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The adsorption properties, amount and specific activ-
ity of lipase D from Rhizopus delemar were investigated
by employing a gold substrate modified with seven kinds
of thiol monolayer. Quartz crystal microbalance meas-
urements revealed that the amount of the enzyme
adsorbed to the hydrophobic monolayers (e.g. ben-
zenethiol) was much higher than that to the hydrophilic
monolayers (e.g. 3-mercaptopropanoic acid). In con-
trast, lipase D adsorbed to the hydrophilic, 2-amino-1-
ethanethiol monolayer showed the highest specific activ-
ity, the value being 300-fold higher than for the same
enzyme dissolved in an aqueous medium.

Key words: self-assembled monolayer; lipase; interfa-
cial activation; quartz crystal micro-
balance

Lipases (glycerol ester hydrolase, EC 3.1.1.3) are
ubiquitous enzymes which have considerable physio-
logical significance and industrial potential.” The in-
teraction of lipases with insoluble substrates does not
conform to Michaelis-Menten kinetics, but instead
involves two distinct steps: adsorption to an oil-water
interface and subsequent lipolysis. The catalytic ac-
tivity of the enzyme increases dramatically at the in-
terface, this phenomenon being known as interfacial
activation. The fact was initially established in 1958
by Sarda and Desnuelle,? and the activation of lipase
caused by immobilization on a solid support has been
reported in several studies.>® Crystallographic stu-
dies have shown that interfacial activation was as-
sociated with a conformational change.”® However,
the mechanism for triggering the opening of the lid
has been unclear, although many works have been
done.'®'V

To elucidate the triggering mechanism, lipase D
from Rhizopus delemar with a molecular mass of
44 kDa was selected and used in this work. Lipase D
is an attractive model of lipase for the type of study

described in this work, since it is a microbial lipase
without cofactors, unlike mammalian lipase, and is
well-characterized and commercially available in
pure form.'>'?

To identify the type of interface that can activate
lipase D, the amount and activity of lipase adsorbed
to various modified surfaces were measured. One of
the major methods for understanding interfacial acti-
vation is to use the lipid monolayer at an air/water
interface,'*!® because this mimics the natural sub-
strates of lipases. However, there are some limita-
tions, i.e., the availability of lipids and the effect of
ionic strength on the lipid lateral structure.

The self-assembly technique is an ideal method for
creating a two-dimensional membrane. Extensive
work has indicated that alkanethiols can be adsorbed
to a metal surface and produce a stable and highly or-
dered structure.'® Alkanethiols attached to gold elec-
trodes have been used as anchors to immobilize bio-
logical molecules in order to construct both enzyme
biosensors and immunosensors.'”'® Thus, self-as-
sembled monolayers would be a powerful tool for
simultaneously analyzing the adsorption behaviour
and activity of lipase.

We applied quartz crystal microbalance (QCM)
measurement to evaluate the amount of adsorbed
lipase. QCM having been successfully used in situ to
monitor the binding of proteins in an aqueous solu-
tion.'*-2)

We report the adsorption properties, activities,
and stability of lipase D on seven kinds of self-assem-
bled monolayer (SAM) in this paper.

Materials and Methods

Chemicals. Lipase D (from Rhizopus delemar) was
purchased from Seikagaku Kogyo. Its optimum tem-
perature, pH, and pl were 40°C, 5.6, and 8.2, respec-
tively.?*? 1-Mercaptododecane (C12), 1-mercap-

* To whom correspondence should be addresed. FAX: +81-298-61-6177; E-mail: yukari-sato@aist.go.jp

Abbreviations : SAM, self-assembled monolayer; QCM, quartz crystal microbalance; THF, tetrahydrofuran; BNT, benzenethiol; C12, 1-
mercaptododecane; C4, 1-mercaptobutane; 4HBT, 4-hydroxybenzenethiol; 2AET, 2-aminoethanethiol; 3MPA, 3-mercaptopropanoic acid;

C40H, 4-hydroxy-1-mercaptobutane; pNPA, p-nitrophenyl acetate
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tobutane (C4), benzenethiol (BET), 4-hydroxyben-
zenethiol (4HBT), 2-amino-l-ethanethiol (2AET),
3-mercaptopropanoic acid (3MPA), and 4-hydroxy-
1-mercaptobutane (C4OH) were purchased from
Sigma. p-Nitrophenyl acetate was also purchased
from Sigma as a substrate of lipase. All these chemi-
cals were used without further purification.

Adsorption of the thiol compounds. Prior to use,
the gold substrates and quartz crystals were cleaned
by immersing in a piranha solution of H,SO./H,0,
(3:1). The modification was performed by immersing
a gold substrate (vacuum-deposited gold on glass,
thickness: 100 nm) in an ethanol solution of a thiol
(10 mm) for 2 hr. After the modification had been
achieved, the substrate was thoroughly washed in
pure ethanol.

Measurement of the adsorption of lipase D to
SAMs. The amount of lipase adsorbed to each thiol
monolayer on gold was detected out by QCM. The
frequency decrease of the QCM indicates the mass in-
crease corresponding to the addition of lipase from
the medium. Experiments were carried out at 20°C.
A 10 MHz, AT-cut quartz crystal with deposited gold
on both sides (1.6 cm” in area, Hokuto Denko) was
used for the QCM measurements. The frequency
change was monitored by an HQ-101B EQCM con-
troller (Hokuto Denko) attached to a personal com-
puter. In the case of protein adsorption in an aque-
ous solution, the calibration showed that a frequency
decrease (— AF) of 1 Hz corresponded to a mass in-

crease (Am) of 4.4ngcm 2,

Enzyme activity assay. The enzyme reaction was
performed in a cuvette (1.0 X 4.0 cm). Lipase was ad-
sorbed by immersing the gold plate (2.4 cm® in area)
into a 10 mm acetate buffer (pH 5.6) with 3.3 ug/ml
of lipase for § hr. The gold plate was removed from
the solution and dried in fresh air.

A substrate solution (0.25 M, 0.05 ml) containing
1.4% of ethanol was added to 50 ml of a 0.01 M
acetate buffer solution (pH 5.6), and the whole was
incubated at 40°C. The lipase-adsorbed SAM-modi-
fied gold substrate was then put into the cuvette, and
the enzyme reaction was monitored with a UV-160
instrument (Shimadz). The amount of p-nitrophenol
was determined by measuring the absorbance of the
solvent layer at 400 nm. Each enzyme assay cycle was
performed for 30 min, before the next cycle proceed-
ed.

Results and Discussion

Effect of the initial lipase content on the adsorp-
tion to the monolayer

Most lipases are highly soluble proteins that show
esterase activity even in a fully aqueous medium; that

is, they remain water-soluble even when partially ex-
posing the very large hydrophobic pocket at their
catalytic center. We first considerd that the
hydrophobic catalytic center of lipase D could be
directsd to the hydrophobic surface and investigated
the surface property-dependent adsorption of lipase
D by the QCM method.

The amounts of lipase D adsorbed to both the
BNT-modified gold surface and unmodified surface
are summarized in Table 1. The size of lipase D was
estimated from the X-ray crystallographic data to be
ca. 5xX5x5nm’.” If lipase D was compactly ad-
sorbed to the monolayer, then the theoretical Ay
value was calculated to be ca. 3.7x10 7 g cm 2. The
adsorption of lipase D to bare gold depended on the
lipase D concentration. At the initial lipase D concen-
tration of 33 ug/mi, the amount adsorbed was 3.5 %
1077 g/cm?, which is similar to the theoretical satura-
tion value for monolayer adsorption. On the other
hand, the adsorption of lipase D to the BNT
monolayer was saturated at an initial lipase D con-
centration of 3.3 ug/ml. These results indicate that
the BNT monolayer was preferred for the adsorption
of lipase and the non-specific adsorption occurred on
the bare gold surface.

Stability of adsorbed lipase D

The stability of lipase D adsorbed to various
monolayers was next determined. Figure 1 shows the
residual activity of lipase D adsorbed to hydrophobic

Table 1. Effect of Initial Lipase Concentration on Adsorbed Li-
pase

Lipase content (10 "gecm ?)

Initial conc. ) o
(mgml" ) BNT Bare gold
3.3 5.1+£0.9 1.4+0.7

33 3.5+0.6 3.5£0.2

Residual Activity (%)

1 2 3 4 5
Number of Cycles
Fig. 1. Stability of Lipase D Adsorbed to Hydrophobic Self-
assembled Monolayers.
® BNT, benzenethiol; O bare gold; A C12, 1-mercaptoun-

deane; A C4, l-mercatobutane; O 4HBT, 4-hydroxy-ben-
zenethiol.
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monolayers for the hydrolysis of pNPA. The lipase
D-adsorbed C12 monolayer retained 90% of the ini-
tial enzyme activity after 5 successive enzyme activity
measurements and showed the highest residual activi-
ty among the monolayers. The activity of the lipase
D-adsorbed C4 and 4HBT monolayers gradually
declined during successive measurements, and the
residual activity was 60% of the initial level after five
measurements. The weak hydrophobic interaction
between lipase D and the C4 and 4HBT monolayers
resulted in the progressive release of lipase D from
the monolayers because the hydrophobicity was
lower than that of the C12 and BNT monolayers.'®

Figure 2 shows the activity of lipase D adsorbed to
the hydrophilic monolayers for the hydrolysis of
pNPA. The activity dropped dramatically during
successive measurements, mainly due to the adsorp-
tion of lipase D by non-specific binding, weak elec-
trostatic interaction and/or hydrogen bonding. It
remains unconfirmed whether the decrease on en-
zyme activity was caused by inactivation or desorp-
tion.

Monolayer specificity for the adsorption of lipase
D

The adsorption properties of lipase D to bare gold
and to the seven kinds of self-assembled monolayer
were evaluated by QCM. The highest frequency
change was observed for the BNT monolayer among
the seven kinds of SAM, and being equivalent to an
adsorbed amount of lipase D of 12.0x 10 7 g to the
BNT monolayer (Fig. 3).

The BNT and Cl12 monolayers were highly
hydrophobic, and lipase D prefers long-chain esters.
The amounts of lipase D adsorbed to the C12 and
BNT monolayers were the highest among all the
seven monolayer systems studied. It is presumed that
the high affinity between these hydrophilic monolay-
ers and lipase D was expressed by interfacial activa-
tion.>®?Y The amounts of lipase D adsorbed to the
other hydrophilic monolayers were relatively small,
and there was no significant difference among them.

It has been reported that the 3MPA monolayer was
anionic in an aqueous solution of pH > 5.6.% Lipase
D was cationic under our experimental conditions,??
and the affinity between the 3MPA monolayer and li-
pase D was low. Although the affinity between the
3MPA monolayer and lipase D was caused by elec-
trostatic interaction, lipase D adsorbed to the 3MPA
monolayer was expected to be desorbed from the
3JMPA monolayer because the carboxyl group was
one of the products of the lipase D-hydrolytic reac-
tion. Since a substrate needs to be released from the
active site of an enzyme for hydrolysis, a low level of
adsorption of lipase to the 3SMPA monolayer was ob-
served.

100
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Residual Activity (%)
& 2
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Number of Cycles

Fig. 2. Stability of Lipase D Adsorbed to Hydrophilic Self-
assembled Monolayers.
O Bare gold; @ C40H, 4-hydroxy-1-butanethiol; A 3MPA,
3-mercaptopropionic acid; A 2AET, 2-amino-1-ethanethiol.

20 2.0

Lipase Content (107 g)
Initial Rate (uM min!)

=T T T T - - - Y o
T 2 g © S
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Fig. 3. Amount of Lipase Adsorbed to a Gold Substrate Modi-
fied with Self-assembled Monolayers and Activity of Adsorbed
Lipase.

Filled bar, initial rate; unfilled bar, lipase content. The lipase-
adsorbed area on the gold substrate was 2.4 cm?.

Table 2. Specific Activity of Lipase Adsorbed to SAMs

Specific activity
(mmol min ' (g of lipase) ')

Solubilized lipase 0.042

BNT 4.6
4HBT 3.9
C40H 7.2
3MPA 7.0

2AET 12

Activity of adsorbed lipase D

We determined the lipase activity at the various in-
terfaces by using pNPA as a substrate. The specific
activity (mm/min/(g of protein) ') of the adsorbed
lipase D is summarized in Table 2. Any type of inter-
face activated lipase D, unlike the case of lipase D in
a solution. The activity of lipase D adsorbed to each
kind of interface was at least 100-fold greater than
that of soluble lipase D. Lipase D adsorbed to the
2AET monolayer showed the highest specific activity
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Fig. 4. Proposed Mechanism for Lipase Activation at the Inter-
face.
Lipase is adsorbed to the BNT monolayer strongly and dense-
ly because the BNT monolayer is hydrophobic like the substrate.
It is difficult for the substrate to access the active site of lipase.
On the other hand, lipase was adsorbed to the 2AET monolayer
weakly and sparsely. Thus, the substrate could easily enter the
active site of lipase on the 2AET monolayer. Filled circle, sub-
strate; unfilled circle, product.

among the various SAMs.

Cajal et al. have reported that a lipase from the
fungus, Thermomyces lanuginosa (TIL), was activat-
ed in the presence of large anionic vesicles of 100 nm
diameter during the hydrolysis of p-nitrophenyl
butyrate.?® They also reported that this interfacial ac-
tivation was not supported by zwitterionic vesicles.
Their proposed model for adsorption and activation
is consistent with the X-ray structure of TL in a com-
plex with inhibitor.?” Certain cationic residues locat-
ed in the hinge regions on both sides of the lid con-
tributed to opening of the lid and to stabilization
with the lid opened.

In the case of lipase D, two anionic residues were
located in the lid region.? It was assumed that the
electrostatic interaction between the 2AET monolay-
er and lid residues contributed to stabilization in the
open conformation.

Orientation of lipase D at the interface

Lipase D at an interface is presumed to be oriented
so that the exposed large hydrophobic concavity
around the active site that must interact with the sub-
strate is exposed to the interface with its adsorption
(Fig. 4 left).*” Our results with various hydrophilic
and hydrophobic SAMs show that any kind of inter-
face activated lipase D (Table 2). Moreover, lipase D
adsorbed to the 2AET monolayer was more active
and showed higher specific activity than when ad-

sorbed to the other hydrophilic monolayers. This
result suggests that the orientation of adsorbed lipase
depended on the properties of the interface (Fig. 4).
The soluble substrate, pNPA, might have created
difficulty for accessing the active site, because of the
high density of lipase D at a hydrophobic interface
and because of the interface-facing orientation of the
active site (as shown in Fig. 4 left). On the contrary,
non-specific adsorption to the hydrophilic 2AET
monolayer rendered the active site exposed to the
bulk solution (as shown in Fig. 4 right), and the
specific activity was higher than that with the
hydrophobic monolayers.

The surface hydrophobicity of a solid support is an
important criterion for lipase adsorption. However,
the introduction of a hydrophilic group to the surface
would be required to activate the adsorbed lipase. As
a consequence, a combination of both hydrophobic
and hydrophilic properties at the interface, i.e. mixed
monolayers, might be an appropriate solution for
rigid adsorption, long-term stability, high activation,
and the most suitable orientation of lipase.
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