Tadashi Mizutani,* Tetsuya Uesaka, and Hisanobu Ogoshi*

Department of Synthetic Chemistry and Biological Chemistry, Faculty of Engineering, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-01, Japan

Received June 3, 1994[®]

(2,3,7,8,12,13,17,18-Octaethylporphyrinato)rhodium(I) (Rh^IOEP) cleaved the alkyl-oxygen bond of four-membered-ring and five-membered-ring lactones (β -propiolactone (1), β -butyrolactone (2), and γ -butyrolactone (3)) at room temperature to regioselectively yield (ω -carboxyalkyl)Rh^{III}OEP. [{Rh^{II}OEP}₂] reacted with R¹₂R²MH (8, M = Si, R¹ = R² = Et; 9, M = Si, R¹ = R² = Ph; 10, M = Si, R¹ = Me, R² = Ph; 11, M = Si, R¹ = Me, R² = OEt; 16, M = Sn, R¹ = R² = Bu; 17, M = Sn, R¹ = R² = Ph) to yield Rh^{III}(MR¹₂R²)OEP. These alkyl-, silyl-, and stannylrhodium complexes of OEP were characterized by ¹H, ¹³C, ²⁹Si, and ¹¹⁹Sn NMR, IR, UV-vis, and mass spectroscopy. (triethylsilyl)Rh^{III}OEP crystallizes in the monoclinic space group C2/c with unit cell dimensions a = 17.14(8) Å, b = 14.94(5) Å, c =31.22(5) Å, and $\beta = 103.5(2)^\circ$; the density is 1.28 g/cm³ for Z = 8. The porphyrin plane is almost planar, and the rhodium metal resides on the plane. The Rh-Si distance is 2.32(1) Å, and all the eight ethyl groups on the pyrroles are directed toward the triethylsilyl group. The present method has proved to be a facile way to prepare bimetallic rhodium complexes of porphyrin.

Rhodium-porphyrin complexes are of interest for their diverse reactivities depending on the oxidation state of the rhodium metal.^{1,2} Similar reactions were found to take place with both Rh porphyrin and Co porphyrin. The Rh porphyrin has been studied as a model of the vitamin B_{12} coenzyme.³ Rh(I) porphyrin, for example, is nucleophilic and undergoes numerous nucleophilic substitution and addition reactions such as conjugated addition to the α,β -unsaturated carbonyl compounds² and cleavage of three- or four-membered cyclic ethers.⁴ A Rh(II) porphyrin dimer undergoes radical reactions with olefins and acetylenes.⁵ Wayland et al.⁶ reported that (tetramesitylporphyrinato)rhodium-(II) can cleave a C-H bond of methane. A Rh(III) porphyrin is electrophilic. It reacts with organolithium compounds² and acts as a Lewis acid catalyst.⁷ These reactions, especially those forming a Rh-C bond, are useful for prediction of possible elementary reactions taking place in Co–C species derived from vitamin B_{12} , since the similarity between the reactivity of the Rh-(II) porphyrin and the Co(II) porphyrin has been noticed.⁸ Recently, insertion reactions of carbenes catalyzed by rhodium(III) porphyrins have attracted much

interest.⁹ In this paper we report that a nucleophilic Rh(I) porphyrin reacts with a four- or five-membered ring lactone at the alkoxide carbon to give (ω -carboxy-alkyl)Rh^{III}OEP. Also, the Rh^{II}OEP dimer reacts with hydrosilane or hydrostannane to give (trialkylsilyl)Rh^{III}OEP or (trialkylstannyl)Rh^{III}OEP, respectively.

Results and Discussion

Reaction of Rhodium(I) Octaethylporphyrin with Lactones. Reactions of RhIOEP with four-, five-, and six-membered ring lactones and ethyl acetate (as a representative of a linear ester) were performed at room temperature under Ar (Scheme 1). Products and yields of the reactions are summarized in Table 1. Four- and five-membered-ring lactones gave alkyl-rhodium complexes, while the six-membered-ring lactone and ethyl acetate did not. Therefore, the ring size of the lactone is one of the important factors in the limitation of this reaction. The strain energies are 8.8 kcal/mol for 3 and 11.2 kcal/mol for 4 (calorimetry),^{10a} 7.3 kcal/mol for 3 and 10.0 kcal/mol for 4 (ab initio, HF/6-31G*),^{10a} and 8.70 kcal/mol for 3 and 10.36 kcal/mol for 4 (MM3).^{10b} These data indicate that the six-membered-ring lactone (4) is more strained than the five-membered-ring lactone (3) by 1.7-2.7 kcal/mol. The difference in strain energy alone, therefore, cannot account for the difference in reactivity.

The second important result is the regiospecificity of the reaction. In the reaction, the alkyl-oxygen bond of lactone is cleaved in preference to the acyl-oxygen

[®] Abstract published in Advance ACS Abstracts, November 1, 1994.

 Guilard, R.; Kadish, K. M. Chem. Rev. 1988, 88, 1121.

Guilard, R.; Kadish, K. M. Chem. Rev. 1988, 88, 1121.
 Ogoshi, H.; Setsune, J.; Omura, T.; Yoshida, Z. J. Am. Chem. Soc. 1975, 97, 6461.

⁽³⁾ For examples of reactions of Co-porphyrins, see: (a) Ogoshi, H.; Kikuchi, Y.; Yamaguchi, T.; Toi, H.; Aoyama, Y. Organometallics 1987, 6, 2175. (b) Setsune, J.-i.; Ishimaru, Y.; Moriyama, T.; Kitao, T. J. Chem. Soc., Chem. Commun. 1991, 555. (c) Gridnev, A. A.; Ittel, D.; Fryd, M.; Wayland, B. B. J. Chem. Soc., Chem. Commun. 1998, 1010. (d) Gridnev, A. A.; Ittel, S. D.; Fryd, M.; Wayland, B. B. Organometallics 1998, 12, 4871.

⁽⁴⁾ Ogoshi, H.; Setsune, J.; Yoshida, Z. J. Organomet. Chem. 1980, 185, 95.

 ^{(5) (}a) Ogoshi, H.; Setsune, J.; Yoshida, Z. J. Am. Chem. Soc. 1977,
 99, 3869. (b) Paonessa, R. S.; Thomas, N. C.; Halpern, J. J. Am. Chem.
 Soc. 1985, 107, 4333.

 ⁽⁶⁾ Sherry, A. E.; Wayland, B. B. J. Am. Chem. Soc. 1990, 112, 1259.
 (7) Aoyama, Y.; Yamagishi, A.; Tanaka, Y.; Toi, H.; Ogoshi, H. J. Am. Chem. Soc. 1987, 109, 4735.

⁽⁸⁾ Brown, K. L. In B₁₂; Dolphin, D., Ed.; Wiley: New York, 1982; Vol. I, p 245.

^{(9) (}a) Callot, H. J.; Metz, F.; Piechocki, C. *Tetrahedron* **1982**, *38*, 2365. (b) Maxwell, J. L.; Brown, K. C.; Bartley, D. W.; Kodadek, T. Science **1992**, *256*, 1544.

^{(10) (}a) Wiberg, K. B.; Waldron, R. F. J. Am. Chem. Soc. 1991, 113, 7697. (b) Allinger, N. L.; Zhu, Z. S.; Chen, K. J. Am. Chem. Soc. 1992, 114, 6120.

Table 1. Reactions of Rh^IOEP with Lactones

bond. Spectroscopic data of the product obtained from Rh^IOEP and β -butyrolactone showed that the Rh atom is not bonded to the carbonyl carbon (C1) but bonded to the alkoxide carbon (C3). The ¹H NMR signal at δ -6.42 ppm exhibits a coupling constant of J = 2.8 Hz besides the vicinal H–H coupling, which can be ascribed to the coupling between ¹H and ¹⁰³Rh. If the rhodium were bonded to the carbonyl carbon, the expected chemical shift of the signal in the highest magnetic field would be close to -3.77 ppm, which is the chemical shift of the proton β to the Rh atom of [Rh^{III}{CO(CH₂)₄CH₃}-OEP] in CDCl₃.¹¹ Therefore, the signal appearing at -6.47 ppm is assignable to the proton α to the Rh atom. The ¹³C NMR signal at δ 6.76 ppm recorded with complete ¹H decoupling exhibits a coupling constant of J = 27.9 Hz, which can be ascribed to the coupling between ¹³C and ¹⁰³Rh. The ¹H-¹³C HSQC spectrum indicated that the two signals noted above $({}^{1}H$ and ${}^{13}C)$ are correlated and that the hydrogen and the carbon noted above are directly bonded to each other. The IR spectrum showed a peak at 1706 cm⁻¹, which is ascribed to the C=O stretching of the carboxyl group. All these data are consistent with structure 5. It is noteworthy that the reaction is readily completed at room temperature. This can be ascribed to the high nucleophilicity of the Rh(I) porphyrin. The observed regioselectivity is similar to that observed for thiol,¹² selenium,¹³ silicon,¹⁴ and other¹⁵ nucleophiles in their reactions with

Scheme 2

$2 \operatorname{R}^{1}_{2} \operatorname{R}^{2} \operatorname{SiH} + (\operatorname{OEP}) \operatorname{Rh}^{\parallel} - \operatorname{Rh}^{\parallel} (\operatorname{OEP}) \longrightarrow 2 (\operatorname{OEP}) \operatorname{Rh}^{\parallel} \operatorname{SiR}^{1}_{2} \operatorname{R}^{2} +$	H ₂
---	----------------

12: R' = Et,	R² = Et
13: R ¹ = Ph	, R ² = Ph
14: R ¹ = Me	e, R ² = Ph
15: R ¹ = Me	$R^2 = OE^1$

Table 2.	Reactions	of	[RhIIOEP]	with	Silanes
I AVIC 4.	ICACHOID	UI.		*****	Onanca

			²⁹ Si NMR			
substrate	product	yield (%)	δ (ppm)	$J_{29}_{Si-103}_{Rh}$ (Hz)		
Et ₃ SiH (8)	Rh ^{III} (SiEt ₃)OEP (12)	54	51.98	29.3		
Ph ₃ SiH (9)	Rh ^{III} (SiPh ₃) OEP (13)	65	11.56	35.7		
Me ₂ PhSiH (10)	Rh ^{III} (SiPhMe ₂)OEP (14)	44	28.30	30.2		
(EtO)Me ₂ SiH (11)	$Rh^{III}(SiMe_2(OEt))OEP$ (15)	42	37.24	30.5		

lactones.¹⁶ In these reactions, a tendency is observed that "soft" nucleophiles attack the alkyl carbon to give alkyl-oxygen cleavage.^{13c,15b} On the basis of these results, we suggest that the rhodium(I) porphyrin is a soft nucleophile.

Reaction of Rhodium(I) Octaethylporphyrin with **Lactams.** Reactions of [Rh^IOEP] with lactams (β propiolactam, γ -butyrolactam, δ -valerolactam, and 1-methyl-2-pyrrolidinone) were also investigated. In contrast to lactones, no formation of alkyl-rhodium complexes was detected using ¹H NMR. The nucleophilic ring opening reaction is thus sensitive to the differences in leaving group structures $(-CO_2^- vs)$ $-CONH^{-}$).

Reaction of Rh^{II}OEP Dimer with Organosilanes. The reaction of Rh complexes with organosilanes is interesting because some Rh complexes constitute an important group of the hydrosilylation catalyst. The development of versatile preparative methods of transition-metal-silicon complexes is thus desired. By using the metalloradical reactivity¹⁷ of the Rh^{II}OEP dimer, the preparation of silylrhodium complexes was explored.¹⁸ Hydrosilanes reacted with the Rh^{II}OEP dimer smoothly to give silylrhodium complexes of OEP (Scheme 2). The products, yields, and ²⁹Si NMR data (chemical shifts δ and coupling constants ${}^{1}J_{Si-Rh}$) are listed in Table 2. The ²⁹Si NMR chemical shifts of the starting silanes were 0.15 ppm (8), -17.75 ppm (9), and -17.50 ppm (10).¹³ Therefore, the ²⁹Si chemical shift displacements upon rhodium-silicon bond formation ranged from 30 to 50 ppm, which is characteristic of the chemical shift displacement of ²⁹Si bonded to a transition metal.¹⁹ These NMR data indicate that triethylsilane (8), triphenvlsilane (9), dimethylphenylsilane (10), and dimethylethoxysilane reacted with [Rh^{II}OEP]₂ to form (trialkylsilyl)rhodium complexes.²⁰ Because the yields of 8 and 9 exceed 50% on the basis of [Rh^{II}OEP]₂, both Rh

⁽¹¹⁾ Ogoshi, H.; Setsune, J.; Nanbo, Y.; Yoshida, Z. J. Organomet. Chem. 1978, 159, 329.

⁽¹²⁾ Plieninger, H. Chem. Ber. 1950, 83, 265.
(13) (a) Miyoshi, N.; Ishii, H.; Murai, S.; Sonoda, N. Chem. Lett. **1979**, 873. (b) Scarborough, R. M., Jr.; Toder, B. H.; Smith, A. B., III J. Am. Chem. Soc. **1980**, 102, 3904. (c) Liotta, D.; Sunay, U.; Santiesteban, H.; Markiewicz, W. J. Org. Chem. **1981**, 46, 2605.

⁽¹⁴⁾ Kolb, M.; Barth, J. Synth. Commun. 1981, 11, 763.

^{(15) (}a) Ali, S. M.; Chapleo, C. B.; Finch, M. A. W.; Roberts, S. M.; Woolley, G. T.; Cave, R. J.; Newton, R. F. J. Chem. Soc., Perkin Trans. I 1980, 2093. (b) Arnold, L. D.; Kalantar, T. H.; Vederas, J. C. J. Am. Chem. Soc. 1985, 107, 7105.

⁽¹⁶⁾ For a review on ester cleavage via S_N^2 -type dealkylation. see: McMurry, J. Org. React. **1976**, 24, 187. (17) Paonessa, R. S.; Thomas, N. C.; Halpern, J. J. Am. Chem. Soc.

^{1985, 107, 4333.}

⁽¹⁸⁾ For examples of the reaction of silanes and transition metal complexes, see: (a) Baay, Y. L.; MacDiarmid, A. G. Inorg. Chem. 1969, 8, 986. (b) Sisak, A.; Ungvary, F.; Marko, L. Organometallics 1986, 5, 1019.

⁽¹⁹⁾ Marsmann, H. In ²⁹Si-NMR Spectroscopic Results; Diehl, P., Fluck, E., Kosfeld, R., Eds.; Springer-Verlag: Berlin, 1981; pp 66-235.

Scheme 3

2 R ₃ SnH	+	(OEF	P)Rh"-	Rh ⁱⁱ (OEF)	 	->	2 (OEP)Rh ^{III} SnR ₃	+	H_2
								18: R = <i>n</i> -Bu		
							_	1 9 . m = r m		

Table 3.	Reactions of [(OE	P)Rh ^{II}] ₂ with S	tannanes
		vield	119	Sn NMR
substrate	product	(%)	δ (ppm)	$J_{119}_{Sn-103}_{Rh}$ (Hz)
n-Bu ₃ SnH (16)	Rh ^{III} (SnBu ₃)OEP (18)	49	118.3	314.2
Ph ₃ SnH (17)	Rh ^{III} (SnPh ₃)OEP (19)	44	-121.6	412.9
Table	4. Crystal Data fo	r (OE	P)RhSiE	t ₃ (12)
formula	C42H59N	l₄SiRh		
fw	750.95			
space group	C2/c			
a, Å	17.14(8))		
<i>b</i> , Å	14.94(5)		
c, Å	31.22(5)		
β , deg	103.5(2)		
V, Å ³	7774(43	5)		
Z	8			
ρ (calcd), g/cm	³ 1.28			
temp, °C	-120			
cryst dimens.	mm 0.25×0	0.25×10^{-1}	0.25	
radiation	graphite	-monoc	hromated	Mo Ka radiation.
	12 k	W rotati	ing anode a	zenerator
linear abs coef	$f. cm^{-1}$ 5.0		č	
detector aperta	ure, mm 9.0 (hor	iz), 13.((vert)	
scan type	$\omega - 2\theta$		` ´	
scan rate, deg/	min 16.0 (in	ω)		
2θ limits, deg	0.0 < 20	θ < 60.	4	
no. of rflns me	asd 12 149 1	otal. 11	779 uniqu	le
no. of rflns use	ed 9548	,		
no, of variable	s 601			

atoms of $[Rh^{II}OEP]_2$ are incorporated in the rhodiumsilyl complexes.

0.063

0.078

R Rw

Similarly, hydrostannanes react with the Rh(II) dimer to afford stannyl-rhodium complexes of OEP (Scheme 3). The products and ¹¹⁹Sn NMR data are listed in Table 3. Coupling constants of 300-400 Hz were observed in the ¹¹⁹Sn NMR spectra of the stannylrhodium complexes, supporting the notion that a direct bond between Rh and Sn exists in the product.^{21,22}

Rh^{III}(SiEt₃)OEP crystallizes in the monoclinic space group C/2c with eight porphyrin molecules per unit cell. Crystal data, positional parameters, and intramolecular distances and angles are listed in Tables 4–7. The porphyrin is almost planar, and the rhodium atom resides on the plane (Figure 1). The displacement of the Rh atom from the least-squares plane of four nitrogen atoms was 0.090 Å, which is comparable to those of similar rhodium porphyrins ((OEP)RhMe, 0.051 Å;²³ (OEP)RhCHO, 0.080 Å;²⁴ (OEP)RhH, 0.010 Å;²⁴

(23) Takenaka, A.; Syal, S. K.; Sasada, Y.; Omura, T.; Ogoshi, H.; Yoshida, Z. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1976, B32, 62.

(24) Jones, N. L.; Carroll, P. J.; Wayland, B. B. Organometallics 1986, 5, 33.

 Table 5. Positional Parameters for Non-Hydrogen Atoms of 12

atom	x	У	z	$B(eq), Å^2$
Rh(1)	0.09209(2)	-0.00455(2)	0.341049(9)	1.73(1)
Si(1)	0.04240(7)	-0.00308(7)	0.40394(4)	2.35(2)
N(1)	-0.0185(2)	0.0151(2)	0.3010(1)	1.8(1)
N(2)	0.1107(2)	0.1296(2)	0.3449(1)	1.9(1)
N(3)	0.2068(2)	-0.0248(2)	0.3760(1)	2.1(1)
N(4)	0.0775(2)	-0.1388(2)	0.3326(1)	2.0(1)
C(1)	-0.0726(2)	-0.0491(2)	0.2822(1)	1.9(1)
C(2)	-0.1452(2)	-0.0071(2)	0.2566(1)	2.1(1)
C(3)	-0.1332(2)	0.0827(2)	0.2605(1)	2.1(1)
C(4)	-0.0541(2)	0.0963(2)	0.2885(1)	1.9(1)
C(5)	-0.0193(2)	0.1787(2)	0.3002(1)	2.2(1)
C(6)	0.0573(2)	0.1948(2)	0.3263(1)	2.2(1)
C(7)	0.0930(2)	0.2826(2)	0.3368(1)	2.5(1)
C(8)	0.1684(2)	0.2690(3)	0.3616(1)	2.4(1)
C(9)	0.1793(2)	0.1738(3)	0.3665(1)	2.2(1)
C(10)	0.2488(2)	0.1319(3)	0.3887(1)	2.4(1)
C(11)	0.2618(2)	0.0399(3)	0.3936(1)	2.3(1)
C(12)	0.3362(2)	-0.0015(3)	0.4177(1)	2.6(1)
C(13)	0.3246(2)	-0.0920(3)	0.4140(1)	2.8(1)
C(14)	0.2440(2)	-0.1053(3)	0.3877(1)	2.3(1)
C(15)	0.2088(2)	-0.1882(3)	0.3753(1)	2.4(1)
C(16)	0.1322(2)	-0.2040(2)	0.3504(1)	2.1(1)
C(17)	0.0977(2)	-0.2918(2)	0.3389(1)	2.2(1)
C(18)	0.0221(2)	-0.2783(2)	0.3136(1)	2.1(1)
C(19)	0.0099(2)	-0.1828(2)	0.3098(1)	2.0(1)
C(20)	-0.0592(2)	-0.1407(2)	0.2863(1)	2.0(1)
C(21)	-0.2192(2)	-0.0557(3)	0.2325(1)	2.5(1)
C(22)	-0.2755(3)	-0.0810(4)	0.2617(2)	4.1(2)
C(23)	-0.1906(2)	0.1564(3)	0.2427(1)	2.5(1)
C(24)	-0.2373(3)	0.1879(4)	0.2748(2)	$\frac{2}{3}7(2)$
C(25)	0.0496(3)	0.3691(3)	0.3228(2)	34(2)
C(26)	-0.0063(4)	0.3951(4)	0.3519(3)	5 1(3)
C(27)	0.2291(3)	0.3372(3)	0.3833(2)	32(2)
C(28)	0.2330(4)	0.3485(4)	0.3033(2) 0.4317(2)	4.6(2)
C(29)	0.2000(4) 0.4073(3)	0.0492(3)	0.437(2)	32(2)
C(30)	0 3948(4)	0.0492(3)	0.4437(2) 0.4874(2)	48(3)
C(31)	0.3802(3)	-0.1654(3)	0.4343(2)	37(2)
C(32)	0.3634(6)	-0.2000(6)	0.4343(2) 0.4764(3)	62(4)
$\Gamma(33)$	0.3034(0) 0.1384(3)	-0.3780(3)	0.3555(2)	28(2)
C(34)	0.1325(4)	-0.4005(4)	0.3333(2) 0.4019(2)	44(2)
C(35)	-0.0410(3)	-0.3475(3)	0.4017(2) 0.2957(1)	25(1)
C(36)	-0.0986(3)	-0.3621(4)	0.2937(1) 0.3248(2)	$\frac{2.3(1)}{3.7(2)}$
C(37)	-0.066(1)	0.0480(9)	0 3906(4)	13 3(8)
C(38)	-0.1074(8)	0.0400())	0.4265(7)	16(1)
C(39)	0.107 - (0)	0.0+1(1) 0.083(1)	0.4481(2)	31(1)
C(41)	0.0202(0)	-0.1138(6)	0.4283(5)	15 0(8)
C(42)	-0.0221(8)	-0.165(1)	0.4205(5)	27(2)
	0.0421(0)	0.105(1)	0.4270(0)	27(2)

(OEP)RhCONH(xylyl), 0.072 Å²⁵). The Rh–Si distance was 2.32(1) Å. All the ethyl groups on the porphyrin periphery are directed toward the triethylsilyl group. The crystal packing indicates that the aromatic part of the molecule is in contact with the aromatic part of the next molecule and the aliphatic part is in contact with the aliphatic part of the next molecule (Figure 2). This intermolecular interaction mode accounts for the fact that all the ethyl groups are pointed in the same direction.

Both the silvl and the stannyl complexes of the rhodium porphyrin are relatively stable. These results indicate that the present method provides a facile way to prepare bimetallic rhodium complexes of porphyrin.

Experimental Section

General Procedures. ¹H and ¹³C NMR spectra were obtained using a JEOL A-500 spectrometer, a JEOL GX-400 spectrometer, or a JEOL JNM FX 90Q FT NMR spectrometer, and chemical shifts are reported relative to internal Me₄Si.

⁽²⁰⁾ For an example of a compound having a Rh-Si bond, see: Bennett, M. A.; Patmore, D. J. Inorg. Chem. **1971**, *10*, 2387.

⁽²¹⁾ Coupling constants ¹J¹⁰³_{Rh-¹¹³Sn} of 102-615 Hz were reported for stannyl-rhodium complexes; see: (a) Ruiz, J.; Spencer, C. M.; Mann, B. E.; Taylor, B. F.; Maitlis, P. M. J. Organomet. Chem. **1987**, 325, 253. (b) Fridalgo, L.; Garralda, M. A.; Hernandez, R.; Ibarlucea, L. Inorg. Chim. Acta **1993**, 207, 121. (c) Calton, L.; Weber, R. Inorg. Chem. **1998**, 32, 4169.

⁽²²⁾ The phenyl group on stannanes causes upfield shifts of the ¹¹⁹Sn chemical shifts. For example, chemical shifts of ¹¹⁹Sn are -164.5 (Ph₃SnH), -91.4 (Buⁿ₃SnH), -85.5 ((Ph₃Sn)₂O), and 82.0 ((Buⁿ₃Sn)₂O), see: Wrackmeyer, B. In Annual Reports on NMR Spectroscopy; Webb, G. A. Ed.; Academic Press: London, 1985; Vol. 16, p 73.
(23) Takenaka, A.; Syal, S. K.; Sasada, Y.; Omura, T.; Ogoshi, H.;

⁽²⁵⁾ Poszmik, G.; Carroll, P. J.; Wayland, B. B. Organometallics 1993, 12, 3410.

Table 6. Intramolecular Distances Involving the
Non-Hydrogen Atoms of 12^a

Rh(1)-Si(1)	2.32(1)	C(7) - C(25)	1.50(6)
Rh(1) - N(1)	2.03(3)	C(8) - C(9)	1.44(5)
Rh(1) - N(2)	2.03(3)	C(8)-C(27)	1.50(6)
Rh(1) - N(3)	2.04(3)	C(9) - C(10)	1.38(5)
Rh(1) - N(4)	2.03(3)	C(10) - C(11)	1.40(6)
Si(1)-C(37)	2.0(1)	C(11) - C(12)	1.46(5)
Si(1)-C(39)	2.0(1)	C(12) - C(13)	1.37(6)
Si(1)-C(41)	1.82(7)	C(12)~C(29)	1.50(6)
N(1)-C(1)	1.37(4)	C(13) - C(14)	1.45(5)
N(1) - C(4)	1.37(4)	C(13)~C(31)	1.49(6)
N(2) - C(6)	1.37(5)	C(14) - C(15)	1.39(5)
N(2) - C(9)	1.38(5)	C(15) - C(16)	1.38(5)
N(3)-C(11)	1.37(5)	C(16) - C(17)	1.45(5)
N(4) - C(16)	1.37(5)	C(17)~C(33)	1.50(5)
N(4) - C(19)	1.38(5)	C(18)~C(19)	1.44(5)
C(1) - C(20)	1.39(5)	C(19) - C(20)	1.39(5)
C(2) - C(3)	1.36(5)	C(21)-C(22)	1.52(7)
C(2) - C(21)	1.50(5)	C(23) - C(24)	1.50(7)
C(3) - C(4)	1.44(5)	C(25) - C(26)	1.52(8)
C(3) - C(23)	1.49(5)	C(27) - C(28)	1.50(7)
C(4) - C(5)	1.38(5)	C(29)-C(30)	1.51(8)
C(5)-C(6)	1.39(5)	C(31) - C(32)	1.5(1)
C(6) - C(7)	1.45(5)	C(33) - C(34)	1.51(8)
C(7) - C(8)	1.36(5)	C(35) - C(36)	1.50(7)
C(37)-C(38)	1.5(2)		
C(41) - C(42)	1.3(2)		

^a Distances are in angstroms. Estimated standard deviations in the least significant figure are given in parentheses.

²⁹Si NMR spectra were recorded on a JEOL A-500 spectrometer operating at 100 MHz with NOE-eliminated complete ¹H decoupling. Chemical shifts are reported relative to internal Me₄Si. UV-vis spectra were recorded on either a Hitachi U-3410 spectrometer or a Hewlett-Packard 8452 diode array spectrophotometer with a thermostated cell compartment. Mass spectra were obtained with a JEOL JMS DX-300 mass spectrometer. High-resolution mass spectra were recorded on a JEOL JMS SX-102A instrument. Thin-layer chromatography (TLC) was performed on either Merck Kieselgel 60 F₂₅₄ or DC-Alufolien aluminium oxide 60 F₂₅₄ neutral (type E). Single-crystal X-ray diffraction was performed on a Rigaku AFC7R diffractometer.

Materials. Octaethylporphyrin (OEP) was prepared according to the published method.²⁶ [Rh^{III}I(OEP)] was prepared by treating OEP with Rh₂(CO)₈, followed by oxidation with I₂. [Rh^{II}OEP]₂ was prepared according to the published method.²⁷

 $[\mathbf{Rh}^{III}(\mathbf{CH}_2\mathbf{CH}_2\mathbf{CO}_2\mathbf{H})\mathbf{OEP}]$ (5). $[\mathbf{Rh}^{III}\mathbf{I}(\mathbf{OEP})]$ (11.4 mg, 14.9 μ mol) was dissolved in dry and degassed ethanol at 50 °C, and NaBH₄ (2.6 mg, 68.7 μ mol) in 0.5 M aqueous NaOH (2 mL) was added under Ar. The solution turned from red to deep orange. After it was stirred at 50 °C for 1 h under Ar, the solution was cooled to room temperature, and β -propiolactone (1; 0.1 mL, 1.59 mmol) was added. The color changed immediately to orange. After the solution was stirred for 30 min, the ethanol was evaporated under reduced pressure. The residue was washed with water and dried. The product was recrystallized from THF-MeOH; yield 6.8 mg (72%). ¹H NMR (Me₂SO- d_6 , 500 MHz): δ 10.05 (s, 4H, meso), 4.08 (q, J = 14Hz, J = 7.8 Hz, 8H, CH₂CH₃), 4.03 (q, J = 14 Hz, J = 7.8 Hz, 8H, CH_2CH_3), 1.85 (t, J = 7.8 Hz, 24H, CH_2CH_3), -4.60 (t, J= 8.7 Hz, 2H, RhCH₂CH₂CO₂H), -6.42 (td, J = 8.7 Hz, J_{H-Rh} = 2.8 Hz, 2H, RhCH₂CH₂CO₂H), IR (KBr): 3400-2500, 2964, 2931, 2869, 1703, 1274, 1021 cm⁻¹. UV-vis (CHCl₃): λ_{max} (log $\epsilon)$ 386.4 (0.77), 392.8 (0.80), 509.9 (0.084), 542.9 (0.27). FAB MS (*m*-nitrobenzyl alcohol matrix): m/z 708 (M⁺, 100). HRMS: calcd for C₃₉H₄₉N₄O₂Rh 708.291, found 708.297.

[**Rh**^{III}(**CH**₂**CH**₂**CH**₂**CO**₂**H**)**OEP**] (7). Yield: 45%. ¹H NMR (Me₂SO- d_6 , 500 MHz): δ 10.01 (s, 4H, meso), 4.06 (q, J = 14 Hz, J = 7.7 Hz, 8H, CH₂CH₃), 4.00 (q, J = 14 Hz, J = 7.7 Hz,

 Table 7.
 Intramolecular Bond Angles Involving the Non-Hydrogen Atoms of 12^a

Si(1) - Rh(1) - N(1)	92.6(9)	Rh(1) - N(4) - C(19)	127(2)
Si(1) - Rh(1) - N(2)	91.4(9)	C(16) - N(4) - C(19)	106(3)
Si(1) - Rh(1) - N(3)	93(1)	N(1)-C(1)-C(2)	110(3)
Si(1) - Rh(1) - N(4)	93.5(9)	N(1)-C(1)-C(20)	125(3)
N(1) - Rh(1) - N(2)	90(1)	C(2) - C(1) - C(20)	125(3)
N(1) - Rh(1) - N(3)	175(1)	C(1)-C(2)-C(3)	107(3)
N(1) - Rh(1) - N(4)	90(1)	C(1)-C(2)-C(21)	125(3)
N(2) - Rh(1) - N(3)	90(1)	C(3) - C(2) - C(21)	128(3)
N(2) - Rh(1) - N(4)	175(1)	C(2)-C(3)-C(4)	107(3)
N(3) - Rh(1) - N(4)	90(1)	C(2)-C(3)-C(23)	128(4)
Rh(1) - Si(1) - C(37)	110(2)	C(4) - C(3) - C(23)	124(3)
Rh(1) - Si(1) - C(39)	113(2)	N(1)-C(4)-C(3)	110(3)
Rh(1) - Si(1) - C(41)	113(3)	N(1) - C(4) - C(5)	125(3)
C(37) - Si(1) - C(39)	100(7)	C(3) - C(4) - C(5)	125(3)
C(37) - Si(1) - C(41)	109(6)	C(4) - C(5) - C(6)	127(4)
C(39) - Si(1) - C(41)	111(7)	N(2)-C(6)-C(5)	125(3)
Rh(1) - N(1) - C(1)	127(2)	N(2) - C(6) - C(7)	110(3)
Rh(1) - N(1) - C(4)	126(2)	C(5) - C(6) - C(7)	125(4)
C(1) - N(1) - C(4)	107(3)	C(6) - C(7) - C(8)	107(3)
Rh(1) - N(2) - C(6)	127(3)	C(6)-C(7)-C(25)	124(4)
Rh(1) - N(2) - C(9)	127(3)	C(8) - C(7) - C(25)	129(4)
C(6) - N(2) - C(9)	106(3)	C(7) - C(8) - C(9)	107(3)
Rh(1) - N(3) - C(11)	127(3)	C(7) - C(8) - C(27)	129(4)
Rh(1) - N(3) - C(14)	127(3)	C(9) - C(8) - C(27)	124(4)
C(11) - N(3) - C(14)	106(3)	Rh(1) - N(4) - C(16)	127(2)
N(2) - C(9) - C(8)	110(3)	C(18) - C(17) - C(33)	129(4)
N(2)-C(9)-C(10)	124(4)	C(17) - C(18) - C(19)	107(3)
C(8) - C(9) - C(10)	125(4)	C(17) - C(18) - C(35)	128(4)
C(9) - C(10) - C(11)	127(4)	C(19) - C(18) - C(35)	125(3)
N(4) - C(19) - C(18)	110(3)	C(18) - C(19) - C(20)	125(3)
N(4) - C(19) - C(20)	125(3)	C(1)-C(20)-C(19)	127(3)
N(3) - C(11) - C(10)	125(4)	C(2)-C(21)-C(22)	114(4)
N(3)-C(11)-C(12)	110(3)	C(3) - C(23) - C(24)	113(4)
C(10) - C(11) - C(12)	125(4)	C(12) - C(29) - C(30)	112(4)
C(11) - C(12) - C(13)	106(3)	C(13)-C(31)-C(32)	113(5)
C(11) - C(12) - C(29)	124(4)	Si(1)-C(37)-C(38)	115(10)
C(13) - C(12) - C(29)	129(4)	C(17) - C(33) - C(34)	113(4)
C(12) - C(13) - C(14)	107(4)	C(18) - C(35) - C(36)	113(4)
C(12) - C(13) - C(31)	129(4)	Si(1) - C(41) - C(42)	129(12)
C(14) - C(13) - C(31)	125(4)	C(16) - C(17) - C(33)	124(4)
N(3) - C(14) - C(13)	111(3)	C(7) - C(25) - C(26)	113(4)
N(3) - C(14) - C(15)	124(3)	C(8) - C(27) - C(28)	113(4)
C(13) - C(14) - C(15)	125(4)	N(4) - C(16) - C(17)	110(3)
C(14) - C(15) - C(16)	127(4)	C(15) - C(16) - C(17)	125(3)
N(4) - C(16) - C(15)	125(4)	C(16) - C(17) - C(18)	107(3)
	···	() = ()	(*/

^a Angles are in degrees. Estimated standard deviations in the least significant figure are given in parentheses.

8H, CH_2CH_3), 1.83 (t, J = 7.7 Hz, 24H, CH_2CH_3), -1.22 (t, J = 8.0 Hz, 2H, Rh $CH_2CH_2CH_2CO_2H$), -4.93 (quintet, J = 7.8 Hz, 2H, Rh $CH_2CH_2CH_2CO_2H$), -6.47 (td, J = 8.0 Hz, $J_{H-Rh} = 1.8$ Hz, 2H, Rh $CH_2CH_2CH_2CO_2H$). ¹³C NMR (125 MHz, THF- d_8): δ 172.16 (s, COOH), 142.21 (s, pyrrole α), 141.23 (s, pyrrole β), 99.09 (s, meso), 31.81 (s, α -C to carboxy), 22.10 (s, β -C to carboxy), 20.42 (s, CH_2CH_3), 18.95 (s, CH_2CH_3), 6.76 (d, $J_{C-Rh} = 27.9$ Hz, γ -C to carboxy). IR (KBr): 3300–2500, 2962, 2929, 2868, 1706, 1274, 1019 cm⁻¹. UV-vis (CHCl₃): λ_{max} (log ϵ) 385.8 (1.067), 391.8 (1.12), 509.6 (0.12), 542.6 (0.39). FAB MS (m-nitrobenzyl alcohol matrix): m/z 722 (M⁺, 100). HRMS: calcd for $C_{40}H_{51}N_4O_2Rh$ 722.307, found 722.306.

[**Rh**^{III}{**CH**(**CH**₃)**CH**₂**CO**₂**H**}**OEP**] (6). Yield: 68%. ¹H NMR (CDCl₃, 500 MHz): δ 10.05 (s, 4H, meso), 3.92–4.18 (m, 16H, CH₂CH₃), 1.89 (t, J = 7.7 Hz, 24H, CH₂CH₃), -3.76 (dd, J = 14.7 Hz, J = 11.9 Hz, 1H, RhCH(CH₃)CH₂CO₂H), -4.55 (dd, J = 14.7 Hz, J = 3.0 Hz, 1H, RhCH(CH₃)CH₂CO₂H), -4.78 to -4.68 (m, 1H, RhCH(CH₃)CH₂CO₂H), -4.94 (d, J = 6.1 Hz, 3H, RhCH(CH₃)CH₂CO₂H). ¹³C NMR (125 MHz, CDCl₃): δ 170.03 (s, COOH), 141.83 (s, pyrrole α), 140.39 (s, pyrrole β), 99.25 (s, meso), 37.48 (s, α-C to carboxy), 19.76 (s, CH₂CH₃), 18.45 (s, CH₂CH₃), 18.18 (s, CH₃), 17.11 (d, $J_{C-Rh} = 31.2$ Hz, β-C to carboxy). IR (KBr): 2963, 2930, 2869, 1699, 1274, 1020 cm⁻¹. UV-vis (benzene): λ_{max} (log ϵ) 386.6 (1.23), 510.4 (0.12), 542.7 (0.37). FAB MS (*m*-nitrobenzyl alcohol matrix): *m*/*z*

 ⁽²⁶⁾ Whitlock, H. W.; Hanauer, R. J. Org. Chem. 1968, 33, 2169.
 (27) Setsune, J.; Yoshida, Z.; Ogoshi, H. J. Chem. Soc., Perkin Trans. I 1982, 983.

Figure 1. ORTEP drawing of Rh^{III}(SiEt₃)OEP showing thermal ellipsoids at the 30% probability level.

Figure 2. Crystal packing of $Rh^{III}(SiEt_3)OEP$ in the direction of the *b* axis of the unit cell.

722 (M⁺, 100). HRMS: calcd for $C_{40}H_{51}N_4O_2Rh$ 722.307, found 722.310.

Reaction of [Rh^{II}OEP]₂ with Triethylsilane (General Procedure). To 53.4 mg of [Rh^{II}OEP]₂ in dry degassed benzene (15 mL) was added triethylsilane (8; 0.66 mL, 4.1 mmol). The brown solution turned orange-red. The mixture was stirred at room temperature under Ar for 12 h. After the solvent was removed under reduced pressure, the residue was purified by column chromatography on silica gel (benzene: hexane = 1:2) to yield Et₃SiRh^{III}OEP; yield 33.8 mg (54% based on [Rh^{II}OEP]₂). The product was further purified by recrystallization from CHCl₃-hexane.

Rh^{III}(**SiEt**₃)**OEP** (12). Yield: 54%. TLC: R_f 0.46 (SiO₂, benzene:hexane = 1:5). ¹H NMR (CDCl₃, 500 MHz): δ 9.93 (s, 4H, meso), 3.99 (q, J = 7.6 Hz, 16H, CH₂CH₃), 1.87 (t, J = 7.6 Hz, 24H, CH₂CH₃), -1.59 (t, J = 8.0 Hz, 9H, SiCH₂CH₃), -3.80 (q, J = 7.9 Hz, 6H, SiCH₂CH₃). ¹³C NMR (125 MHz, C₆D₆): δ 141.63 (s, pyrrole α-C), 141.32 (s, pyrrole β-C), 100.06 (s, porphyrin meso), 20.27 (s, CH₂CH₃), 18.71 (s, CH₂CH₃), 5.52 (s, SiCH₂CH₃), 2.83 (s, SiCH₂CH₃). ²⁹Si NMR (CDCl₃, 100 MHz): δ 51.98 (d, $J_{Si-Rh} = 29.3$ Hz). IR (KBr): 2962, 2928, 2867, 1449, 1377, 1273, 1017, 994, 956, 845, 693 cm⁻¹. UV-vis (benzene): λ_{max} (log ϵ) 393.4 (1.30), 509.6 (0.091), 542.2 (0.353). FAB MS (*m*-nitrobenzyl alcohol matrix): m/z 750 (M⁺, 100). HRMS: calcd for C₄₂H₅₉N₄SiRh 750.356, found 750.366.

Rh^{III}(**SiPh**₃)**OEP** (13). Yield: 65%. TLC: $R_f 0.30$ (SiO₂, benzene:hexane = 1:3). ¹H NMR (CDCl₃, 500 MHz): δ 9.73 (s, 4H, meso), 6.69 (tt, J = 7.3 Hz, J = 1.2 Hz, 3H, 4'-H of Ph), 6.34 (dd, J = 7.3 Hz, J = 7.9 Hz, 6H, 3'-H of Ph), 4.13 (dd, J = 7.9 Hz, J = 1.2 Hz, 6H, 2'-H of Ph), 3.82–3.95 (m, 16H, CH₂CH₃), 1.85 (t, J = 7.9 Hz, 24H, CH₂CH₃). ²⁹Si NMR (CDCl₃, 100 MHz): δ 11.56 (d, $J_{Si-Rh} = 35.7$ Hz). IR (KBr): 3075, 3045, 2961, 2928, 2867, 1448, 1274, 1059, 1021, 962, 698, 567 cm⁻¹. UV-vis (CHCl₃): λ_{max} (log ϵ) 544.2 (0.23), 508.8 (0.06), 393.3 (0.38), 380.5 (0.56). FAB MS (*m*-nitrobenzyl alcohol matrix): m/z 894 (M⁺, 100). HRMS: calcd for C₅₄H₅₉N₄SiRh 894.356, found 894.360.

Rh^{III}(SiPhMe₂)OEP (14). Yield: 44%. TLC: $R_f 0.29$ (SiO₂, benzene:hexane = 1:5). ¹H NMR (C₆D₆, 500 MHz, chemical shift relative to C₆H₆ 7.20 ppm): δ 10.0 (s, 4H, meso), 6.71 (t, J = 7.3 Hz, 1H, 4'-H of Ph), 6.39 (dd, J = 7.3 Hz, J = 7.9 Hz, 2H, 3'-H of Ph), 4.21 (d, J = 8.0 Hz, 2H, 2'-H of Ph), 3.6-3.96 (m, 16H, CH₂CH₃), 1.90 (t, J = 7.9 Hz, 24H, CH₂CH₃), -3.61 (s, 6H, SiCH₃). ²⁹Si NMR (CDCl₃, 100 MHz): δ 28.30 (d, $J_{Si-Rh} = 30.2$ Hz). IR (KBr): 3046, 2961, 2927, 2866, 1458, 1379, 1273, 1233, 1018, 959, 808 cm⁻¹. UV-vis (benzene): λ_{max} (log ϵ) 541.8 (0.42), 508.8 (0.11), 394.2 (1.34). FAB MS (*m*-nitrobenzyl alcohol matrix): m/z 770 (M⁺, 100). HRMS: calcd for C₄₄H₅₅N₄SiRh 770.325, found 770.329.

Rh^{III}(SiOEtMe₂)OEP (15). Yield: 42%. TLC: R_f 0.15 (SiO₂, benzene:hexane = 1:2). ¹H NMR (CDCl₃, 500 MHz): δ 9.90 (s, 4H, meso), 3.90-3.98 (m, 16H, CH₂CH₃), 1.81 (t, J = 7.7 Hz, 24H, CH₂CH₃), -0.14 (q, J = 7.0 Hz, 2H, SiOCH₂CH₃), -0.43 (t, J = 7.0 Hz, 3H, SiOCH₂CH₃), -4.17 (s, 6H, SiCH₃). ²⁹Si NMR (CDCl₃, 100 MHz): δ 37.24 (d, J_{Si-Rh} = 30.5 Hz). IR (KBr): 2961, 2926, 2865, 1453, 1377, 1265, 1234, 1107, 1058, 1018, 957, 845, 811 cm⁻¹. UV-vis (CHCl₃): λ_{max} (log ϵ) 541.4 (0.25), 509.3 (0.07), 391.0 (1.06). FAB MS (*m*-nitrobenzyl alcohol matrix): m/z 738 (M⁺, 100). HRMS: calcd for C₄₀H₅₅N₄OSiRh 738.320, found 738.313.

Rh^{III}(SnBu₃)OEP (18). To a solution of [Rh^{II}OEP]₂ (26.4 mg, 121 μ mol) in degassed benzene (6 mL) was added tributyltin hydride $(0.12 \text{ mL}, 446 \mu \text{mol})$ under Ar. After the mixture was stirred for 21 h at room temperature, the benzene was distilled off and the residue was purified by a short column of silica gel (benzene:hexane = 1:2) to give 18 (18.8 mg, 49%). TLC: $R_f 0.60$ (SiO₂, benzene:hexane = 1:3). ¹H NMR (C₆D₆, 500 MHz, chemical shift relative to C_6H_6 7.20 ppm): δ 10.07 (s, 4H, meso), 3.94 (q, J = 7.7 Hz, 16H, CH_2CH_3), 1.93 (t, J =7.7 Hz, 24H, CH₂CH₃), 0.48-0.52 (br s, 9H, SnCH₂CH₂- CH_2CH_3), 0.46 to -0.50 (m, 6H, $SnCH_2CH_2CH_2CH_3$), -0.76 to -0.60 (m, 6H, SnCH₂CH₂CH₂CH₃), -2.54 to -2.38 (m, 6H, SnCH₂CH₂CH₂CH₃). ¹³C NMR (125 MHz, C₆D₆ chemical shifts relative to C₆D₆ 128 ppm): δ 141.63 (s, pyrrole α -C), 141.56 (s, pyrrole β -C), 99.92 (s, porphyrin meso), 27.14 (s, SnCH₂CH₂-CH₂CH₃), 26.92 (s, SnCH₂CH₂CH₂CH₃), 20.00 (s, CH₂CH₃),

18.66 (s, CH₂CH₃), 13.35 (s, SnCH₂CH₂CH₂CH₂CH₃), 7.47 (s, SnCH₂CH₂CH₂CH₂CH₃). ¹¹⁹Sn NMR (CDCl₃, 186 MHz): δ 118.32 (d, $J_{\text{Sn-Rh}} = 314.2$ Hz). IR (KBr): 2959, 2926, 2866, 1448, 1375, 1272, 1144, 1110, 1058, 1019, 993, 958, 843 cm⁻¹. UV-vis (benzene): λ_{max} (log ϵ) 381.4 (0.86), 298.7 (0.48), 509.1 (0.083), 541.1 (0.28). FAB MS (*m*-nitrobenzyl alcohol matrix): m/z 925 (M⁺, 100). HRMS: calcd for C₄₈H₇₁N₄RhSn 926.376, found 926.378.

Rh^{III}(**SnPh**₃)**OEP** (19). Yield: 44%. TLC R_f 0.57 (SiO₂, benzene:hexane = 1:2). ¹H NMR (C₆D₆, 500 MHz, chemical shift relative to C₆H₆ 7.20 ppm): δ 9.94 (s, 4H, meso), 6.77 (tt, J = 7.3 Hz, 1.2 Hz, 3H, 4'-H of Ph), 6.55 (dd, J = 7.3 Hz, 7.4 Hz, 6H, 3'-H of Ph), 4.93 (dd, J = 7.4 Hz, 1.2 Hz, 6H, 2'-H of Ph), 3.80–3.93 (m, 16H, CH₂CH₃), 1.88 (t, J = 7.6 Hz, 24H, CH₂CH₃). ¹¹⁹Sn NMR (CDCl₃, 186 MHz): δ -121.57 (d, $J_{\text{Sn-Rh}} = 412.9$ Hz). IR (KBr): 3059, 3046, 2964, 2929, 2866, 1447, 1376, 1273, 1145, 1059, 1021, 996, 962, 845, 727, 698 cm⁻¹. UV-vis (benzene): $\lambda_{\text{max}} (\log \epsilon)$ 386.6 (1.09), 510.2 (0.073), 543.4 (0.27). FAB MS (*m*-nitrobenzyl alcohol matrix): *m*/*z* 986 (M⁺, 100). HRMS: calcd for C₅₄H₅₉N₄RhSn 986.282, found 986.290.

X-ray Structure Determination of Rh^{III}(SiEt₃)OEP. Purple crystals of Rh^{III}(SiEt₃)OEP were obtained by recrystallization from CHCl₃-hexane. Details of the crystal data, data collection, and data refinement are listed in Table 4. The structure was solved by direct methods²⁸ and expanded using Fourier techniques.²⁹ Acknowledgment. We thank Dr. T. Kondo of the Division of Energy and Hydrocarbon Chemistry and H. Takagi for help in the X-ray crystallographic study and T. Kobatake for the measurements of mass spectra. We thank Anthony English of the Massachusetts Institute of Technology for proofreading the manuscript. This work was supported by a Grant-in-Aid for Specially Promoted Research (No. 04101003) from the Ministry of Education, Science, and Culture of Japan.

Supplementary Material Available: Tables of all bond distances and angles, anisotropic thermal parameters, torsion or conformation angles, and least-squares planes for **12** (17 pages). Ordering information is given on any current masthead page.

OM940427C

⁽²⁸⁾ Sheldrick, G. M. SHELXS86. In Crystallographic Computing 3; Sheldrick, G. M., Kruger, C., Goddard, R., Eds.; Oxford University Press: Oxford, U.K., 1985; pp 175-189.

^{S. Scheldinks, G. M., Huger, C., Goudard, R., Eds., Oxford University} Press: Oxford, U.K., 1985; pp 175-189.
(29) DIRDIF92: Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; Garcia-Granda, S.; Gould, R. O.; Smits, J. M. M.; Smykalla, C. Technical Report of the Crystallography Laboratory; University of Nijmegen, Nijmegen, The Netherlands, 1992.