIBAL-H to provide the corresponding alcohol, which was subjected to 2.0 equivalents each of TBDPSCI and imidazole in THF for 20 hours to afford the desired 1-bromo-3-(tert-butyldiphenylsilyloxy)-1,1-difluoropropane (3) in 49% yield over two steps. The radical addition of CBr₂F₂ toward ethyl acrylate in the presence of Zn and CuBr in Et₂O also proceeded to give the corresponding ethyl 4-bromo-4,4-difluorobutyrate (4) in an acceptable yield, which could be converted to 1-bromo-4-

(*tert*-butyldiphenylsilyloxy)-1,1-difluorobutane (**5**) by the similar procedure used to prepare compound **3**. Finally, the radical adduct, which could be readily prepared through the reaction of CBr_2F_2 with oct-1-ene in the presence of CuCl (0.01 equiv) and 2-aminoethanol (0.5 equiv) in *tert*-BuOH at 85 °C for 48 hours, was treated with 2.0 equivalents of NaBH₄ in DMSO at 70 °C for 6 hours to afford 1-bromo-1,1-difluorononane (**6**) in 38% yield.

With various substrates 1-6 in hand, the reaction of 1 with benzaldehyde in the presence of CrCl₂ was first examined as shown in Table 1. On treating 1 with 2.0 equivalents of benzaldehvde in the presence of 3.0 equivalents of CrCl₂ and a catalytic amount of LiI (0.2 equiv) in DMF at -20 °C for 4 hours, the corresponding β -fluoroallylic alcohol **7a** was obtained in only 15% vield (Table 1, entry 1). Longer reaction time was not effective to increase the yield (entry 2). In each case, the starting material **1** was completely consumed. The yield of **7a** was greatly improved from 18% to 84-86% when the reaction was carried out at 0 °C to room temperature (entries 3 and 4), though higher temperature such as 60 °C rather decreased the yield (entry 5). Using only 2.0 equivalents of CrCl₂ brought about a significant drop in the yield (entry 6). The yield somewhat decreased even when only 1.2 equiv of benzaldehvde was used or LiI was not used¹³ (entries 7 and 8). Finally, the use of 4.0 equiv of CrCl₂ led to the best reaction yield (entry 9). In all cases, only the E-isomer was obtained.¹⁴

Table 1 Reaction of **1** with Benzaldehyde in the Presence of CrCl₂

Entry	Temp (°C)	Time (h)	Yield (%) ^{a,b} of 7a	Recovery (%)ª of 1
1	-20	4	15	trace
2	-20	20	18	trace
3	0	4	86	trace
4	r.t.	4	84	0
5	60	4	27	0
6 ^c	0	4	13	21
7 ^d	0	4	76	4
8 ^e	0	4	64	9
9 ^f	0	4	89 (84)	0

 $^{\rm a}$ Determined by $^{\rm 19}{\rm F}$ NMR spectroscopy. Value in parentheses is of isolated yield.

^b In all cases, (E)-**7a** was obtained as the sole isomer.

^c Only 2.0 equiv of CrCl₂ was used.

^d Only 1.2 equiv of PhCHO was used.

^e Without Lil.

^f Four equiv of CrCl₂ was used.

Syn thesis

T. Nihei et al.

Upon optimization of the reaction conditions (Table 1, entry 9), a series of aldehydes were tested by using **1** to explore the generality of this Cr(II)-mediated reductive coupling reactions. The results are summarized in Table 2.

Table 2 Reaction of 1 with Various Aldehydes

^a Reaction conditions: **1** (0.5 mmol), R^1 CHO (1.0 mmol), CrCl₂ (2.0 mmol), Lil (0.1 mmol), DMF (1.5 mL) at 0 °C for 4 h under argon.

^b Determined by ¹⁹F NMR spectroscopy.

^c Values in parentheses are of isolated yield.

The reaction with aromatic aldehydes bearing an electron-donating group (Me, MeO; Table 2, entries 2 and 3) or an electron-withdrawing group (F substituent, entry 4) at the para position of the benzene ring proceeded efficiently to give the corresponding β -fluoroallylic alcohols **7b**-**d** in good to high yields. Various aliphatic aldehydes, such as butvraldehvde (entry 6) and isobutvraldehvde (entry 7), also showed satisfactory results. Notably, even much bulkier pivalaldehyde provided the corresponding adduct **7h** in a high yield (entry 8). Disappointingly, a strongly electronwithdrawing group, like a CF₃ group, on the benzene ring hampered the desired reaction proceeding (entry 5). In addition, α , β -unsaturated aldehyde, like crotonaldehyde, resulted in a significant decrease of the yield (entry 9). In all cases, only (E)- β -fluoroallylic alcohols were observed and no Z-isomer was detected.

Next, our attention was directed toward the Cr(II)-mediated reaction of 1-bromo-3-(*tert*-butyldiphenylsilyloxy)-1,1-difluoropropane (**3**) with various aldehydes under the same reaction conditions as employed in Table 2. The results are collected in Table 3.

First of all, the desired β -fluoroallylic alcohol **8a** was obtained in only 44% yield under the reaction conditions employed for the reaction of **1** (Table 3, entry 1). In this case, 40% of the starting material **3** still remained unreacted. Therefore, the amounts of CrCl₂ and Lil were increased from

Paper

Table 3 Reaction of 3 with Various Aldehydes

867

ĘĘ	ا) دCrCl	R ¹ CHO (2.0 equiv) 6.0 equiv). Lil (0.5	eauiv) _{P1}	•
Br		DMF, r.t., 4 h		OTBDPS
	3		no	8
Entry ^a	R ¹	Product	Yield ^{b,c} (%)	Ratio (<i>E/Z</i>) ^b
1 ^d	Ph	8a	44 ^e	0:100
2	Ph	8a	68 (56)	0:100
3	$4-MeC_6H_4$	8b	64 (48)	0:100
4	$4-MeOC_6H_4$	8c	78 (52)	0:100
5	$4-FC_6H_4$	8d	64 (56)	0:100
6	$4-F_3CC_6H_4$	8e	10	0:100
7	<i>n</i> -Pr	8f	79 (57)	1:99
8	<i>i</i> -Pr	8g	77 (59)	1:99
9	<i>t-</i> Bu	8h	78 (63)	0:100
10	(E)-MeCH=CH	8i	17	0:100
30 11	1:1: 2 (0.5			

^a Reaction conditions: **3** (0.3 mmol), aldehyde (0.6 mmol), CrCl₂ (1.8 mmol), Lil (0.15 mmol), DMF (1.2 mL) at r.t. for 4 h under argon.

^b Determined by ¹⁹F NMR spectroscopy.

^c Values in parentheses are of isolated yield.

^d Reaction conditions: **3** (0.3 mmol), aldehyde (0.6 mmol), CrCl₂ (1.2 mmol),

Lil (0.06 mmol), DMF (1.2 mL) at 0 °C for 4 h under argon.

^e The starting material **3** was recovered in 40% yield.

4.0 to 6.0 equivalents and from 0.2 to 0.5 equivalent, respectively. As a result, the starting material 3 was completely consumed and the corresponding β-fluoroallylic alcohol 8a was obtained in 68% yield (entry 2). Surprisingly, only the Z-isomer was obtained¹⁴ and no trace of E-isomer was detected. The reactions with various aromatic aldehydes, such as *p*-tolualdehyde, *p*-anisaldehyde, and 4-fluorobenzaldehyde, also took place smoothly to give the corresponding adducts in an exclusive Z-selective manner (entries 3. 4. and 5). Similarly, various aliphatic aldehydes, such as butyraldehyde, isobutyraldehyde, and pivalaldehyde, also gave the corresponding β-fluoroallylic alcohol derivatives with high Z-selectivity in high yields (entries 7-9). As observed in the Cr(II)-mediated reductive coupling of 1, both 4-trifluoromethylbenzaldehyde and crotonaldehyde gave poor yields (entries 6 and 10).

In an analogous way, ethyl 3-bromo-3,3-difluoropropionate (**2**), ethyl 4-bromo-4,4-difluorobutyrate (**4**), 1-bromo-4-(*tert*-butyldiphenylsilyloxy)-1,1-difluorobutane (**5**), and 1-bromo-1,1-difluorononane (**6**) were also subjected to the same reaction conditions as used in Table 3. The results are listed in Table 4.

The reaction of **2** with benzaldehyde did not give any desired coupling product **9a**, and ethyl β , β -difluoroacrylate (**13**) was obtained in only 18% yield (Figure 1).¹⁵ On the other hand, the ester **4**, in which the carbon framework has one carbon extension from **2**, underwent a smooth reductive coupling with benzaldehyde to give the corresponding

Syn<mark>thesis</mark>

T. Nihei et al.

	Br	$ \begin{array}{c} $	(2.0 equiv) 6.0 equiv) 5 equiv)		R ²
	$R^2 = CO_2Et (C_{12}CO_2) + CO_2CO_2 + CO_2CO_2 + CO_2CO_2 + C_7O_2 + C_7O_2O_2 + C_7O_2O_2O_2 + C_7O_2O_2O_2 + C_7O_2O_2O_2 + C_7O_2O_2O_2O_2 + C_7O_2O_2O_2 + C_7O_2O_2O_2O_2 + C_7O_2O_2O_2O_2O_2O_2 + C_7O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O$	2) Et (4) OTBDPS (5) (6)	R ² =	HO H = CO ₂ Et (9) CH ₂ CO ₂ Et (10 CH ₂ CH ₂ OTBE <i>n</i> -C ₇ H ₁₅ (12))))PS (11)
Entryª	Substrate	R ¹	Product	Yield (%) ^{b,c}	Ratio (E/Z) ^b
1	2	Ph	9a	0 ^d	-
2	4	Ph	10a	76 (55)	2:98
3	4	4-MeC ₆ H ₄	10b	47 (40)	1:99
4	4	4-MeOC ₆ H ₄	10c	52 (51)	1:99
5	4	$4-FC_6H_4$	10d	59 (49)	0:100
6	4	$4-F_3CC_6H_4$	10e	4 ^e	_f
7	4	<i>n</i> -Pr	10f	53 (42)	0:100
8	4	<i>i</i> -Pr	10g	58 (54)	1:99
9	4	t-Bu	10h	44 (31)	0:100
10	4	(E)-MeCH=CH	10i	26	1:99
11	5	Ph	11a	78 (67)	0:100
12	5	4-MeOC ₆ H ₄	11c	80 (54)	0:100
13	5	Me	11j	83 (69)	0:100
14	5	<i>i</i> -Pr	11g	81 (67)	0:100
15	5	<i>i</i> -Bu	11h	71 (61)	0:100
16 ^g	5	s-Bu	11k	64 (49)	0:100
17	5	CH ₂ OPMB	111	57 (38)	0:100
18 ^g	5	CHMe(OBn)	11m	75	0:100
19	6	Ph	12a	94 (76)	2:98
20	6	$4-MeC_6H_4$	12b	75	2:98
21	6	$4-MeOC_6H_4$	12c	90 (80)	0:100
22	6	$4-FC_6H_4$	12d	93 (78)	0:100
23	6	$4-F_3CC_6H_4$	12e	6 ^h	_f
24	6	<i>n</i> -Pr	12f	94 (81)	2:98
25	6	<i>i</i> -Pr	12g	91 (70)	1:99
26	6	<i>t</i> -Bu	12h	82	1:99
27	6	(E)-MeCH=CH	12i	18 ⁱ	_f

^a Reaction conditions: **2** and **4–6** (0.3 mmol), aldehyde (0.6 mmol), CrCl₂ (1.8 mmol), Lil (0.15 mmol), DMF (1.2 mL) at r.t. for 4 h under Ar atmosphere.

^b Determined by ¹⁹F NMR spectroscopy.

^c Values in parentheses are of isolated yield.

^d Ethyl β , β -difluoroacrylate (**13**) was obtained in 18% yield.

^e The starting material **4** was recovered in 47% yield.

^f Not determined.

^g The diastereomeric ratio was at 45:55 (entry 16) and at 62:38 (entry 18).

^h The starting material **6** was recovered in 44% yield.

ⁱ The starting material was recovered in 7% yield.

868

adduct **10a** in 76% yield. Furthermore, various aromatic as well as aliphatic aldehydes could participate well in the reductive coupling reaction to afford the corresponding adducts **10b–d,f–h** in acceptable yields. As observed in the reaction of **1** and **3**, however, neither 4-trifluoromethylbenzaldehyde nor crotonaldehyde afforded the desired products **10e** and **10i** in good yields.

Figure 1 Ethyl β,β-difluoroacrylate

In the same way, the other starting materials **5** and **6** could be also successfully applied for the reductive coupling reaction with various aldehydes, except for 4-trifluoromethylbenzaldehyde and crotonaldehyde, with various β -fluoroallylic alcohols **11a,c,g,h,j-m**, and **12a-d,f-h** being obtained in high to excellent yields. In all cases, a high *Z*-stereoselection was observed.

With the highly selective preparation of fluoroalkenes in hand, the investigation was next shifted to their synthetic application. As mentioned previously, fluoroalkene is one of the important bioisosteres found occasionally in medicinal chemistry (Figure 2).

To prove our concept, (Z)-fluoroalkene **11** was chosen as the ideal starting material.¹⁶ First, alcohol moiety was reacted with sodium azide to afford β -fluoroallylic azides as a regioisomeric mixture of 14 and 15, which were generated through an $S_N 2$ and $S_N 2'$ reaction pathway, respectively^{5j,17} (Table 2). Regioselectivity was highly dependent on the substrates. If R¹ is aromatic, compound **15** is the major product, if R¹ is aliphatic, the major product is the desired product 14, and interestingly, when R¹ is CH₂OPMB, only the $S_N 2$ type of product 14 was observed. The products 14 and 15 were unable to separate by the standard condition of silica gel chromatography, therefore the following reduction step was conducted with a mixture of starting materials. However, fortunately, their amine products after reduction were easily separated and used for further chemical transformation (Table 5). Next, after protection of amine moiety by Boc, the desilylation was conducted smoothly,

Syn thesis

T. Nihei et al.

and Jones oxidation, followed by esterification with diazomethane, gave the desired fluoroalkene bioisosteres of Bocprotected glycine dipeptide analogues (Scheme 2).

^a Isolated yield.

^b Values in parentheses are the ratio of regioisomer determined by ¹⁹F NMR spectroscopy.

^c The diastereomeric ratio was 50:50.

^d The diastereomeric ratios of **16** and **17** were 48:52 and 49:51, respectively.

^e The diastereomeric ratios of **14** and **15** were 30:70 and 31:69, respectively.

^f Isolation of the product was not possible. The yield was determined by ¹⁹F NMR spectroscopy.

⁹ The diastereomeric ratios of **16** and **17** were 27:73 and 27:73, respectively.

Based on our experimental results, the reaction mechanism can be proposed as follows (Scheme 3). Thus, the starting CBrF₂-containing substrates can be converted into the corresponding difluorinated chromium species **Int-1** via the single electron-transfer mechanism. In **Int-1**, the C-F bond may be a little bit longer than that in the starting CBrF₂-containing substrates due to the nature of a carbenoid. Therefore, the C-F bond activation by CrCl₂ presumably takes place to provide the corresponding dichromium species **Int-2**.

When **1** was employed as the substrate, the Lewis acidic chromium metal can coordinate with the carbonyl oxygen of the oxazolidinone moiety in **Int-2** to form a stable sevenmembered intermediate. Additionally, this intermediate is more stabilized because the dipole moment vectors on each carbonyl group facing the opposite direction cancel each

Paper_

other. Then, *syn*-elimination of CrHCl₂ takes place to afford the corresponding (*Z*)-fluorovinyl chromium reagent (*Z*)-**Int-3**,¹⁸ which can react with aldehydes to produce the corresponding (*E*)- β -fluoroallylic alcohols **7**.

In the case of **3**–**6**, which do not have any functionality capable of coordinating with the chromium metal, β -elimination of CrHCl₂ from the most stable conformer, in which R² and CrCl₂ substituents are located in the antiperiplaner position, avoiding a large steric repulsion, occurs in a *syn*-fashion, resulting in the formation of a thermodynamically stable (*E*)-fluorovinyl chromium reagents (*E*)-**Int-3**, which can react with various aldehydes to yield the corresponding (*Z*)- β -fluoroallylic alcohols **8** and **10–12**.

In the reaction of 1, β -elimination of HF from **Int-1** by the chromium alkoxide **Int-4** may also be possible due to a highly acidic α -proton of the carbonyl (Scheme 4). In this case, **Int-1** can be directly converted into (*Z*)-**Int-3**, bypassing the formation of the dichromium species **Int-2**.

Given that the reaction of 1 with benzaldehyde in the presence of only 3.0 equivalents of CrCl₂ proceeded efficiently, this β -elimination may play an important role in the Cr(II)-mediated reductive coupling. In fact, some of the steps of this new reaction mechanism depicted in Scheme 3 conflicts with the one described in our previous paper.⁸ thus the difluoroalkene could be possibly formed after βelimination from Int-1, which was initially thought as the key intermediate transformed to fluorovinylchromium species (Z)- or (E)-Int-3 via single electron transfer. In fact, according to the control reaction described in Scheme 5, treating difluoroalkene **20**¹⁹ with benzaldehyde under the standard reaction condition did not give the corresponding desired product 12a with almost quantitative recovery of starting material 20. This fact strongly indicates that the reaction does not proceed via a 1,1-difluoroalkene intermediate.

In summary, we have investigated the highly stereoselective synthesis of (*E*)- or (*Z*)- β -fluoroallylic alcohol derivatives based on CrCl₂-mediated C–F bond activation reaction. As a result, the substrate **1** having a Lewis basic group, like an oxazolidinone substituent, afforded *E*-isomers in a highly stereoselective manner, while substrates **3–6** without a Lewis basic substituent gave the *Z*-isomers stereoselectively. It was proposed that this stereoselection was derived from the interaction of chromium metal and a carbonyl oxygen in the dichromium intermediates. In addition, the novel Cr(II)-mediated reductive coupling reaction could be successfully applied to the stereoselective synthesis of fluoroalkene dipeptide analogues.

IR spectra were recorded as a liquid film between NaCl plates or KBr disk method for solids with a JASCO FT/IR-4100 type A spectrometer. ¹H and ¹³C NMR spectra were recorded on a JEOL JNM-AL 400 NMR spectrometer in CDCl₃ solution with TMS as an internal reference. A JEOL JNM-AL 400 NMR spectrometer was used for determining the yield of the products with C₆F₆. ¹⁹F NMR (376.05 MHz) spectra were recorded on a JEOL JNM-AL 400 NMR spectrometer in CDCl₃ solution with CFCl₃ as an internal standard. High-resolution mass spectra (HRMS) were recorded on a JEOL JMS-700MS spectrometer by electron impact (EI), chemical ionization (CI), and fast atom bombardment (FAB) methods.

All reactions were routinely monitored by ¹⁹F NMR spectroscopy or TLC, and carried out under an atmosphere of argon. EtOH was fleshly distilled from Mg. DMF were freshly distilled from CaH₂. All chemicals were of reagent grade and, if necessary, were purified in the usual manner prior to use. TLC was done with Merck silica gel 60 F254 plates, and column chromatography was carried out with Wako gel C-200.

1-Bromo-3-(*tert*-butyldiphenylsilyloxy)-1,1-difluoropropane (3); Typical Procedure

Under an argon atmosphere, a solution of ethyl 3-bromo-3,3-difluoropropanoate (**2**; 0.65 g, 3.0 mmol) in CH_2Cl_2 was added dropwise to DIBAL-H (6.9 mmol) at -78 °C. The reaction mixture was stirred at that temperature for 2 h and then stirred at 0 °C for 3 h. The reaction was quenched with aq 10% HCl and the mixture was extracted with CH_2Cl_2 (3 ×). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated under reduce pressure. The resulting residue was used in the next step without further purification. A mixture of the above crude alcohol, *t*-BuPh₂SiCl (1.65 g, 6.0 mmol), and imidazole (0.41 g, 6.0 mmol) in THF (6 mL) was stirred at r.t. for 20 h. Addition of H₂O followed by extractive workup and purification by silica gel column chromatography (hexane–EtOAc, 80:1) afforded the desired product; yield: 0.60 g (49%, 1.46 mmol) over two steps; colorless oil.

IR (neat): 3072, 3000, 2932, 2858, 1960, 1590, 1472, 1428, 1362, 1283, 1188, 1114, 998, 880, 823, 702, 613 cm^{-1} .

¹H NMR (400 MHz, CDCl₃): δ = 1.07 (9 H, s), 2.63–2.69 (2 H, tt, *J* = 6.59, 13.35 Hz), 3.93 (2 H, t, *J* = 6.59 Hz), 7.39–7.46 (6 H, m), 7.67–7.69 (4 H, m).

¹³C NMR (100 MHz, CDCl₃): δ = 19.1, 26.7, 46.7 (t, *J* = 20.7 Hz), 58.8 (t, *J* = 4.1 Hz), 121.2 (t, *J* = 305.4 Hz), 127.8, 129.8, 133.1, 135.5.

¹⁹F NMR (376 MHz, CDCl₃): $\delta = -42.39$ (2 F, t, J = 13.35 Hz).

Syn<mark>thesis</mark>

T. Nihei et al.

HRMS (FAB+): m/z [M + H]⁺ calcd for C₁₉H₂₄BrF₂OSi: 413.0748; found: 413.0751.

1-Bromo-4-(tert-butyldiphenylsilyloxy)-1,1-difluorobutane (5)

Yield: 3.72 g (69%, 8.70 mmol) over two steps; colorless oil.

IR (neat): 3071, 2932, 2858, 1472, 1428, 1216, 1186, 1112, 1023, 997, 932, 823, 740, 702 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 1.06 (9 H, s), 1.81–1.88 (2 H, m), 2.45–2.55 (2 H, m), 3.72 (2 H, t, *J* = 5.99 Hz), 7.38–7.46 (6 H, m), 7.64–7.66 (4 H, m).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 19.1, 26.8, 27.1 (d, J = 2.5 Hz), 41.2 (t, J = 21.5 Hz), 62.0, 123.2 (d, J = 304.5 Hz), 127.7, 129.7, 133.5, 135.5.

¹⁹F NMR (376 MHz, CDCl₃): δ = -43.76 (2 F, t, J = 14.67 Hz).

HRMS (FAB+): m/z [M + H]⁺ calcd for C₂₀H₂₆BrF₂OSi: 427.0904; found: 427.0896.

1-Bromo-1,1-difluorononane (6)

Under an argon atmosphere, a three-necked, round-bottomed flask equipped with an efficient magnetic stirring bar was charged with CuCl (0.040 g, 0.4 mmol), 2-aminoethanol (1.22 g, 20.0 mmol), t-BuOH (6.6 mL), oct-1-ene (4.49 g, 40 mmol), and CBr₂F₂ (16.8 g, 80 mmol), and the mixture was stirred at 85 °C for 48 h. Then, all organic materials were filtered through silica gel, which was rinsed with hexanes. The resulting colorless filtrate was concentrated by evaporation and subjected to fractional distillation under reduced pressure, affording 1,3-dibromo-1,1-difluorononane (8.86 g, 27.7 mmol, 69%) as a colorless liquid. Under an argon atmosphere, a three-necked roundbottomed flask equipped with an ice-H₂O condenser was charged with 1,3-dibromo-1,1-difluorononane (8.86 g, 27.7 mmol) dissolved in anhydrous DMSO (28 mL). NaBH₄ (1.51 g, 40 mmol) was then added in small portions with vigorous stirring over the course of 15 min. After the addition was complete, the bath temperature was raised to 70 °C and the mixture was stirred at this temperature for 6 h. The flask was cooled to r.t., the contents were transferred to an Erlenmeyer flask, and the reaction was quenched with chips of ice. The resulting mixture was carefully acidified with concd HCl, and the aqueous DMSO layer was extracted with Et₂O (3 ×). The combined Et₂O layers were washed with H₂O, dried (Na₂SO₄), and subjected to fractional distillation under the ambient pressure affording the known compound, 1-bromo-1,1-difluorononane (contaminated with a small amount of 1,1-difluorononane); yield: 1.87 g (38%, 7.7 mmol) as a colorless liquid. The analytical and spectral data were in conformity with the literature.12

E-Selective Chromium(II)-Mediated Reductive Coupling Reaction of 3-(3-Bromo-3,3-difluoropropanoyl)-2-oxazolidinone (1) with Aldehydes; 3-[(*E*)-3-Fluoro-4-hydroxy-4-phenylbut-2-enoyl]-2oxazolidinone (7a); Typical Procedure

To a suspension of anhydrous $CrCl_2$ (0.25 g, 2.0 mmol) and LiI (0.013 g, 0.1 mmol) in DMF (1.5 mL) were added benzaldehyde (0.11 g, 1.0 mmol) and imide (0.13 g, 0.5 mmol) at 0 °C. After stirring at that temperature for 4 h, the reaction was quenched with ice-cold H₂O. The mixture was extracted with Et₂O (3 ×). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography (benzene–EtOAc, 3:1) to afford the pure product **7a**; yield: 0.11 g (84%, 0.42 mmol); yellow oil.

¹H NMR (400 MHz, acetone- d_6): δ = 4.12 (2 H, t, J = 8.03 Hz), 4.48–4.52 (2 H, m), 5.31 (1 H, d, J = 6.00 Hz), 6.47 (1 H, dd, J = 6.00, 27.23 Hz), 7.04 (1 H, d, J = 21.33 Hz), 7.31–7.59 (5 H, m).

¹³C NMR (100 MHz, acetone- d_6): δ = 43.6, 63,2, 69.0 (d, *J* = 22.0 Hz), 101.8 (d, *J* = 30.2 Hz), 127.2, 128.7, 129.1, 140.5 (d, *J* = 1.3 Hz), 154.4, 164.5 (d, *J* = 24.7 Hz), 175.4 (d, *J* = 280.6 Hz).

 $^{19}{\rm F}$ NMR (376 MHz, acetone- d_6): δ = -97.43 (1 F, dd, J = 21.33, 27.23 Hz).

HRMS (FAB+): m/z [M]⁺ calcd for C₁₃H₁₂FNO₄: 265.0750; found: 265.0750.

3-[(*E*)-3-Fluoro-4-hydroxy-4-(4-methylphenyl)but-2-enoyl]-2-ox-azolidinone (7b)

Yield: 0.089 g (64%, 0.32 mmol); yellow oil.

¹H NMR (400 MHz, acetone- d_6): δ = 2.36 (3 H, s), 4.13 (2 H, t, *J* = 8.06 Hz), 4.48–4.52 (2 H, m), 5.26 (1 H, d, *J* = 6.11 Hz), 6.47 (1 H, dd, *J* = 6.11, 27.13 Hz), 7.11 (1 H, d, *J* = 21.36 Hz), 7.22 (2 H, d, *J* = 7.97 Hz), 7.51 (2 H, d, *J* = 7.97 Hz).

¹³C NMR (100 MHz, acetone- d_6): δ = 21.1, 43.6, 63.1, 69.0 (d, *J* = 22.1 Hz), 101.6 (d, *J* = 30.2 Hz), 127.2, 129.7, 137.5, 138.3, 154.4, 164.5 (d, *J* = 24.7 Hz), 175.6 (d, *J* = 280.6 Hz).

 $^{19}{\rm F}$ NMR (376 MHz, acetone- d_6): δ = -98.73 (1 F, dd, J = 21.36, 27.13 Hz).

HRMS (FAB+): m/z [M]⁺ calcd for C₁₄H₁₄FNO₄: 279.0907; found: 279.0916.

3-[(*E*)-3-Fluoro-4-hydroxy-4-(4-methoxylphenyl)but-2-enoyl]-2-oxazolidinone (7c)

Yield: 0.10 g (69%, 0.35 mmol); yellow oil.

¹H NMR (400 MHz, acetone- d_6): δ = 3.79 (3 H, s), 4.11 (2 H, t, J = 8.05 Hz), 4.46–4.51 (2 H, m), 5.18 (1 H, d, J = 6.00 Hz), 6.39 (1 H, dd, J = 6.00, 27.01 Hz), 6.92 (2 H, d, J = 8.58 Hz), 7.04 (1 H, d, J = 21.31 Hz), 7.49 (2 H, d, J = 8.58 Hz).

¹³C NMR (100 MHz, acetone- d_6): δ = 43.6, 55.5, 63.1, 68.7 (d, *J* = 22.0 Hz), 101.4 (d, *J* = 30.2 Hz), 114.5, 128.5, 132.5, 154.4, 160.5, 164.1 (d, *J* = 24.7 Hz), 175.6 (d, *J* = 280.6 Hz).

 $^{19}{\rm F}$ NMR (376 MHz, acetone- d_6): δ = -98.67 (1 F, dd, J = 21.31, 27.01 Hz).

HRMS (FAB+): m/z [M]⁺ calcd for C₁₄H₁₄FNO₅: 295.0856; found: 295.0863.

3-[(*E*)-3-Fluoro-4-(4-fluorophenyl)-4-hydroxybut-2-enoyl]-2-oxazolidinone (7d)

Yield: 0.13 g (90%, 0.45 mmol); yellow oil.

¹H NMR (400 MHz, acetone- d_6): δ = 4.13 (2 H, t, J = 8.17 Hz), 4.47–4.53 (2 H, m), 5.37 (1 H, d, J = 5.84 Hz), 6.46 (1 H, dd, J = 5.84, 27.09 Hz), 7.06 (1 H, d, J = 21.29 Hz), 7.14 (2 H, m), 7.58–7.63 (2 H, m).

¹³C NMR (100 MHz, acetone- d_6): δ = 43.6, 63.2, 68.3 (d, *J* = 21.9 Hz), 101.9 (d, *J* = 29.8 Hz), 115.8 (d, *J* = 21.6 Hz), 129.2 (d, *J* = 8.2 Hz), 136.6, 154.4, 163.3 (d, *J* = 244.4 Hz), 164.5 (d, *J* = 24.4 Hz), 175.6 (d, *J* = 280.4 Hz).

¹⁹F NMR (376 MHz, acetone- d_6): δ = -115.06 to -114.87 (1 F, m), -98.29 (1 F, dd, J = 21.29, 27.09 Hz).

HRMS (FAB+): m/z [M + H]⁺ calcd for C₁₃H₁₂F₂NO₄: 284.0734; found: 284.0726.

3-[(E)-3-Fluoro-4-hydroxyhept-2-enoyl]-2-oxazolidinone (7f)

Yield: 0.079 g (68%, 0.34 mmol); yellow oil.

Downloaded by: Rutgers University. Copyrighted material.

¹H NMR (400 MHz, acetone- d_6): δ = 0.94 (3 H, t, *J* = 7.38 Hz), 1.35–1.78 (4 H, m), 4.07 (2 H, t, *J* = 8.05 Hz), 4.43–4.49 (3 H, m), 5.10–5.25 (1 H, m), 6.99 (1 H, d, *J* = 22.83 Hz).

¹³C NMR (100 MHz, acetone- d_6): δ = 14.1, 19.3, 36.6, 43.5, 63.1, 67.6 (d, *J* = 22.9 Hz), 101.3 (d, *J* = 30.9 Hz), 154.4, 164.2 (d, *J* = 25.02 Hz), 177.5 (d, *J* = 280.4 Hz).

¹⁹F NMR (376 MHz, acetone- d_6): δ = -97.38 (1 F, dd, J = 22.83, 26.89 Hz).

HRMS (FAB+): m/z [M + H]⁺ calcd for C₁₀H₁₅FNO₄: 232.0985; found: 232.0993.

3-[(*E*)-3-Fluoro-4-hydroxy-5-methylhex-2-enoyl]-2-oxazolidinone (7g)

Yield: 0.088 g (77%, 0.38 mmol); yellow oil.

¹H NMR (400 MHz, acetone- d_6): δ = 0.92 (3 H, d, J = 6.82 Hz), 1.05 (3 H, d, J = 6.66 Hz), 1.91–1.99 (1 H, m), 4.06 (2 H, t, J = 8.03 Hz), 4.48 (2 H, t, J = 8.03 Hz), 4.57 (1 H, d, J = 7.08 Hz), 4.80–4.90 (1 H, m), 7.05 (1 H, d, J = 21.83 Hz).

¹³C NMR (100 MHz, acetone- d_6): δ = 18.85, 18.86, 32.4, 43.5, 63.0, 73.1 (d, *J* = 22.5 Hz), 102.2 (d, *J* = 30.7 Hz), 154.3, 164.4 (d, *J* = 25.5 Hz), 177.0 (d, *J* = 280.6 Hz).

¹⁹F NMR (376 MHz, acetone- d_6): δ = -95.00 (1 F, dd, J = 21.83, 29.33 Hz).

HRMS (FAB+): m/z [M + H]⁺ calcd for C₁₀H₁₅FNO₄: 232.0985; found: 232.0984.

3-[(*E*)-3-Fluoro-4-hydroxy-5,5-dimethylhex-2-enoyl]-2-oxazolidinone (7h)

Yield: 0.095 g (77%, 0.39 mmol); yellow oil.

¹H NMR (400 MHz, acetone- d_6): δ = 1.00 (9 H, s), 4.07 (2 H, dt, J = 2.11, 8.00 Hz), 4.48 (2 H, t, J = 8.00 Hz), 4.63 (1 H, d, J = 6.93 Hz), 5.04 (1 H, dd, J = 6.93, 30.24 Hz), 7.09 (1 H, d, J = 23.08 Hz).

¹³C NMR (100 MHz, acetone- d_6): δ = 26.5, 36.3, 43.6, 63.0, 74.4 (d, J = 20.5 Hz), 103.0 (d, J = 31.3 Hz), 154.4, 164.5 (d, J = 25.9 Hz), 176.6 (d, J = 282.8 Hz).

 $^{19}{\rm F}$ NMR (376 MHz, acetone- d_6): δ = -87.58 (1 F, dd, J = 23.08, 30.24 Hz).

HRMS (FAB+): m/z [M + H]⁺ calcd for C₁₁H₁₇FNO₄: 246.1142; found: 246.1141.

Z-Selective Chromium(II)-Mediated Reductive Coupling Reaction of 1-Bromo-3-(*tert*-butyldiphenylsilyloxy)-1,1-difluoropropane (3) with Aldehydes; (Z)-4-(*tert*-Butyldiphenylsilyloxy)-2-fluoro-1phenylbut-2-en-1-ol (8a); Typical Procedure

To a suspension of anhydrous CrCl₂ (0.22 g, 1.8 mmol) and Lil (0.020 g, 0.15 mmol) in DMF (1.2 mL) were added benzaldehyde (0.064 g, 0.6 mmol) and the silyl ether **3** (0.12 g, 0.30 mmol) at 0 °C. After stirring at r.t. for 4 h, the reaction was quenched with H₂O. The mixture was extracted with Et₂O (3 ×). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography (hexane–EtOAc, 5:1) to afford the pure product; yield: 0.071 g (56%, 0.17 mmol); yellow oil.

IR (neat): 3392, 3070, 2931, 2858, 1709, 1589, 1494, 1472, 1428, 1262, 1164, 1111, 1060, 885, 740, 701, 612 $\rm cm^{-1}$.

¹H NMR (400 MHz, CDCl₃): δ = 0.95 (9 H, s), 2.01 (1 H, br s), 4.26 (2 H, dd, *J* = 2.00, 6.79 Hz), 5.03 (1 H, d, *J* = 11.91 Hz), 5.09 (1 H, dt, *J* = 36.72, 6.79 Hz), 7.20–7.34 (11 H, m), 7.56–7.57 (4 H, m).

¹³C NMR (100 MHz, CDCl₃): δ = 19.1, 26.8, 57.1 (d, J = 6.6 Hz), 72.3 (d, J = 32.2 Hz), 107.0, (d, J = 10.7 Hz), 126.7, 127.6, 128.4, 128.5, 129.6, 133.5, 135.5, 139.1, 158.8 (d, J = 260.3 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -119.05 (1 F, dd, J = 11.91, 36.72 Hz).

HRMS (FAB+): m/z [M + Na]⁺ calcd for C₂₆H₂₉FO₂SiNa : 443.1819; found: 443.1815.

(*Z*)-4-(*tert*-Butyldiphenylsilyloxy)-2-fluoro-1-(4-methylphenyl)but-2-en-1-ol (8b)

Yield: 0.063 g (48%, 0.14 mmol); yellow oil.

IR (neat): 3395, 3071, 2930, 2858, 1079, 1513, 1472, 1428, 1362, 1163, 1111, 1062, 800, 740, 702 $\rm cm^{-1}$.

¹H NMR (400 MHz, CDCl₃): δ = 1.05 (9 H, s), 2.31 (1 H, br s), 2.35 (3 H, s), 4.36 (2 H, dd, *J* = 1.60, 6.49 Hz), 5.09 (1 H, d, *J* = 11.86 Hz), 5.19 (1 H, dt, *J* = 36.52, 6.49 Hz), 7.15–7.44 (10 H, m), 7.64–7.70 (4 H, m).

¹³C NMR (100 MHz, CDCl₃): δ = 19.1, 21.2, 26.7, 57.1 (d, *J* = 6.6 Hz), 72.2 (d, *J* = 32.2 Hz), 106.9 (d, *J* = 9.9 Hz), 126.6, 127.6, 129.2, 129.6, 133.6, 135.6, 136.2, 138.2, 158.8 (d, *J* = 259.5 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ = -119.12 (1 F, dd, J = 11.86, 36.52 Hz).

HRMS (FAB+): m/z [M + Na]⁺ calcd for C₂₇H₃₁FO₂SiNa: 457.1975; found: 457.1972.

(Z)-4-(*tert*-Butyldiphenylsilyloxy)-2-fluoro-1-(4-methoxyphenyl)but-2-en-1-ol (8c)

Yield: 0.070 g (52%, 0.16 mmol); yellow oil.

IR (neat): 3419, 3071, 2931, 2857, 1709, 1611, 1512, 1464, 1428, 1250, 1111, 1036, 739, 703 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 1.04 (9 H, s), 2.00 (1 H, br s), 3.82 (3 H, s), 4.36 (2 H, dd, J = 2.20, 6.59 Hz), 5.09 (1 H, dd, J = 3.20, 10.09 Hz), 5.19 (1 H, dt, J = 36.63, 6.59 Hz), 6.88–6.90 (2 H, m), 7.23–7.44 (8 H, m), 7.63–7.68 (4 H, m).

¹³C NMR (100 MHz, CDCl₃): δ = 19.1, 26.8, 55.3, 57.8 (d, *J* = 6.6 Hz), 72.0 (d, *J* = 32.2 Hz), 106.8 (d, *J* = 11.6 Hz), 113.9, 127.6, 128.1, 129.6, 131.3, 133.6, 135.6, 158.9 (d, *J* = 259.5 Hz), 159.7.

¹⁹F NMR (376 MHz, $CDCl_3$): $\delta = -118.95 (1 \text{ F}, \text{ dd}, J = 10.09, 36.63 \text{ Hz}).$

HRMS (FAB+): m/z [M – H]⁺ calcd for C₂₇H₃₀FO₃Si: 449.1948; found: 449.1938.

(Z)-4-(*tert*-Butyldiphenylsilyloxy)-2-fluoro-1-(4-fluorophenyl)but-2-en-1-ol (8d)

Yield: 0.073 g (56%, 0.17 mmol); yellow oil.

IR (neat): 3402, 3071, 2931, 2858, 1709, 1605, 1509, 1472, 1428, 1227, 1111, 1064, 908, 739, 703 $\rm cm^{-1}$

¹H NMR (400 MHz, CDCl₃): δ = 1.06 (9 H, s), 2.17 (1 H, br s), 4.37 (2 H, d, J = 6.39 Hz), 5.12 (1 H, d, J = 12.11 Hz), 5.18 (1 H, dt, J = 36.72, 6.39 Hz), 7.03–7.07 (2 H, m), 7.32–7.46 (8 H, m), 7.64–7.72 (4 H, m).

¹³C NMR (100 MHz, CDCl₃): δ = 19.1, 26.8, 57.0 (d, *J* = 6.6 Hz), 71.7 (d, *J* = 32.2 Hz), 107.3 (d, *J* = 11.7 Hz), 115.4 (d, *J* = 27.8 Hz), 127.6, 128.5 (d, *J* = 8.2 Hz), 129.7, 133.5, 134.8 (d, *J* = 2.4 Hz), 135.5, 158.5 (d, *J* = 258.5 Hz), 162.6 (d, *J* = 246.2 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -119.38 (1 F, dd, J = 12.11, 36.72 Hz).

HRMS (FAB+): m/z [M]⁺ calcd for C₂₆H₂₈F₂O₂Si: 438.1827; found: 438.1833.

(**Z**)-1-(*tert*-**Butyldiphenylsilyloxy**)-3-fluorohept-2-en-4-ol (8f) Yield: 0.066 g (57%, 0.17 mmol); yellow oil.

IR (neat): 3389, 3071, 3050, 2999, 2959, 2932, 2859, 1709, 1589, 1471, 1428, 1305, 1264, 1185, 1112, 939, 852, 822, 740, 702 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 0.95 (3 H, t, *J* = 7.39 Hz), 1.07 (9 H, s), 1.26–1.70 (4 H, m), 1.79 (1 H, br s), 4.00–4.07 (1 H, m), 4.37 (2 H, dd, *J* = 2.20, 6.59 Hz), 5.07 (1 H, dt, *J* = 37.41, 6.59 Hz), 7.36–7.47 (6 H, m), 7.68–7.73 (4 H, m).

¹³C NMR (100 MHz, CDCl₃): δ = 13.8, 18.5, 19.1, 26.8, 35.8, 57.0 (d, J = 7.43 Hz), 70.2 (d, J = 29.8 Hz), 106.1 (d, J = 11.7 Hz), 127.6, 129.6, 133.6, 135.5, 159.8 (d, J = 261.2 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -122.19 (1 F, dd, J = 15.61, 37.41 Hz).

HRMS (FAB+): m/z [M + Na]⁺ calcd for C₂₃H₃₁FO₂SiNa: 409.1975; found: 409.1976.

(Z)-6-(*tert*-Butyldiphenylsilyloxy)-4-fluoro-2-methylhex-4-en-3-ol (8g)

Yield: 0.069 g (59%, 0.18 mmol); yellow oil.

IR (neat): 3404, 3071, 3050, 2960, 2931, 2858, 1708, 1471, 1428, 1264, 1112, 1059, 1026, 939, 876, 822, 782, 740, 702 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 0.92 (3 H, d, *J* = 6.79 Hz), 0.97 (3 H, d, *J* = 6.79 Hz), 1.07 (9 H, s), 1.69 (1 H, br s), 1.87–1.91 (1 H, m), 3.73 (1 H, dd, *J* = 6.59, 17.05 Hz), 4.37 (2 H, d, *J* = 6.49 Hz), 5.07 (1 H, dt, *J* = 37.12, 6.49 Hz), 7.37–7.46 (6 H, m), 7.69–7.71 (4 H, m).

¹³C NMR (100 MHz, CDCl₃): δ = 17.5, 18.8, 19.1, 26.5, 26.8, 57.0 (d, J = 7.4 Hz), 75.8 (d, J = 28.9 Hz), 107.1 (d, J = 11.6 Hz), 127.7, 129.7, 133.7, 135.6, 159.1 (d, J = 261.1 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -121.25 (1 F, dd, J = 17.05, 37.12 Hz).

HRMS (FAB): *m*/*z* [M + Na]⁺ calcd for C₂₃H₃₁FO₂SiNa: 409.1975; found: 409.1976.

(Z)-6-(*tert*-Butyldiphenylsilyloxy)-4-fluoro-2,2-dimethylhex-4-en-3-ol (8h)

Yield: 0.076 g (63%, 0.19 mmol); yellow oil.

IR (neat): 3442, 3071, 2957, 2958, 1702, 1671, 1472, 1428, 1264, 1186, 1070, 1014, 937, 822, 788, 740, 612 cm^{-1} .

¹H NMR (400 MHz, $CDCl_3$): $\delta = 0.94$ (9 H, s), 1.05 (9 H, s), 1.71 (1 H, br s), 3.68 (1 H, d, J = 18.81 Hz), 4.35–4.36 (2 H, m), 5.03 (1 H, dt, J = 37.38, 6.79 Hz), 7.37–7.44 (6 H, m), 7.67–7.71 (4 H, m).

¹³C NMR (100 MHz, CDCl₃): δ = 19.1, 25.8, 26.8, 34.8, 60.0 (d, J = 7.43 Hz), 78.2 (d, J = 27.31 Hz), 107.5 (d, J = 11.7 Hz), 127.7, 129.6, 133.7, 135.5, 159.1 (d, J = 262.0 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -114.51 (1 F, dd, J = 18.81, 37.38 Hz).

HRMS (FAB+): $m/z \text{ [M - H]}^*$ calcd for C₂₄H₃₂FO₂Si: 399.2156; found: 399.2152.

Z-Selective Chromium(II)-Mediated Reductive Coupling Reaction of Ethyl 4-Bromo-4,4-difluorobutyrate (4) with Aldehydes; Ethyl (Z)-4-Fluoro-5-hydroxy-5-phenylpent-3-enoate (10a); Typical Procedure

To a suspension of anhydrous CrCl₂ (0.22 g, 1.8 mmol) and Lil (0.020 g, 0.15 mmol) in DMF (1.2 mL) were added benzaldehyde (0.064 g, 0.6 mmol) and the ester **4** (0.065 g, 0.3 mmol) at 0 °C. After stirring at r.t. for 4 h, the reaction was quenched with H₂O and the mixture was extracted with Et₂O (3 ×). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography (hexane-EtOAc, 3:1) to afford the pure product; yield: 0.040 g (55%, 0.17 mmol); yellow oil.

IR (neat): 3448, 3032, 2983, 1736, 1495, 1454, 1372, 1266, 1189, 1094, 1060, 1027, 955, 887, 804, 701 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 1.26 (3 H, t, *J* = 7.09 Hz), 2.50 (1 H, br s), 3.17 (2 H, d, *J* = 7.19 Hz), 4.15 (2 H, q, *J* = 7.09 Hz), 5.22 (1 H, dt, *J* = 35.26, 7.19 Hz), 5.24 (1 H, d, *J* = 11.25 Hz), 7.29–7.45 (5 H, m).

¹³C NMR (100 MHz, CDCl₃): δ = 14.1, 29.2 (d, *J* = 4.9 Hz), 60.9, 72.4 (d, *J* = 31.4 Hz), 99.5 (d, *J* = 9.8 Hz), 126.7, 128.4, 128.5, 139.1, 160.4 (d, *J* = 260.3 Hz), 171.2 (d, *J* = 2.5 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -119.34 (1 F, dd, J = 11.25, 35.26 Hz).

HRMS (FAB+): m/z [M]⁺ calcd for C₁₃H₁₅FO₃: 238.1005; found: 238.1009.

Ethyl (Z)-4-Fluoro-5-hydroxy-5-(4-methylphenyl)pent-3-enoate (10b)

Yield: 0.031 g (40%, 0.12 mmol); yellow oil.

IR (neat): 3438, 2982, 2925, 1737, 1514, 1372, 1264, 1186, 1024, 955, 805, 770, 734 $\rm cm^{-1}$.

¹H NMR (400 MHz, CDCl₃): δ = 1.26 (3 H, t, *J* = 7.19 Hz), 1.61 (1 H, br s), 2.35 (3 H, s), 3.17 (2 H, d, *J* = 6.99 Hz), 4.15 (2 H, q, *J* = 7.19 Hz), 5.19–5.22 (1 H, m), 5.22 (1 H, dt, *J* = 35.66, 6.99 Hz), 7.17–7.33 (4 H, m).

¹³C NMR (100 MHz, CDCl₃): δ = 14.1, 21.2, 29.2 (d, *J* = 4.9 Hz), 60.9, 72.3 (d, *J* = 32.2 Hz), 99.3 (d, *J* = 12.4 Hz), 126.7, 129.3, 136.2, 138.3, 160.5 (d, *J* = 259.5 Hz), 171.2 (d, *J* = 1.7 Hz).

¹⁹F NMR (376 MHz, $CDCl_3$): $\delta = -119.31 (1 \text{ F}, \text{ dd}, J = 11.09, 35.66 \text{ Hz}).$

HRMS (FAB+): m/z [M]⁺ calcd for C₁₄H₁₇FO₃: 252.1162; found: 252.1163.

Ethyl (Z)-4-Fluoro-5-hydroxy-5-(4-methoxyphenyl)pent-3-enoate (10c)

Yield: 0.041 g (51%, 0.15 mmol); yellow oil.

IR (neat): 3449, 2982, 2839, 1736, 1611, 1586, 1513, 1465, 1372, 1304, 1251, 1180, 1113, 1032, 955, 834, 775, 736 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 1.26 (3 H, t, *J* = 7.49 Hz), 2.63 (1 H, br s), 3.16 (2 H, d, *J* = 7.19 Hz), 3.80 (3 H, s), 4.14 (2 H, q, *J* = 7.49 Hz), 5.20 (1 H, dt, *J* = 36.03, 7.19 Hz), 5.24 (1 H, m), 6.89 (2 H, d, *J* = 8.59 Hz), 7.35 (2 H, d, *J* = 8.59 Hz).

¹³C NMR (100 MHz, CDCl₃): δ = 14.1, 29.2 (d, *J* = 4.9 Hz), 55.3, 60.9, 72.0 (d, *J* = 31.1 Hz), 99.2 (d, *J* = 11.7 Hz), 113.9, 128.1, 131.3, 159.7, 160.6 (d, *J* = 259.5 Hz), 171.2 (d, *J* = 2.4 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -119.13 (1 F, dd, J = 9.78, 36.03 Hz).

HRMS (FAB+): m/z [M]⁺ calcd for C₁₄H₁₇FO₄: 268.1111; found: 268.1118.

Ethyl (Z)-4-Fluoro-5-(4-fluorophenyl)-5-hydroxypent-3-enoate (10d)

Yield: 0.038 g (49%, 0.15 mmol); yellow oil.

IR (neat): 3431, 2985, 1735, 1604, 1509, 1414, 1373, 1225, 1190, 1158, 1098, 1027, 956, 839, 784, 736 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 1.32 (3 H, t, *J* = 7.19 Hz), 2.84 (1 H, br s), 3.23 (2 H, d, *J* = 7.29 Hz), 4.21 (2 H, q, *J* = 7.19 Hz), 5.27 (1 H, dt, *J* = 35.26, 7.29 Hz), 5.28 (1 H, d, *J* = 11.25 Hz), 7.10–7.14 (2 H, m), 7.46–7.49 (2 H, m).

Svnthesis	~			
	Svn	T.	ne	-
	2011			 •

¹³C NMR (100 MHz, CDCl₃): δ = 14.1, 29.1 (d, *J* = 5.8 Hz), 61.0, 71.7 (d, *J* = 31.3 Hz), 99.6 (d, *J* = 11.6 Hz), 115.4, 128.5 (d, *J* = 8.2 Hz), 134.9 (d, *J* = 3.3 Hz), 160.3 (d, *J* = 260.3 Hz), 162.7 (d, *J* = 246.3 Hz), 171.2 (d, *J* = 2.5 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -114.14 to -114.22 (1 F, m), -119.43 (1 F, dd, J = 11.25, 35.26 Hz).

HRMS (FAB+): m/z [M]⁺ calcd for C₁₃H₁₄F₂O₃: 256.0911; found: 256.0914.

Ethyl (Z)-4-Fluoro-5-hydroxyoct-3-enoate (10f)

Yield: 0.026 g (42%, 0.13 mmol); yellow oil.

IR (neat): 3437, 2961, 2874, 1739, 1466, 1372, 1188, 1118, 1028, 953 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 0.94 (3 H, t, *J* = 7.39 Hz), 1.26 (3 H, t, *J* = 6.79 Hz), 1.37–1.46 (2 H, m), 1.60–1.66 (2 H, m), 2.08 (1 H, br s), 3.14 (2 H, d, *J* = 7.19 Hz), 4.08–4.17 (3 H, m), 5.07 (1 H, dt, *J* = 36.77, 7.19 Hz).

¹³C NMR (100 MHz, CDCl₃): δ = 13.8, 14.1, 18.5, 29.1 (d, *J* = 5.8 Hz), 35.8, 60.9, 70.2 (d, *J* = 28.9 Hz), 98.5 (d, *J* = 12.3 Hz), 161.4 (d, *J* = 261.2 Hz), 171.3 (d, *J* = 2.5 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -122.41 (1 F, dd, J = 15.79, 36.77 Hz).

HRMS (FAB+): *m*/*z* [M + Na]⁺ calcd for C₁₀H₁₇FO₃Na: 227.1059; found: 227.1062.

Ethyl (Z)-4-Fluoro-5-hydroxy-6-methylhept-3-enoate (10g)

Yield: 0.033 g (54%, 0.16 mmol); yellow oil.

IR (neat) 3445, 2965, 2875, 1738, 1469, 1371, 1259, 1189, 1123, 1123, 1024, 956, 879, 831 $\rm cm^{-1}$.

¹H NMR (400 MHz, CDCl₃): δ = 0.95 (3 H, d, J = 6.59 Hz), 0.99 (3 H, d, J = 6.59 Hz), 1.26 (3 H, t, J = 7.09 Hz), 1.78 (1 H, br s), 1.89–1.96 (1 H, m), 3.16 (2 H, dm, J = 7.24 Hz), 3.82 (1 H, dd, J = 6.99, 17.25 Hz), 4.15 (2 H, q, J = 7.09 Hz), 5.07 (1 H, dt, J = 36.58, 7.24 Hz).

¹³C NMR (100 MHz, CDCl₃): δ = 14.1, 17.6, 18.8, 29.1 (d, *J* = 5.7 Hz), 31.2, 60.9, 75.9 (d, *J* = 28.1 Hz), 99.4 (d, *J* = 12.5 Hz), 160.7 (d, *J* = 261.2 Hz), 171.3 (d, *J* = 1.6 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -119.59 (1 F, dd, J = 17.25, 36.58 Hz).

HRMS (FAB+): m/z [M – H]⁺ calcd for C₁₀H₁₆FO₃: 203.1083; found: 203.1088.

Ethyl (Z)-4-Fluoro-5-hydroxy-6,6-dimethylhept-3-enoate (10h)

Yield: 0.020 g (31%, 0.09 mmol); yellow oil.

IR (neat): 3461, 2958, 2908, 2873, 1793, 1479, 1467, 1370, 1330, 1261, 1188, 1076, 1018, 957, 911, 849, 770 $\rm cm^{-1}.$

¹H NMR (400 MHz, $CDCl_3$): $\delta = 0.97$ (9 H, s), 1.26 (3 H, t, J = 7.19 Hz), 1.99 (1 H, br s), 3.15 (2 H, m), 3.78 (1 H, d, J = 19.13 Hz), 4.15 (2 H, q, J = 7.19 Hz), 5.03 (1 H, dt, J = 36.52, 7.29 Hz).

¹³C NMR (100 MHz, CDCl₃): δ = 14.1, 25.8, 29.2 (d, *J* = 5.7 Hz), 34.9, 60.9, 78.2 (d, *J* = 28.1 Hz), 100.3 (d, *J* = 12.5 Hz), 160.7 (d, *J* = 262.0 Hz), 171.2 (d, *J* = 1.7 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -114.92 (1 F, dd, *J* = 19.13, 36.52 Hz).

HRMS (FAB+): m/z [M + H]⁺ calcd for C₁₁H₂₀FO₃: 219.1396; found: 219.1389.

Z-Selective Chromium(II)-Mediated Reductive Coupling Reaction of 1-Bromo-4-(*tert*-butyldiphenylsilyloxy)-1,1-difluorobutane (5) with Benzaldehyde; (Z)-8-(*tert*-Butyldiphenylsilyloxy)-5-fluoro-2methyloct-5-en-4-ol (11h); Typical Procedure

To a suspension of anhydrous CrCl₂ (1.11 g, 9.0 mmol) and Lil (0.10 g, 0.75 mmol) in DMF (6 mL) were added isovaleraldehyde (0.26 g, 3.0 mmol) and 1-bromo-4-(*tert*-butyldiphenylsilyloxy)-1,1-difluorobutane (**5**; 0.64 g, 1.5 mmol) at 0 °C. After stirring at r.t. for 4 h, the reaction was quenched with ice-cold H₂O and the mixture was extracted with Et₂O (3 ×). The combined organic layers were dried (Na₂SO₄); filtered, and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography (hexane–EtOAc, 5:1) to afford the pure product **11h**; yield: 0.38 g (61%, 0.92 mmol); yellow oil.

IR (neat): 3388, 3071, 2957, 2931, 2859, 1709, 1471, 1428, 1388, 1362, 1111, 937, 823, 738, 702 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 0.926 (3 H, d, *J* = 6.39 Hz), 0.932 (3 H, d, *J* = 6.39 Hz), 1.05 (9 H, s), 1.45–1.60 (3 H, m), 1.75 (1 H, m), 2.36 (2 H, q, *J* = 6.66 Hz), 3.69 (2 H, t, *J* = 6.66 Hz), 4.12 (1 H, dt, *J* = 15.79, 7.99 Hz), 4.88 (1 H, dt, *J* = 38.40, 6.66 Hz), 7.36–7.45 (6 H, m), 7.65–7.68 (4 H, m).

¹³C NMR (100 MHz, CDCl₃): δ = 19.2, 22.1, 23.0, 24.3, 26.8, 42.9, 63.1, 69.3 (d, *J* = 28.9 Hz), 103.1 (d, *J* = 14.1 Hz), 127.6, 129.6, 133.8, 135.6, 160.6 (d, *J* = 257.1 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -125.73 (1 F, dd, J = 15.79, 38.40 Hz).

HRMS (FAB+): m/z [M + Na]⁺ calcd for C₂₅H₃₅FO₂SiNa: 437.2288; found: 437.2294.

(Z)-5-(*tert*-Butyldiphenylsilyloxy)-2-fluoro-1-phenylpent-2-en-1-ol (11a)

Yield: 0.30 g (67%, 0.68 mmol); yellow oil.

Physical and spectral data were in accordance with the literature values. $^{\rm 20}$

(*Z*)-5-(*tert*-Butyldiphenylsilyloxy)-2-fluoro-1-(4-methoxyphenyl)pent-2-en-1-ol (11c)

Yield: 0.13 g (54%, 0.28 mmol); yellow oil.

IR (neat): 3405, 3070, 2930, 2857, 1611, 1512, 1471, 1427, 1249, 1174, 1111, 1035, 823, 740, 703 cm $^{-1}$.

¹H NMR (400 MHz, CDCl₃): δ = 1.03 (9 H, s), 2.06 (1 H, d, *J* = 4.80 Hz), 2.37 (2 H, q, *J* = 6.59 Hz), 3.68 (2 H, t, *J* = 6.59 Hz), 3.80 (3 H, s), 4.96 (1 H, dt, *J* = 37.95, 6.59 Hz), 5.15 (1 H, dd, *J* = 4.80, 11.34 Hz), 6.87–6.89 (2 H, m), 7.32–7.44 (8 H, m), 7.63–7.67 (4 H, m).

¹³C NMR (100 MHz, CDCl₃): δ = 19.2, 26.8, 27.0 (d, *J* = 4.1 Hz), 55.2, 63.0 (d, *J* = 1.6 Hz), 72.3 (d, *J* = 32.1 Hz), 104.1 (d, *J* = 13.3 Hz), 113.9, 127.6, 128.0, 129.6, 131.7, 133.8, 135.5, 159.5, 159.7 (d, *J* = 256.2 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -121.83 (1 F, dd, J = 11.34, 37.95 Hz).

HRMS (FAB+): m/z [M + Na]⁺ calcd for C₂₈H₃₃FO₃SiNa: 487.2081; found: 487.2075.

(Z)-6-(tert-Butyldiphenylsilyloxy)-3-fluorohex-3-en-2-ol (11j)

Yield: 0.39 g (69%, 1.04 mmol); colorless oil.

IR (neat): 3362, 3071, 3050, 2957, 2931, 2858, 1709, 1472, 1428, 1389, 1362, 1111, 1005, 937, 823, 738, 702 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 1.05 (9 H, s), 1.34 (3 H, d, *J* = 6.31 Hz), 1.55–1.65 (1 H, m), 2.35 (2 H, m), 3.69 (2 H, t, *J* = 6.79 Hz), 4.26 (1 H, dq, *J* = 13.74, 6.31 Hz), 4.88 (1 H, dt, *J* = 38.93, 6.79 Hz), 7.36–7.45 (6 H, m), 7.65–7.67 (4 H, m).

-				-
	m	т.	nec	16

¹³C NMR (100 MHz, CDCl₃): δ = 19.1, 20.1 (d, J = 1.7 Hz), 26.8, 26.9 (d, J = 1.6 Hz), 63.0 (d, J = 1.6 Hz) 66.5 (d, J = 30.5 Hz), 102.0 (d, J = 14.0 Hz), 127.6, 129.6, 133.8, 135.6, 161.3 (d, J = 256.2 Hz).

¹⁹F NMR (376 MHz, CDCl₃): $\delta = -124.45$ (1 F, dd, J = 13.74, 38.93 Hz).

HRMS (FAB+): m/z [M + Na]⁺ calcd for C₂₂H₂₉FO₂SiNa: 395.1819; found: 395.1826.

(Z)-7-(*tert*-Butyldiphenylsilyloxy)-4-fluoro-2-methylhept-4-en-3-ol (11g)

Yield: 0.40 g (67%, 1.00 mmol); yellow oil.

Physical and spectral data were in accordance with the literature values. $^{\rm 20}$

(Z)-8-(*tert*-Butyldiphenylsilyloxy)-5-fluoro-3-methyloct-5-en-4-ol (11k)

Yield: 0.41 g (49%, 0.99 mmol); diastereomeric ratio: 45:55; yellow oil.

IR (neat): 3404, 3071, 2961, 2931, 2858, 1707, 1463, 1428, 1384, 1362, 1262, 1111, 937, 822, 739, 702 cm⁻¹.

¹H NMR (400 MHz, $CDCl_3$): $\delta = 0.87-0.95$ (6 H, m), 1.05 (9 H, s), 1.40– 1.84 (4 H, m), 2.39 (2 H, q, J = 6.39 Hz), 3.72 (2 H, t, J = 6.39 Hz), 3.79 and 3.89 (1 H, dd and dd, J = 7.19, 19.48 Hz and J = 5.99, 15.69 Hz), 4.87 and 4.88 (1 H, dt and dt, J = 7.19, 38.64 Hz and J = 7.19, 38.50 Hz), 7.36–7.45 (6 H, m), 7.66–7.68 (4 H, m).

¹⁹F NMR (376 MHz, CDCl₃): δ = -123.86 and -124.94 (1 F, dd and dd, J = 19.48, 38.64 Hz and 15.69, 38.50 Hz).

HRMS (FAB+): m/z [M + Na]⁺ calcd for C₂₅H₃₅FO₂SiNa: 437.2288; found: 437.2285.

(Z)-6-(*tert*-Butyldiphenylsilyloxy)-3-fluoro-1-(4-methoxybenzyloxy)hex-3-en-2-ol (11l)

Yield: 0.20 g (38%, 0.39 mmol); colorless oil.

IR (neat): 3434, 3070, 2931, 2858, 1616, 1514, 1471, 1428, 1249, 1111, 1035, 822, 740, 703 $\rm cm^{-1}$.

¹H NMR (400 MHz, CDCl₃): δ = 1.04 (9 H, s), 1.40–2.00 (1 H, m), 2.37 (2 H, q, J = 6.66 Hz), 3.50 (1 H, dd, J = 7.59, 9.59 Hz), 3.61 (1 H, dd, J = 4.00, 9.59 Hz), 3.67 (2 H, t, J = 6.66 Hz), 3.80 (3 H, s), 4.28 (1 H, ddd, J = 4.00, 7.59, 11.39 Hz), 4.48 (1 H, d, J = 11.99 Hz), 4.52 (1 H, dd, J = 11.99 Hz), 4.99 (1 H, dt, J = 36.71, 6.66 Hz), 6.86–6.89 (2 H, m), 7.23–7.25 (2 H, m), 7.34–7.64 (6 H, m,), 7.65–7.66 (4 H, m).

¹³C NMR (100 MHz, CDCl₃): δ = 19.2, 26.8, 26.9 (d, J = 1.7 Hz), 55.3, 63.0 (d, J = 1.7 Hz), 69.4 (d, J = 32.2 Hz), 71.0, 73.1, 104.1 (d, J = 12.4 Hz), 113.9, 127.6, 129.48, 129.58, 129.62, 133.8, 135.5, 157.7 (d, J = 255.4 Hz), 159.4.

¹⁹F NMR (376 MHz, CDCl₃): δ = -123.36 (1 F, dd, J = 11.39, 36.71 Hz).

HRMS (FAB+): m/z [M + Na]⁺ calcd for C₃₀H₃₇FO₄SiNa: 531.2353; found: 531.2353.

(Z)-2-Benzyloxy-7-(*tert*-butyldiphenylsilyloxy)-4-fluorohept-4en-3-ol (11m)

This compound was inseparable from by-products; yield: 75% (¹⁹F NMR yield); diastereomeric ratio: 62:38.

Major Isomer (more polar)

¹H NMR (400 MHz, CDCl₃): δ = 1.05 (9 H, s), 1.19 (3 H, d, *J* = 6.39 Hz), 1.50–1.80 (1 H, m), 2.38 (2 H, q, *J* = 7.06 Hz), 3.68 (2 H, t, *J* = 7.06 Hz), 3.85–3.95 (1 H, m) 4.20–4.30 (1 H, m), 4.42–4.70 (2 H, m), 5.00 (1 H, dt, *J* = 38.43, 7.06 Hz), 7.26–7.44 (11 H, m), 7.65–7.67 (4 H, m).

¹⁹F NMR (376 MHz, CDCl₃): δ = -123.04 (1 F, dd, J = 10.91, 38.43 Hz).

HRMS (FAB+): m/z [M + Na]⁺ calcd for C₃₀H₃₇FO₃SiNa: 515.2389; found: 515.2394.

Minor Isomer (less polar)

¹H NMR (400 MHz, CDCl₃): δ = 5.02 (1 H, dt, J = 37.37, 7.86 Hz). ¹⁹F NMR (376 MHz, CDCl₃): δ = -123.94 (1 F, dd, J = 15.80, 37.37 Hz).

Z-Selective Chromium(II)-Mediated Reductive Coupling Reaction of 1-Bromo-1,1-difluorononane (6) with Benzaldehyde; (Z)-2-Fluoro-1-phenyldec-2-en-1-ol (12a); Typical Procedure

To a suspension of anhydrous CrCl₂ (0.22 g, 1.8 mmol) and Lil (0.020 g, 0.15 mmol) in DMF (1.2 mL) were added benzaldehyde (0.064 g, 0.6 mmol) and the substrate **6** (0.073 g, 0.3 mmol) at 0 °C. After stirring at r.t. for 4 h, the reaction was quenched with H₂O and the mixture was extracted with Et₂O (3 ×). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography (hexane–EtOAc, 3:1) to afford the pure product **12a**; yield: 0.056 g (76%, 0.22 mmol); yellow oil.

IR (neat): 3364, 3032, 2926, 2856, 1708, 1495, 1455, 1379, 1273, 1192, 1111, 1024, 700 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 0.88 (3 H, t, *J* = 6.79 Hz), 1.27–1.39 (10 H, m), 2.08–2.18 (3 H, m), 4.90 (1 H, dt, *J* = 37.87, 7.19 Hz), 5.21 (1 H, d, *J* = 13.17 Hz), 7.31–7.45 (5 H, m).

¹³C NMR (100 MHz, CDCl₃): δ = 14.1, 22.6, 23.3, 29.0, 29.1, 29.2, 31.8, 72.8 (d, *J* = 32.2 Hz), 107.8 (d, *J* = 13.3 Hz), 126.6, 128.2, 128.5, 139.7, 158.3 (d, *J* = 255.4 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -124.22 (1 F, dd, J = 13.17, 37.87 Hz).

HRMS (FAB+): m/z [M]⁺ calcd for C₁₆H₂₃FO: 250.1733; found: 250.1729.

(Z)-2-Fluoro-1-(4-methylphenyl)dec-2-en-1-ol (12b)

Yield: 76% ($^{19}{\rm F}$ NMR yield). This compound could not be separated from the small amount of impurities.

IR (neat): 3368, 2925, 2856, 1708, 1514, 1459, 1273, 1111, 1044, 819, 768 $\rm cm^{-1}.$

¹H NMR (400 MHz, $CDCl_3$): $\delta = 0.90$ (3 H, t, J = 5.60 Hz), 1.20–1.40 (10 H, m), 2.12 (2 H, q, J = 7.19 Hz), 2.26 (1 H, br s), 2.37 (3 H, s), 4.90 (1 H, dt, J = 37.03, 7.19 Hz), 5.16 (1 H, d, J = 12.41 Hz), 7.13–7.33 (4 H, m).

¹³C NMR (100 MHz, CDCl₃): δ = 14.1, 21.1, 22.6, 23.3, 29.0, 29.1, 29.2, 31.8, 72.6 (d, *J* = 32.1 Hz), 107.6 (d, *J* = 14.1 Hz), 126.6, 129.2, 136.8, 138.0, 158.5 (d, *J* = 254.6 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -124.11 (1 F, dd, J = 12.41, 37.03 Hz).

HRMS (FAB+): m/z [M]⁺ calcd for C₁₇H₂₅FO: 264.1889; found: 264.1884.

(Z)-2-Fluoro-1-(4-methoxyphenyl)dec-2-en-1-ol (12c)

Yield: 0.065 g (80%, 0.23 mmol); yellow oil.

IR (neat): 3399, 2926, 2855, 1707, 1612, 1585, 1512, 1464, 1304, 1249, 1174, 1109, 1036, 832, 774 $\rm cm^{-1}.$

Synthocic	-		-
	hacic	/n	5

Paper

¹H NMR (400 MHz, $CDCI_3$): $\delta = 0.88$ (3 H, t, J = 6.79 Hz), 1.20–1.35 (11 H, m), 2.11 (2 H, q, J = 7.13 Hz), 3.81 (3 H, s), 4.89 (1 H, dt, J = 38.34, 7.13 Hz), 5.15 (1 H, dd, J = 3.60, 12.21 Hz), 6.90 (2 H, d, J = 8.59 Hz), 7.35 (2 H, d, J = 8.59 Hz).

T. Nihei et al.

¹³C NMR (100 MHz, CDCl₃): δ = 14.1, 22.6, 23.3, 28.99, 29.04, 29.2, 31.8, 55.2, 72.3 (d, J = 32.2 Hz), 107.4 (d, J = 13.3 Hz), 113.8, 127.9, 132.0, 158.6 (d, J = 254.6 Hz), 159.4.

¹⁹F NMR (376 MHz, CDCl₃): δ = -123.86 (1 F, dd, J = 12.21, 38.34 Hz).

HRMS (FAB+): m/z [M]⁺ calcd for C₁₇H₂₅FO: 264.1889; found: 264.1894.

(Z)-2-Fluoro-1-(4-fluorophenyl)dec-2-en-1-ol (12d)

Yield: 0.061 g (78%, 0.23 mmol); yellow oil.

IR (neat): 3358, 2926, 2856, 1707, 1605, 1509, 1465, 1227, 1157, 1097, 1015, 837, 783 $\rm cm^{-1}.$

¹H NMR (400 MHz, $CDCI_3$): $\delta = 0.88$ (3 H, t, J = 6.79 Hz), 1.20–1.40 (10 H, m), 2.10 (2 H, q, J = 7.19 Hz), 2.44 (1 H, br s), 4.89 (1 H, dt, J = 37.68, 7.19 Hz), 5.18 (1 H, d, J = 12.79 Hz), 7.03–7.09 (2 H, m), 7.38–7.41 (2 H, m).

¹³C NMR (100 MHz, CDCl₃): δ = 14.1, 22.6, 23.3, 28.99, 29.09, 29.14, 31.8, 72.1 (d, *J* = 32.2 Hz) 107.9 (d, *J* = 14.1 Hz), 115.3 (d, *J* = 21.5 Hz), 128.4 (d, *J* = 8.3 Hz), 135.5 (d, *J* = 2.5 Hz) 158.2 (d, *J* = 254.6 Hz), 162.6 (d, *J* = 246.4 Hz).

¹⁹F NMR (376 MHz, $CDCl_3$): $\delta = -124.41$ (1 F, dd, J = 12.79, 37.68 Hz).

HRMS (FAB+): m/z [M]⁺ calcd for C₁₆H₂₂F₂O: 268.1639; found: 268.1632.

(Z)-5-Fluoro-5-tridecen-4-ol (12f)

Yield: 0.051 g (81%, 0.24 mmol); yellow oil.

IR (neat): 3349, 2959, 2927, 2857, 1708, 1466, 1379, 1253, 1127, 1029, 845 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 0.88 (3 H, t, *J* = 6.79 Hz), 0.94 (3 H, t, *J* = 7.19 Hz), 1.20–1.45 (12 H, m), 1.61–1.70 (3 H, m), 2.04–2.09 (2 H, m), 4.06 (1 H, dt, *J* = 17.25, 13.19 Hz), 4.79 (1 H, dt, *J* = 37.97, 7.19 Hz). ¹³C NMR (100 MHz, CDCl₃): δ = 13.8, 14.1, 18.7, 22.6, 23.2, 29.0, 29.1, 29.3, 31.8, 36.0, 70.8 (d, *J* = 29.8 Hz), 106.7 (d, *J* = 14.1 Hz), 159.2 (d, *J* = 255.4 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -127.84 (1 F, dd, *J* = 17.25, 37.97 Hz). HRMS (EI+): *m*/*z* [M]⁺ calcd for C₁₃H₂₅FO: 216.1889; found: 216.1891.

(Z)-4-Fluoro-2-methyldodec-4-en-3-ol (12g)

Yield: 0.044 g (70%, 0.20 mmol); yellow oil.

IR (neat): 3387, 2958, 2926, 2857, 1707, 1467, 1381, 1281, 1168, 1103, 1021, 934, 831 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 0.88 (3 H, t, *J* = 6.79 Hz), 0.91 (3 H, d, *J* = 6.79 Hz), 0.98 (3 H, d, *J* = 6.79 Hz), 1.20–1.40 (10 H, m), 1.70–1.75 (1 H, m), 1.85–1.95 (1 H, m), 2.09 (2 H, q, *J* = 7.59 Hz), 3.72 (1 H, dt, *J* = 19.37, 6.79 Hz), 4.77 (1 H, dt, *J* = 37.41, 7.59 Hz).

¹³C NMR (100 MHz, CDCl₃): δ = 14.1, 17.9, 18.9, 22.6, 23.2, 29.0, 29.1, 29.3, 31.3, 31.8, 76.5 (d, *J* = 32.2 Hz), 107.6 (d, *J* = 14.1 Hz), 158.5 (d, *J* = 256.2 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -126.97 (1 F, dd, J = 19.37, 37.41 Hz). HRMS (EI+): m/z [M]⁺ calcd for C₁₃H₂₅FO: 216.1889; found: 216.1897.

(Z)-4-Fluoro-2,2-dimethyldodec-4-en-3-ol (12h)

Yield: 82% (¹⁹F NMR yield). This compound could not be separated from the small amount of impurities.

IR (neat): 3421, 2956, 2926, 2857, 1703, 1466, 1365, 1288, 1114, 1065, 1013, 910, 848, 768 $\rm cm^{-1}.$

¹H NMR (400 MHz, $CDCl_3$): $\delta = 0.88$ (3 H, t, J = 6.39 Hz), 0.96 (9 H, s), 1.20–1.35 (11 H, m), 2.09 (2 H, q, J = 7.19 Hz), 3.71 (1 H, d, J = 20.64 Hz), 4.75 (1 H, dt, J = 37.88, 7.19 Hz).

¹³C NMR (100 MHz, CDCl₃): δ = 14.1, 22.6, 23.2, 26.0, 29.1, 29.31, 29.32, 31.8, 34.8, 78.8 (d, J = 27.3 Hz), 108.5 (d, J = 14.1 Hz), 158.4 (d, J = 257.9 Hz).

¹⁹F NMR (376 MHz, $CDCl_3$): $\delta = -120.38 (1 \text{ F}, \text{ dd}, J = 20.64, 37.88 \text{ Hz}).$

HRMS (FAB+): m/z [M]⁺ calcd for C₁₄H₂₇FO: 230.2046; found: 230.2043.

Azide Compounds; (Z)-2-Azido-6-(*tert*-butyldiphenylsilyloxy)-3-fluoro-1-(4-methoxybenzyloxy)hex-3-ene (14l), Typical Procedure

To a mixture of β -fluoroallylic alcohol derivative **111** (0.26 g 0.51 mmol), NaN₃ (0.96 g, 15 mmol), and DMAP (0.25 g, 2.02 mmol) in CH₂Cl₂ (5.1 mL) were added MsCl (0.14 g, 1.26 mmol) at 0 °C. The mixture was stirred at r.t. for 30 min. Then, DMSO (3.37 mL) was added to the reaction mixture and the whole was stirred for additional 3 h. The reaction was quenched with H₂O and the mixture was extracted with Et₂O (3 ×). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography (hexane–EtOAc, 3:1) to afford the pure product **141**; yield: 0.23 g (85%, 0.43 mmol); pale yellow oil.

In the case of **11a** and **11c**, the reaction proceeded in a highly regioselective manner to afford the corresponding azide compounds, **15a** and **15c** in a pure form. For other substrates, the reaction took place in a low regioselective manner to give the corresponding adducts as an inseparable regioisomeric mixture. Therefore, the mixture was employed for the next reaction without further purification.

IR (neat): 2931, 2857, 2103, 1613, 1514, 1471, 1428, 1362, 1303, 1250, 1173, 1111, 1037, 822, 739, 703 $\rm cm^{-1}$.

¹H NMR (400 MHz, CDCl₃): δ = 1.04 (9 H, s), 2.38 (2 H, q, *J* = 6.29 Hz), 3.55 (1 H, dd, *J* = 7.98, 9.59 Hz), 3.64–3.70 (1 H, m), 3.68 (2 H, t, *J* = 6.29 Hz), 3.80 (3 H, s), 4.08 (1 H, ddd, *J* = 4.79, 7.98, 17.15 Hz), 4.48 (1 H, d, *J* = 11.49 Hz), 4.52 (1 H, d, *J* = 11.49 Hz) 5.00 (1 H, dt, *J* = 36.92, 6.29 Hz), 6.87–6.88 (2 H, m), 7.24–7.45 (8 H, m), 7.65–7.66 (4 H, m).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 19.2, 26.8, 27.1 (d, J = 4.1 Hz), 55.2, 61.6 (d, J = 29.0 Hz), 62.8 (d, J = 1.6 Hz), 69.2, 73.2, 106.9 (d, J = 12.5 Hz), 113.9, 127.6, 129.4, 129.5, 129.6, 133.7, 135.5, 154.4 (d, J = 256.2 Hz), 159.4.

¹⁹F NMR (376 MHz, CDCl₃): δ = -120.86 (1 F, dd, J = 17.15, 36.92 Hz).

HRMS (FAB+): m/z [M + Na]⁺ calcd for C₃₀H₃₆FN₃O₃SiNa: 556.2408; found: 556.2401.

(Z)-3-Azido-5-(*tert*-butyldiphenylsilyloxy)-2-fluoro-1-phenylpent-1-ene (15a)

Yield: 0.19 g (60%, 0.41 mmol); yellow oil.

IR (neat): 3070, 2958, 2931, 2857, 2101, 1471, 1428, 1251, 1112, 822, 739, 700 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 1.07 (9 H, s), 1.90–2.08 (1 H, m), 2.00–2.03 (1 H, m), 3.80 (2 H, m), 4.34 (1 H, dt, J = 22.39, 7.29 Hz), 5.77 (1 H, d, J = 38.65 Hz), 7.29–7.44 (9 H, m), 7.50–7.52 (2 H, m), 7.63–7.68 (4 H, m).

51	/n	t	hes	is	
-		9	103		

¹³C NMR (100 MHz, CDCl₃): δ = 19.2, 26.8, 33.9, 59.7, 60.2 (d, *J* = 7.2 Hz), 109.2 (d, *J* = 6.5 Hz), 127.7 (d, *J* = 4.1 Hz), 127.9 (d, *J* = 2.5 Hz), 128.6, 128.9 (d, *J* = 7.4 Hz), 129.8 (d, *J* = 4.1 Hz), 132.2 (d, *J* = 2.5 Hz), 133.3 (d, *J* = 4.9 Hz), 135.5 (d, *J* = 2.4 Hz), 156.2 (d, *J* = 268.7 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -116.84 (1 F, dd, J = 22.39, 38.65 Hz).

HRMS (FAB+): m/z [M]⁺ calcd for C₂₇H₃₀FN₃OSi: 459.2142; found: 459.2148.

(*Z*)-3-Azido-5-(*tert*-butyldiphenylsilyloxy)-2-fluoro-1-(4-meth-oxyphenyl)pent-1-ene (15c)

Yield: 0.12 g (45%, 0.24 mmol); yellow oil.

IR (neat): 3071, 2957, 2931, 2857, 2101, 1608, 1513, 1463, 1428, 1299, 1254, 1180, 1112, 1034, 860, 823, 739, 702 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 1.06 (9 H, s), 1.90–1.98 (1 H, m), 1.99–2.07 (1 H, m), 3.72–3.89 (2 H, m), 3.83 (3 H, s), 4.32 (1 H, dt, *J* = 21.99, 7.39 Hz), 5.70 (1 H, d, *J* = 38.65 Hz), 6.88–6.90 (2 H, m), 7.31–7.47 (8 H, m), 7.62–7.70 (4 H, m).

¹³C NMR (100 MHz, CDCl₃): δ = 19.2, 26.8, 33.9, 55.3, 59.8, 60.4 (d, J = 27.3 Hz), 108.8 (d, J = 7.4 Hz), 114.0, 124.8 (d, J = 3.3 Hz), 127.7 (d, J = 4.2 Hz), 129.8 (d, J = 4.2 Hz), 130.3 (d, J = 7.4 Hz), 133.3 (d, J = 5.7 Hz), 135.5 (d, J = 2.5 Hz), 154.8 (d, J = 226.8 Hz), 159.1 (d, J = 2.5 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -119.91 (1 F, dd, J = 21.99, 38.65 Hz).

HRMS (FAB+): m/z [M]⁺ calcd for C₂₈H₃₂FN₃O₂Si: 489.2248; found: 489.2245.

β -Fluoroallylic Amines 16 and 17; (*Z*)-5-(*tert*-Butyldiphenylsilyloxy)-2-fluoro-1-phenylpent-1-en-3-amine (17a); Typical Procedure

To a solution of the azide compound **15a** (0.19 g 0.41 mmol) in THF (1.37 mL)– H_2O (0.075 mL) was added PPh₃ (0.22 g, 0.82 mmol) at r.t. The mixture was stirred at 50 °C for 24 h. The reaction mixture was purified by silica gel column chromatography (hexane–EtOAc, 2:1) to afford the pure product **17a**; yield: 0.15 g (85%, 0.35 mmol); yellow oil.

IR (neat): 3070, 2930, 2857, 1687, 1589, 1492, 1471, 1448, 1427, 1389, 1111, 1049, 998, 937, 915, 823, 739, 702, 613 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 1.06 (H, s), 1.70 (2 H, br s), 1.82–1.89 (1 H, m), 1.93–1.98 (1 H, m), 3.74–3.86 (3 H, m), 5.70 (1 H, d, *J* = 40.20 Hz), 7.22–7.49 (11 H, m), 7.64–7.68 (4 H, m).

¹³C NMR (100 MHz, $CDCI_3$): $\delta = 19.2$, 26.8, 36.9, 51.3 (d, J = 28.1 Hz), 61.1, 105.4 (d, J = 7.4 Hz), 127.0 (d, J = 7.4 Hz), 127.7 (d, J = 2.4 Hz), 128.4, 128.6 (d, J = 6.6 Hz), 129.6 (d, J = 2.4 Hz), 133.3 (d, J = 4.1 Hz), 133.5 (d, J = 4.1 Hz), 135.5, 162.2 (d, J = 267.8 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -117.59 (1 F, dd, J = 18.24, 40.20 Hz).

HRMS (FAB+): m/z [M + H]⁺ calcd for C₂₇H₃₃FNOSi: 434.2315; found: 434.2324.

(Z)-7-(*tert*-Butyldiphenylsilyloxy)-4-fluoro-2-methylhept-4-en-3-amine (16g)

Yield: 0.095 g (35%); 0.24 mmol; colorless oil.

IR (neat): 3071, 2958, 2930, 2857, 1703, 1589, 1471, 1428, 1386, 1362, 1260, 1111, 936, 822, 738, 702 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 0.92 (3 H, d, *J* = 6.79 Hz), 0.95 (3 H, d, *J* = 6.79 Hz), 1.05 (9 H, s), 1.41 (2 H, br s), 1.80 (1 H, m), 2.36 (2 H, q, *J* = 6.93 Hz), 2.99 (1 H, dd, *J* = 6.79, 20.23 Hz), 3.68 (2 H, t, *J* = 6.93 Hz), 4.74 (1 H, dt, *J* = 38.01, 6.93 Hz), 7.36–7.45 (6 H, m), 7.66–7.68 (4 H, m).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 18.4, 19.1, 19.6, 26.8, 27.0 (d, J = 16.6 Hz), 31.1, 59.1 (d, J = 27.3 Hz), 63.3 (d, J = 1.7 Hz), 102.2 (d, J = 14.9 Hz), 127.6, 129.5, 133.8, 135.5, 161.8 (d, J = 257.0 Hz).

¹⁹F NMR (376 MHz, $CDCl_3$): $\delta = -122.52$ (1 F, dd, J = 20.23, 38.01 Hz).

HRMS (FAB+): $m/z \ [M + H]^+$ calcd for C₂₄H₃₅FNOSi: 400.2472; found: 400.2481.

(Z)-8-(*tert*-Butyldiphenylsilyloxy)-5-fluoro-2-methyloct-5-en-4-amine (16h)

Yield: 0.077 g (28%, 0.19 mmol); yellow oil.

IR (neat): 3071, 2956, 2930, 2857, 1703, 1471, 1428, 1386, 1362, 1111, 1022, 937, 822, 738, 702 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 0.90 (6 H, d, J = 6.39 Hz), 1.05 (9 H, s), 1.26–1.36 (1 H, m), 1.42–1.56 (3 H, m), 1.62–1.72 (1 H, m), 2.34 (2 H, q, J = 6.69 Hz), 3.32 (1 H, dt, J = 20.63, 7.39 Hz), 3.67 (2 H, t, J = 6.69 Hz), 4.74 (1 H, dt, J = 38.04, 6.69 Hz), 7.36–7.45 (6 H, m), 7.66–7.68 (4 H, m).

¹³C NMR (100 MHz, CDCl₃): δ = 19.2, 22.4, 22.6, 24.9, 26.8, 27.0 (d, J = 4.1 Hz), 43.1, 51.2 (d, J = 28.0 Hz), 63.2 (d, J = 1.6 Hz), 101.3 (d, J = 14.9 Hz), 127.6 (d, J = 5.8 Hz), 129.5, 133.8 (d, J = 1.6 Hz), 135.5, 162.6 (d, J = 257.1 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -125.31 (1 F, dd, J = 20.63, 38.04 Hz).

HRMS (FAB+): m/z [M + H]⁺ calcd for C₂₅H₃₇FNOSi: 414.2628; found: 414.2630.

(*Z*)-6-(*tert*-Butyldiphenylsilyloxy)-3-fluorohex-3-en-2-amine (16j) Yield: 0.16 g (49%, 0.43 mmol); colorless oil.

IR (neat): 3072, 3049, 2959, 2931, 2858, 1704, 1472, 1428, 1389, 1112, 1027, 937, 823, 791, 737, 703, 613 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 1.06 (9 H, s), 1.23 (3 H, d, *J* = 6.79 Hz), 1.41 (2 H, br s), 2.31–2.38 (2 H, m), 3.46 (1 H, dq, *J* = 14.67, 6.79 Hz), 3.68 (2 H, t, *J* = 6.59 Hz), 4.75 (1 H, dt, *J* = 37.35, 7.49 Hz), 7.36–7.45 (6 H, m), 7.67–7.69 (4 H, m).

¹³C NMR (100 MHz, CDCl₃): δ = 19.2, 20.4 (d, J = 1.7 Hz), 26.8, 26.9 (d, J = 4.9 Hz), 48.0 (d, J = 29.8 Hz), 63.2 (d, J = 1.6 Hz), 99.9 (d, J = 15.8 Hz), 127.6, 129.5, 133.8, 135.5, 163.7 (d, J = 256.2 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -121.96 (1 F, dd, J = 14.67, 37.35 Hz).

HRMS (FAB+): m/z [M + H]⁺ calcd for C₂₂H₃₁FNOSi: 372.2159; found: 372.2158.

(Z)-8-(*tert*-Butyldiphenylsilyloxy)-5-fluoro-3-methyloct-5-en-4-amine (16k)

Yield: 0.082 g (52%, 0.20 mmol); yellow oil; diastereomeric ratio: 48:52.

IR (neat): 3071, 2960, 2931, 2858, 1472, 1428, 1111, 1021, 823, 738, 701, 613 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 0.898 (3 H, t, *J* = 7.19 Hz), 0.900 (3 H, d, *J* = 6.79 Hz), 1.05 (9 H, s), 1.16 (1 H, m), 1.44 (2 H, br s), 1.46–1.63 (2 H, m), 2.35 (2 H, q, *J* = 7.29 Hz), 3.08 and 3.15 (1 H, dd and dd, *J* = 6.79, 20.73 Hz and 5.60, 18.19 Hz), 3.68 (2 H, t, *J* = 7.29 Hz), 4.73 and 4.75 (1 H, dt and dt, *J* = 38.17, 7.29 Hz), 7.30–7.50 (6 H, m), 7.60–7.70 (4 H, m).

¹⁹F NMR (376 MHz, CDCl₃): δ = -121.26 (1 F, dd, J = 18.19, 38.17 Hz), -122.36 (1 F, dd, J = 20.73, 38.17 Hz).

HRMS (FAB+): m/z [M + H]⁺ calcd for C₂₅H₃₇FNOSi: 414.2628; found: 414.2627.

Paper

(*Z*)-6-(*tert*-Butyldiphenylsilyloxy)-3-fluoro-1-(4-methoxybenzyloxy)hex-3-en-2-amine (161)

Yield: 0.17 g (85%, 0.34 mmol); colorless oil.

IR (neat): 3070, 2931, 2857, 1612, 1587, 1514, 1471, 1428, 1362, 1302, 1249, 1173, 1111, 1037, 822, 739, 703 $\rm cm^{-1}$.

¹H NMR (400 MHz, CDCl₃): δ = 1.05 (9 H, s), 1.55–1.65 (2 H, br s), 2.35 (2 H, q, *J* = 6.79 Hz), 3.36–3.42 (1 H, m), 3.55–3.64 (1 H, m), 3.66 (2 H, t, *J* = 6.79 Hz), 3.80 (3 H, s), 4.47 (2 H, s), 4.86 (1 H, dt, *J* = 38.11, 6.79 Hz), 6.37 (2 H, d, *J* = 8.59 Hz), 7.23 (2 H, d, *J* = 8.59 Hz), 7.27–7.44 (6 H, m), 7.65–7.67 (4 H, m).

¹³C NMR (100 MHz, CDCl₃): δ = 19.1, 26.8, 26.9 (d, J = 4.2 Hz), 52.6 (d, J = 28.9 Hz), 55.1, 63.1 (d, J = 1.7 Hz), 71.9, 72.9, 102.5 (d, J = 14.1 Hz), 113.7, 127.6, 129.3, 129.5, 129.9, 133.5, 133.8, 159.2, 160.0 (d, J = 255.4 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -120.58 (1 F, dd, J = 13.53, 38.11 Hz).

HRMS (FAB+): m/z [M + Na]⁺ calcd for C₃₀H₃₈FNO₃SiNa: 530.2503; found: 530.2493.

(Z)-2-Benzyloxy-7-(*tert*-butyldiphenylsilyloxy)-4-fluorohept-4en-3-amine (16m)

Yield: 0.028 g (40%, 0.057 mmol); colorless oil; diastereomeric ratio: 27:73.

 ^{19}F NMR (376 MHz, CDCl₃): δ = –119.75 and –121.13 (dd and dd, J = 14.67, 39.11 Hz).

(Z)-5-(*tert*-Butyldiphenylsilyloxy)-2-fluoro-1-(4-methoxyphenyl)pent-1-en-3-amine (17c)

Yield: 0.69 g (84%, 0.20 mmol); colorless oil.

IR (neat): 3070, 2999, 2931, 2857, 1608, 1512, 1464, 1428, 1389, 1297, 1251, 1179, 1111, 1036, 937, 855, 823, 739, 703, 613 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 1.06 (9 H, s), 1.69 (2 H, br s), 1.84 (1 H, m), 1.95 (1 H, m), 3.80 (3 H, m), 3.82 (3 H, s), 5.63 (1 H, d, *J* = 40.87 Hz), 6.87 (2 H, m), 7.31–7.44 (8 H, m), 7.65–7.69 (4 H, m).

¹³C NMR (100 MHz, CDCl₃): δ = 19.2, 26.8, 36.9, 51.2 (d, *J* = 28.1 Hz), 55.2, 61.1, 104.9 (d, *J* = 7.4 Hz), 113.8, 125.9 (d, *J* = 2.5 Hz), 127.7 (d, *J* = 2.4 Hz), 129.6 (d, *J* = 2.5 Hz), 129.8 (d, *J* = 6.6 Hz), 133.5 (d, *J* = 2.4 Hz), 135.5, 158.5 (d, *J* = 2.5 Hz), 160.8 (d, *J* = 264.5 Hz).

¹⁹F NMR (376 MHz, $CDCl_3$): $\delta = -120.64$ (1 F, dd, J = 19.55, 40.87 Hz).

HRMS (FAB+): m/z [M + H]⁺ calcd for C₂₈H₃₅FNO₂Si: 464.2421; found: 464.2420.

(Z)-1-(*tert*-Butyldiphenylsilyloxy)-4-fluoro-6-methylhept-4-en-3amine (17g)

Yield: 0.045 g (17%, 0.11 mmol); colorless oil.

IR (neat): 3385, 3071, 2958, 2931, 2858, 1702, 1589, 1471, 1428, 1389, 1278, 1112, 1047, 936, 823, 738, 702 $\rm cm^{-1}$.

¹H NMR (400 MHz, CDCl₃): δ = 0.95 (3 H, d, *J* = 6.92 Hz), 0.98 (3 H, d, *J* = 6.92 Hz), 1.04 (9 H, s), 1.46 (2 H, br s), 1.68–1.76 (1 H, m), 1.80–1.88 (1 H, m), 2.72 (1 H, dsept, *J* = 9.65, 6.92 Hz), 3.56 (1 H, dt, *J* = 18.51, 6.79 Hz), 3.74 (2 H, m), 4.55 (1 H, dd, *J* = 9.65, 38.18 Hz), 7.36–7.44 (6 H, m), 7.65–7.68 (4 H, m).

¹³C NMR (100 MHz, CDCl₃): δ = 19.2, 23.0, 23.1 (d, *J* = 1.7 Hz), 23.6 (d, *J* = 4.5 Hz), 26.8, 36.9, 50.3 (d, *J* = 28.9 Hz), 61.1, 112.5 (d, *J* = 14.9 Hz), 127.7 (d, *J* = 1.7 Hz), 129.6, 133.7 (d, *J* = 4.5 Hz), 135.5, 159.5 (d, *J* = 254.5 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -126.64 (1 F, dd, J = 18.51, 38.18 Hz).

HRMS (FAB+): m/z [M + H]⁺ calcd for C₂₄H₃₅FNOSi: 400.2472; found: 400.2481.

(Z)-1-(*tert*-Butyldiphenylsilyloxy)-4-fluoro-7-methyloct-4-en-3-amine (17h)

Yield: 0.150 g (54%, 0.36 mmol); yellow oil.

IR (neat): 3385, 3071, 2956, 2930, 2858, 1702, 1471, 1428, 1388, 1111, 1048, 823, 737, 702, 613 $\rm cm^{-1}.$

¹H NMR (400 MHz, $CDCl_3$): $\delta = 0.88$ (3 H, d, J = 6.79 Hz), 0.89 (3 H, d, J = 6.39 Hz), 1.05 (9 H, s), 1.56 (2 H, br s), 1.57–1.60 (1 H, m), 1.70–1.78 (1 H, m), 1.81–1.91 (1 H, m), 1.92–1.97 (2 H, m), 3.61 (1 H, dt, J = 19.17, 6.79 Hz), 3.70–3.81 (2 H, m), 4.69 (1 H, dt, J = 38.54, 7.79 Hz), 7.36–7.48 (6 H, m), 7.65–7.68 (4 H, m).

¹³C NMR (100 MHz, CDCl₃): δ = 19.1, 22.17, 22.19, 26.8, 28.3 (d, J = 1.6 Hz), 32.3 (d, J = 4.1 Hz), 36.9, 50.4 (d, J = 29.0 Hz), 61.1, 103.7 (d, J = 14.9 Hz), 127.6 (d, J = 2.4 Hz), 129.6, 133.6 (d, J = 5.0 Hz), 135.5, 161.5 (d, J = 255.4 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -125.85 (1 F, dd, J = 19.17, 38.54 Hz).

HRMS (FAB+): m/z [M + H]⁺ calcd for C₂₅H₃₇FNOSi: 414.2628; found: 414.2625.

(*Z*)-1-(*tert*-Butyldiphenylsilyloxy)-4-fluorohex-4-en-3-amine (17j) Yield: 0.11 g (33%, 0.29 mmol); colorless oil.

IR (neat): 3384, 3071, 3050, 2930, 2858, 1709, 1589, 1482, 1428, 1390, 1112, 1048, 984, 823, 739, 702, 688 cm^{-1} .

¹H NMR (400 MHz, CDCl₃): δ = 1.05 (9 H, s), 1.55–1.59 (5 H, m), 1.71– 1.76 (1 H, m), 1.80–1.88 (1 H, m), 3.62 (1 H, dt, *J* = 19.37, 6.79 Hz), 3.75 (2 H, m), 4.71 (1 H, dq, *J* = 37.42, 6.79 Hz), 7.36–7.45 (6 H, m), 7.65–7.68 (4 H, m).

¹³C NMR (100 MHz, CDCl₃): δ = 8.5 (d, *J* = 6.6 Hz), 19.1, 26.8, 36.8, 50.3 (d, *J* = 28.1 Hz), 61.0, 99.3 (d, *J* = 15.8 Hz), 127.6, 129.6, 133.6, 135.5, 161.7 (d, *J* = 255.4 Hz).

¹⁹F NMR (376 MHz, CDCl₃): $\delta = -126.69 (1 \text{ F}, \text{ dd}, J = 19.37, 37.42 \text{ Hz}).$

HRMS (FAB+): m/z [M + H]⁺ calcd for C₂₂H₃₁FNOSi: 372.2159; found: 372.2149.

(Z)-1-(*tert*-Butyldiphenylsilyloxy)-4-fluoro-6-methyloct-4-en-3amine (17k)

Yield: 0.050 g (31%, 0.12 mmol); colorless oil; diastereomeric ratio: 49:51.

IR (neat): 3071, 2959, 2930, 2857, 1472, 1461, 1428, 1112, 1048, 823, 738, 702, 613 $\rm cm^{-1}$.

¹H NMR (400 MHz, CDCl₃): δ = 0.81 and 0.85 (3 H, t and t, *J* = 7.19 Hz), 0.94 and 1.00 (3 H, d and d, *J* = 6.79 Hz), 1.05 (9 H, s), 1.16–1.23 (1 H, m), 1.24–1.40 (1 H, m), 1.50–1.70 (2 H, br s), 1.68–1.80 (1 H, m), 1.80–1.90 (1 H, m), 2.47 (1 H, m), 3.59 (1 H, m), 3.75 (2 H, m), 4.41 and 4.49 (1 H, dd and dd, *J* = 8.34, 38.36 Hz and 7.79, 38.86 Hz), 7.35–7.44 (6 H, m), 7.65–7.68 (4 H, m).

¹⁹F NMR (376 MHz, CDCl₃): δ = -126.21 (1 F, dd, *J* = 17.11, 38.36 Hz), -126.95 (1 F, dd, *J* = 19.55, 39.86 Hz).

HRMS (FAB+): m/z [M + H]⁺ calcd for C₂₅H₃₇FNOSi: 414.2628; found: 414.2627.

(Z)-6-Benzyloxy-1-(*tert*-butyldiphenylsilyloxy)-4-fluorohept-4en-3-amine (17m)

Yield: 0.034 g (48%, 0069 mmol); yellow oil; diastereomeric ratio: 27:73.

/h Thr		

¹⁹F NMR (376 MHz, CDCl₃): δ = -120.55 and -121.15 (dd and dd, *J* = 17.93, 36.66 Hz).

tert-Butyl (*Z*)-3-Fluoro-6-hydroxyhex-3-en-2-ylcarbamate (18j); Typical Procedure

To a solution of (*Z*)-6-(*tert*-butyldiphenylsilyloxy)-3-fluorohex-3-en-2-amine (**16j**; 0.19 g, 0.5 mmol) and Et₃N (0.05 mL, 0.6 mmol) in CH₂Cl₂ (1.7 mL) was added (Boc)₂O (0.13 g, 0.6 mmol) at 0 °C. The mixture was stirred at r.t. for 1 h. Then, the reaction was quenched with H₂O and the mixture was extracted with CH₂Cl₂ (3 ×). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated in vacuo. The resulting residue was used in the next step without further purification. To a THF solution of the above alcohol was added TBAF (0.55 mL, 0.55 mmol) at r.t. After stirring the mixture at that temperature for 2 h, addition of H₂O followed by extractive workup and purification by column chromatography (hexane–EtOAc, 2:1) afforded the desired alcohol **18j**; yield: 0.086 g (74%, 0.37 mmol); colorless oil.

IR (neat): 3328, 2979, 2933, 1692, 1527, 1454, 1428, 1391, 1367, 1251, 1171, 1112, 1056, 862, 735, 703 $\rm cm^{-1}$.

¹H NMR (400 MHz, CDCl₃): δ = 1.26 (3 H, d, *J* = 6.96 Hz), 1.40 (9 H, s), 1.65 (1 H, br s), 2.23–2.36 (2 H, m), 3.61 (2 H, t, *J* = 6.32 Hz), 4.22–4.26 (1 H, m), 4.63 (1 H, br s), 4.78 (1 H, dt, *J* = 37.20, 7.52 Hz).

¹³C NMR (100 MHz, CDCl₃): δ = 18.5, 27.0 (d, *J* = 3.9 Hz), 28.3, 47.4 (d, *J* = 27.7 Hz), 61.7, 79.7, 101.6 (d, *J* = 14.4 Hz), 154.9, 160.3 (d, *J* = 257.6 Hz).

¹⁹F NMR (376 MHz, CDCl₃): $\delta = -123.24$ (1 F, dd, J = 16.18, 37.20 Hz).

HRMS (FAB+): m/z [M + Na]⁺ calcd for C₁₁H₂₀FNO₃Na: 256.1325; found: 256.1319.

tert-Butyl (*Z*)-4-Fluoro-7-hydroxy-2-methylhept-4-en-3-ylcarbamate (18g)

Yield: 0.39 g (65%, 1.48 mmol); yellow oil.

IR (neat): 3334, 2966, 2933, 2875, 1696, 1504, 1469, 1391, 1367, 1251, 1171, 1044, 1011, 876, 737, 479, 418 $\rm cm^{-1}$.

¹H NMR (400 MHz, CDCl₃): δ = 0.926 (3 H, d, *J* = 6.76 Hz), 0.933 (3 H, d, *J* = 6.76 Hz), 1.43 (9 H, s), 1.86 (1 H, octet, *J* = 6.90 Hz), 1.99 (1 H, br s), 2.31–2.40 (2 H, m), 3.62 (2 H, t, *J* = 6.36 Hz), 3.86 (1 H, dt, *J* = 21.91, 8.48 Hz), 4.77 (1 H, dt, *J* = 37.60, 7.58 Hz).

¹³C NMR (100 MHz, CDCl₃): δ = 18.6, 19.5, 27.2 (d, *J* = 4.1 Hz), 28.4, 30.1, 58.0 (d, *J* = 27.6 Hz), 61.9, 79.8, 103.6 (d, *J* = 14.2 Hz), 155.5, 158.6 (d, *J* = 258.0 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -122.98 (1 F, dd, J = 21.91, 37.60 Hz).

HRMS (FAB+): m/z [M + H]⁺ calcd for C₁₃H₂₅FNO₃: 262.1818; found: 262.1820.

tert-Butyl (*Z*)-5-Fluoro-8-hydroxy-2-methyloct-5-en-4-ylcarbamate (18h)

Yield: 0.22 g (86%, 0.80 mmol); yellow oil.

IR (neat): 3330, 2959, 2871, 1692, 1527, 1470, 1391, 1367, 1283, 1252, 1171, 1117, 1046, 872 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 0.916 (3 H, d, J = 6.60 Hz), 0.919 (3 H, d, J = 6.52 Hz), 1.43 (9 H, s), 1.35–1.55 (2 H, m), 1.56–1.70 (1 H, m), 1.80–1.95 (1 H, br s), 2.25–2.44 (2 H, m), 3.63 (2 H, t, J = 6.34 Hz), 4.08–4.24 (1 H, m), 4.63–4.67 (1 H, m), 4.80 (1 H, dt, J = 37.41, 7.56 Hz).

¹³C NMR (100 MHz, CDCl₃): δ = 22.6, 22.7, 25.0, 27.5 (d, *J* = 3.7 Hz), 28.6, 41.5, 50.8 (d, *J* = 28.2 Hz), 62.0, 80.0, 103.1 (d, *J* = 14.1 Hz), 155.5, 159.6 (d, *J* = 258.2 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -125.09 (1 F, dd, J = 21.76, 37.41 Hz).

HRMS (FAB+): m/z [M + Na]⁺ calcd for C₁₄H₂₆FNO₃Na: 298.1794; found: 298.1804.

tert-Butyl (*Z*)-3-Fluoro-6-hydroxy-1-(4-methoxybenzyloxy)hex-3-en-2-ylcarbamate (181)

Due to unidentified inseparable by-products, this compound could not be isolated in pure form; yield: 96% (¹⁹F NMR yield).

¹H NMR (400 MHz, CDCl₃): δ = 1.44 (9 H, s), 1.85–2.05 (1 H, m), 2.29–2.43 (2 H, m), 3.53 (1 H, dd, *J* = 4.98, 9.66 Hz), 3.62 (2 H, t, *J* = 6.32 Hz), 3.60–3.65 (1 H, m), 3.81 (3 H, s), 4.37 (1 H, br s), 4.47 (2 H, s), 4.86 (1 H, dt, *J* = 37.32, 7.60 Hz), 4.96–5.11 (1 H, m), 6.88 (2 H, d, *J* = 8.64 Hz), 7.23 (2 H, d, *J* = 8.64 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -120.70 (1 F, dd, J = 11.14, 37.32 Hz).

HRMS (FAB+): m/z [M + Na]⁺ calcd for C₁₉H₂₈FNO₅Na: 392.1849; found: 392.1850.

The corresponding carboxylic acid was converted into the methyl ester through treatment of the acid with an excess amount of diazomethane.

Methyl (*Z*)-5-(*tert*-Butoxycarbonylamino)-4-fluoro-7-methyloct-3-enoate (19h); Typical Procedure

To a solution of *tert*-butyl (*Z*)-5-fluoro-8-hydroxy-2-methyloct-5-en-4-yl carbamate (18h; 0.21 g, 0.76 mmol) in acetone (9.45 mL) was added Iones reagent [readily prepared by mixing of CrO₂ (0.39 g, 3.91 mmol), H₂O (1.15 mL), and H₂SO₄ (0.38 mL) at 0 °C] at 0 °C. The mixture was stirred at that temperature for 3.5 h. The reaction was quenched with *i*-PrOH–H₂O (1:1 v/v) and the mixture was extracted with EtOAc (3 ×), and washed with brine. The combined organic lavers were dried (Na₂SO₄), filtered, and concentrated in vacuo to give the corresponding carboxylic acid. Thus obtained carboxylic acid was dissolved in Et₂O (10 mL), and the mixture was cooled to 0 °C. To this reaction mixture was added dropwise an excess amount of an ethereal solution of diazomethane [readily prepared via heating the mixture of KOH (0.56 g, 9.89 mmol), N-methyl-N-nitroso-p-toluenesufonamide (1.81 g, 8.45 mmol) in Et₂O (ca. 20 mL)/H₂O (ca. 1 mL)] at 0 °C. After about 1 h, the reaction was guenched with AcOH, and the mixture was concentrated in vacuo. The residue was neutralized with sat. aq NaHCO₃ and extracted with EtOAc (3 ×). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated in vacuo. The crude material was purified by silica gel column chromatography (hexane-EtOAc, 3:1) to give 19h; yield: 0.16 g (69%, 0.52 mmol) over 2 steps; yellow oil.

IR (neat): 3360, 2958, 2871, 1712, 1518, 1439, 1367, 1252, 1170, 1044, 1023, 951, 907, 780 $\rm cm^{-1}$.

¹H NMR (400 MHz, CDCl₃): δ = 0.92 (6 H, d, *J* = 6.60 Hz), 1.43 (9 H, s), 1.35–1.55 (2 H, m), 1.58–1.70 (1 H, m), 3.10–3.15 (2 H, m), 3.68 (3 H, s), 4.15–4.35 (1 H, m), 4.62 (1 H, d, *J* = 8.44 Hz), 5.01 (1 H, dt, *J* = 36.29, 7.00 Hz).

¹³C NMR (100 MHz, CDCl₃): δ = 22.5, 22.8, 25.0, 28.6, 29.3 (d, *J* = 5.7 Hz), 41.6, 50.3 (d, *J* = 28.1 Hz), 52.2, 79.9, 98.6 (d, *J* = 13.1 Hz), 155.2, 160.2 (d, *J* = 260.7 Hz), 171.7 (d, *J* = 1.7 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -121.50 (1 F, dd, J = 19.54, 36.29 Hz).

HRMS (FAB+): m/z [M + Na]⁺ calcd for C₁₂H₂₆FNO₄Na: 326.1744; found: 326.1751.

880

T. Nihei et al.

Methyl (*Z*)-5-(*tert*-Butoxycarbonylamino)-4-fluoro-6-methylhept-3-enoate (19g)

Yield: 0.29 g (68%, 0.99 mmol); yellow oil.

IR (neat): 3362, 2970, 1744, 1709, 1513, 1469, 1438, 1391, 1367, 1255, 1171, 1041, 1011, 949, 879, 808, 487 $\rm cm^{-1}$.

¹H NMR (400 MHz, CDCl₃): δ = 0.93 (3 H, d, *J* = 6.74 Hz), 0.94 (3 H, d, *J* = 6.74 Hz), 1.43 (9 H, s), 1.89 (1 H, octet, *J* = 6.74 Hz), 3.14 (2 H, m), 3.68 (3 H, s), 3.97 (1 H, dt, *J* = 19.98, 8.57 Hz), 4.72 (1 H, d, *J* = 9.16 Hz), 4.97 (1 H, dt, *J* = 36.49, 7.16 Hz).

¹³C NMR (100 MHz, CDCl₃): δ = 18.2, 19.3, 28.3, 29.0 (d, *J* = 5.9 Hz), 30.1, 51.8, 57.2 (d, *J* = 27.2 Hz), 79.5, 99.1 (d, *J* = 13.0 Hz), 155.2, 159.2 (d, *J* = 261.0 Hz), 171.4 (d, *J* = 1.8 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -119.72 (1 F, dd, J = 19.98, 36.49 Hz).

HRMS (FAB+): m/z [M + H]⁺ calcd for C₁₄H₂₅FNO₄: 290.1768; found: 290.1769.

(Z)-5-(tert-Butoxycarbonylamino)-4-fluorohex-3-enoic Acid (19j)

The methyl esterification with diazomethane was not carried out because the corresponding carboxylic acid could be isolated in a pure form; yield: 47 mg (45%, 0.19 mmol); colorless oil.

IR (neat): 3327, 2980, 2934, 1715, 1524, 1455, 1394, 1368, 1252, 1169, 1105, 1059, 951, 914, 864, 735 $\rm cm^{-1}$.

¹H NMR (400 MHz, CDCl₃): δ = 1.31 (3 H, d, *J* = 6.96 Hz), 1.44 (9 H, s), 3.18 (2 H, d, *J* = 7.04 Hz), 4.33–4.35 (1 H, m), 4.68 (1 H, m), 5.02 (1 H, dt, *J* = 35.96, 7.04 Hz), 9.20–9.40 (1 H, m).

¹³C NMR (100 MHz, CDCl₃): δ = 18.5, 28.3, 28.9 (d, *J* = 3.9 Hz), 47.0 (d, *J* = 23.6 Hz), 80.0, 97.1 (d, *J* = 16.5 Hz), 154.8, 160.8 (d, *J* = 261.2 Hz), 176.1.

¹⁹F NMR (376 MHz, CDCl₃): δ = -119.48 (1 F, dd, J = 14.34, 35.96 Hz).

HRMS (FAB+): m/z [M + Na]⁺ calcd for C₁₁H₁₈FNO₄Na: 270.1118; found: 270.1116.

Methyl (*Z*)-5-(*tert*-Butoxycarbonylamino)-4-fluoro-6-(4-methoxybenzyloxy)hex-3-enoate (191)

Yield: 0.25 g (27%, 0.62 mmol); yellow oil.

IR (neat): 3359, 2977, 1741, 1713, 1613, 1586, 1514, 1458, 1391, 1366, 1249, 1172, 1101, 1034, 949, 821, 491 $\rm cm^{-1}$.

¹H NMR (400 MHz, CDCl₃): δ = 1.44 (9 H, s), 3.16–3.18 (2 H, m), 3.54 (1 H, dd, J = 4.62, 9.70 Hz), 3.61–3.64 (1 H, m), 3.68 (3 H, s), 3.80 (3 H, s), 4.42 (1 H, br s), 4.46 (2 H, s), 5.00–5.11 (1 H, m), 5.10 (1 H, dt, J = 36.23, 6.99 Hz), 6.85–6.89 (2 H, m), 7.21–7.24 (2 H, m).

¹³C NMR (100 MHz, CDCl₃): δ = 28.4, 29.3 (d, *J* = 5.8 Hz), 51.2 (d, *J* = 31.7 Hz), 52.1, 55.4, 68.8, 73.0, 80.1, 99.2 (d, *J* = 12.4 Hz), 113.9, 129.4, 129.8, 155.1, 158.2 (d, *J* = 257.9 Hz), 159.4, 171.5 (d, *J* = 1.2 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ = -117.61 (1 F, dd, J = 8.98, 36.23 Hz).

HRMS (FAB+): m/z [M + Na]⁺ calcd for C₂₀H₂₈FNO₆Na: 420.1798; found: 420.1795.

Supporting Information

Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560390.

References

- (a) Chang, W.; Mosley, R. T.; Bansal, S.; Keilman, M.; Lam, A. M.; Furman, P. A.; Otto, M. J.; Sofia, M. J. Bioorg. Med. Chem. Lett. 2012, 22, 2938. (b) Yanai, H.; Taguchi, T. Eur. J. Org. Chem. 2011, 5939. (c) Couve-Bonnaire, S.; Cahard, D.; Pannecoucke, X. Org. Biomol. Chem. 2007, 5, 1151. (d) Zhao, K.; Lim, D. S.; Funaki, T.; Welch, J. T. Bioorg. Med. Chem. 2003, 11, 207.
- (2) (a) Yang, M.-H.; Matikonda, S. S.; Altman, R. A. Org. Lett. 2013, 15, 3894. (b) Greedy, B.; Gouverneur, V. Chem. Commun. 2001, 233. (c) Tius, M. A.; Kawakami, J. K. Tetrahedron 1995, 51, 3997. (d) Lee, S. H.; Schwartz, J. J. Am. Chem. Soc. 1986, 108, 2445.
- (3) (a) Pfund, E.; Masson, S.; Vazeux, M.; Lequeux, T. J. Org. Chem.
 2004, 69, 4670. (b) van Steenis, J. H.; van der Gen, A. Eur. J. Org. Chem. 2001, 897. (c) Tsai, H.-J. Tetrahedron Lett. 1996, 37, 629.
- (4) (a) Nakamura, Y.; Okada, M.; Sato, A.; Horikawa, H.; Koura, M.; Saito, A.; Taguchi, T. *Tetrahedron* **2005**, *61*, 5741. (b) Otaka, A.; Watanabe, J.; Yukimasa, A.; Sasaki, Y.; Watanabe, H.; Kinoshita, T.; Oishi, S.; Tamamura, H.; Fujii, N. *J. Org. Chem.* **2004**, *69*, 1634. (c) Otaka, A.; Watanabe, H.; Yukimasa, A.; Oishi, S.; Tamamura, H.; Fujii, N. *Tetrahedron Lett.* **2001**, *42*, 5443.
- (5) (a) Cao, C.-R.; Ou, S.; Jiang, M.; Liu, J.-T. Org. Biomol. Chem. 2014, 12, 467. (b) Larnaud, F.; Pfund, E.; Linclau, B.; Legueux, T. Tetrahedron 2014, 70, 5632. (c) Yan, X.-W.; Zhang, Q.; Wei, W.; Ji, J.-X. Tetrahedron Lett. 2014, 55, 3750. (d) Prakash, G. K. S.; Zhang, Z.; Wang, F.; Rahm, M.; Ni, C.; Iuliucci, M.; Haiges, R.; Olah, G. A. Chem. Eur. J. 2014, 20, 831. (e) Schneider, C.; Masi, D.; Couve-Bonnaire, S.; Pannecoucke, X.; Hoarau, C. Angew. Chem. Int. Ed. 2013, 52, 3246. (f) Macé, A.; Tripoteau, F.; Zhao, Q.; Gayon, E.; Vrancken, E.; Campagne, J.-M.; Carboni, B. Org. Lett. 2013, 15, 906. (g) Kajjout, M.; Smietana, M.; Leroy, J.; Rolando, C. Tetrahedron Lett. 2013, 54, 1658. (h) Lecea, M.; Grassin, A.; Ferreiro-Mederos, L.; Choppin, S.; Urbano, A.; Carreňo, M. C.; Colobert, F. Eur. J. Org. Chem. 2013, 4486. (i) Bergeron, M.; Guyader, D.; Paquin, J.-F. Org. Lett. 2012, 14, 5888. (j) Yanai, H.; Okada, H.; Sato, A.; Okada, M.; Taguchi, T. Tetrahedron Lett. 2011, 52, 2997. (k) Bergeron, M.; Johnson, T.; Paquin, J.-F. Angew. Chem. Int. Ed. 2011, 50, 11112. (l) Nikolova, G. S.; Haufe, G. Beilstein J. Org. Chem. 2008, 4, 12. (m) Ghosh, A. K.; Zajc, B. Org. Lett. 2006, 8, 1553. (n) Saito, A.; Nakagawa, M.; Taguchi, T. J. Fluorine Chem. 2005, 126, 1166. (o) Wang, Z.; Gonzalez, A.; Wnuk, S. F. Tetrahedron Lett. 2005, 46, 5313. (p) Nakagawa, M.; Saito, A.; Soga, A.; Yamamoto, N.; Taguchi, T. Tetrahedron Lett. 2005, 46, 5257. (q) Dutheuil, G.; Lei, X.; Pannecoucke, X.; Quirion, J.-C. J. Org. Chem. 2005, 70, 1911. (r) Nakamura, Y.; Okada, M.; Horikawa, H.; Taguchi, T. J. Fluorine Chem. 2002, 117, 143. (s) Shimizu, M.; Hata, T.; Hiyama, T. Tetrahedron Lett. 1999, 40, 7375. (t) Chen, C.; Wilcoxen, K.; Kim, K.; McCarthy, J. R. Tetrahedron Lett. 1997, 38, 7677. (u) Allmendinger, T.; Felder, E.; Hungarbühler, E. Tetrahedron Lett. 1990, 31, 7301.
- (6) For reviews, see: (a) Kuehnel, M. F.; Holstein, P.; Kliche, M.; Krüger, J.; Matthies, S.; Nitsch, D.; Schutt, J.; Sparenberg, M.; Lentz, D. Chem. Eur. J. 2012, 18, 10701. (b) Clot, E.; Eisenstein, O.; Jasim, N.; Macgregor, S. A.; Mcgrady, J. E.; Perutz, R. N. Acc. Chem. Res. 2011, 44, 333. (c) Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119. For recent studies, see: (d) Ohashi, M.; Shibata, M.; Saijo, H.; Kambara, T.; Ogoshi, S. Organometallics 2013, 32, 3631. (e) Lv, H.; Cai, Y.-B.; Zhang, J. L. Angew. Chem. Int. Ed. 2013, 52, 1. (f) Guo, W.-J.; Wang, Z.-X. J. Org. Chem. 2012, 77, 1798. (h) Ohashi, M.; Kambara, T.; Hatanaka, T.; Saijo, H.; Doi, R.; Ogoshi, S. J. Am. Chem. Soc. 2011, 133, 3256. (i) Schaub, T.; Backes, M.; Radius, U. J. Am. Chem. Soc. 2006, 128, 15964.

Downloaded by: Rutgers University. Copyrighted material.

- (7) For Cr(II)-mediated reactions, see: (a) Takai, K. Org. React. 2004, 64, 253. (b) Jin, H.; Uenishi, J.; Christ, W. J.; Kishi, Y. J. Am. Chem. Soc. 1986, 108, 5644. (c) Takai, K.; Kimura, K.; Kuroda, T.; Hiyama, T.; Nozaki, H. Tetrahedron Lett. 1983, 24, 5281.
- (8) Nihei, T.; Yokotani, S.; Ishihara, T.; Konno, T. Chem. Commun. 2014. 50. 1543.
- (9) Shimada, T.; Konno, T.; Ishihara, T. Chem. Lett. 2007, 36, 636.
- (10) For the preparation of 3, see: Peng, S.; Qing, F.-L.; Li, Y.-Q.; Hu, C.-M. J. Org. Chem. 2000, 65, 694.
- (11) (a) Sasaki, Y.; Hosono, E. Jpn Kokai Tokkyo Koho 04091051, 1992. (b) Chen, J.; Hu, C.-M. J. Chem. Soc., Perkin Trans. 1 1994, 1111.
- (12) (a) Bartberger, M. D.; Dolbier, W. R. Jr.; Lusztyk, J.; Ingold, K. U. Tetrahedron 1997, 53, 9857. (b) Gonzalez, J.; Foti, C. J.; Elsheimer, S. J. Org. Chem. 1991, 56, 4322.
- (13) It has been discussed that LiI plays an important role in the solubility of CrCl₂ in DMF, see: Wessjohann, W.; Gabriel, T. J. Org. Chem. 1997, 62, 3772.
- (14) The stereochemical assignments of 9, 10, 12, and 14 were done based on the analyses of ¹H NMR spectra. The coupling constants between vinyl H and F were 21-23 Hz for 9 and 35-38 Hz

for 10, 12, and 14, which indicate that 9 and 10, 12, 14 possess E- and Z-configuration, respectively. The details are given in the

- Supporting Information. (15) When the reaction was carried out at -40 °C for 16 h in the presence of 2.0 equiv of Ti(Oi-Pr)₄, instead of a catalytic amount of Lil. 13 was obtained in 40% vield.
- (16) We first attempted the nucleophilic substitution reaction of NaN₃ with **10a** under the same conditions as described in Table 5. However, no deisred adduct was detected.
- (17) Watanabe, D.; Koura, M.; Saito, A.; Yanai, H.; Nakamura, Y.; Okada, M.; Sato, A.; Taguchi, T. J. Fluorine Chem. 2011, 132, 327.
- (18) It has been reported that trichloroalkanes in the presence of 4.0 equiv of CrCl₂ can be converted into the corresponding chlorovinylidene chromium(III) carbenoids, see: (a) Baati, R.; Barma, D. K.; Krishna, U. M.; Mioskowski, C.; Falck, J. R. Tetrahedron Lett. 2002, 43, 959. (b) Baati, R.; Barma, D. K.; Falck, J. R.; Mioskowski, C. J. Am. Chem. Soc. 2001, 123, 9196. (c) Barma, D. K.; Baati, R.; Valleix, A.; Mioskowski, C.; Falck, J. R. Org. Lett. 2001, 3, 4237.
- (19) Pitterna, T.; Böger, M.; Maienfisch, P. Chimia 2004, 58, 108.
- (20) Known compounds, see ref. 5n and 5g.