Research Paper

Journal of Chemical Research

sagepub.com/journals-permissions

NH₄I-mediated sp³ C-H cross-dehydrogenative coupling of benzylamines with 2-methylquinoline for the synthesis of *E*-2-styrylquinolines

DOI: 10.1177/17475198211019253 journals.sagepub.com/home/chl

© The Author(s) 2021 Article reuse guidelines:

Xue Li¹^(b), Bin Huang¹, JiangWei Wang², YuanYuan Zhang¹ and WeiBo Liao¹

Abstract

Without any metal catalyst, a simple and efficient method for the synthesis of E-2-styrylquinolines through sp³ C-H crossdehydrogenative coupling of benzylamines with 2-methylquinolines mediated by NH_4I under air is successfully developed. The oxidative olefination proceeded through deamination and sp³ C–H bond activation. A plausible mechanism is proposed for the construction of E-2-styrylquinolines.

Keywords

2-methylquinolines, benzylamines, E-2-styrylquinolines, NH₄I, sp³ C-H cross-dehydrogenative coupling

Date received: 4 March 2021; accepted: 4 May 2021

Introduction

On account of their unique structures and reactivities, quinoline and its derivatives are widely utilized to prepare various biologically important compounds.^{1,2} Among quinoline derivatives, E-2-styrylquinolines are typical bioactive compounds acting as potent HIV-1 integrase inhibitors,3-5 leukotriene receptor antagonists,67 and antiallergic drugs.8 The wide applications of E-2styrylquinolines have attracted considerable attention in synthetic chemistry. In the past 10 years, widely used methods for the synthesis of E-2-styrylquinolines have mainly involved the reactions of 2-methylquinolines with benzyl alcohols,⁹⁻¹² benzyl amines,^{9,13-15} aldehydes,¹⁶⁻¹⁹ N-benzylidene-4-methylbenzenesulfonamides²⁰ and (Scheme 1). In 2011, Qian et al.²⁰ disclosed that Fe(OAc)₂ promoted the reactions of 2-methylquinolines and N-benzylidene-4-methylbenzenesulfonamides by removing a molecule of p-toluenesulfonamide to give E-2styrylquinolines. In 2019, Liang et al.¹⁶ reported that various 2-alkenylquinolines could be produced from

2-methylquinolines and aldehydes under the synergistic organocatalysis of 1,3-dimethylbarbituric acid/HOAc for 24 h. In 2020, Susanta et al.⁹ reported that *E*-2-styrylquinolines could be prepared from 2-methylquinolines by reactions with primary alcohols or primary amines using the NaCl/TBHP oxidative system. In the same year, Zhang et al.¹⁰ showed that reactions of 2-methylquinolines and primary alcohols catalyzed by MnO_2 in the presence of KOH eliminated molecule of H_2O and were transformed into *E*-2-styrylquinolines. Nevertheless, these methods suffer from environmental and economic concerns as they

Corresponding author:

Xue Li, Drug Research Center, Traditional Chinese Medicine Institute of Jiangxi, Nanchang 330046, P.R. China. Email: m18702635626@163.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

¹Drug Research Center, Traditional Chinese Medicine Institute of Jiangxi, Nanchang, P.R. China

²Jiangxi Provincial Hospital of Traditional Chinese medicine, Nanchang, P.R. China

Scheme I. Methods for the preparation of E-2-styrylquinolines.

utilize strong oxidants and transition-metal catalysts, which impede the applicability of these methods. To avoid these drawbacks, we successfully developed a method that involves deamination and sp³ C-H cross-dehydrogenative coupling of 2-methylquinolines and benzylamines to give various *E*-2-styrylquinolines mediated by NH₄I in moderate to good yields (30%–93%) with NMP (*N*-methyl-2pyrrolidone) as the solvent, without any other metal catalyst at 160 °C for 10 h (Scheme 1).

Results and discussion

The 2-Methylquinoline (1a) and benzylamine (2a) were selected as model substrates to optimize the reaction conditions for the synthesis of E-2-styrylquinoline (3a). The effects of different catalysts, solvents, and temperatures were investigated. The results are summarized in Table 1. First, different additives such as NBS (*N*-bromosuccinimide), NIS (N-iodosuccinimide), TBAI (tetra-n-butylammonium iodide), NH₄I, and KI were investigated and NH₄I was found to be the best, affording a 52% yield of 3a (Table 1, entries 1-5). No product was formed in the absence of a catalyst, even on increasing the reaction temperature to 160 °C (Table 1, entry 6). Next, the solvent was optimized and NMP was found to be the best (Table 1, entries 4 and 7-9). With NMP as the solvent, the reaction temperature and time were further optimized. When the temperature was increased from 120-160 °C, the yield of 3a increased from 52% to 85% (Table 1, entries 4, 10, and 11), which indicated that the reaction proceeded best at 160 °C. To further improve the yield of 3a, increased reaction times of up to 24h at 160 °C were tested; however, the yield was not

	+	NH ₂	catalyst,	
1a	2a			3a
Entry	Additive	Solvent	Temp (°C)	Yield of 3a (%) ^b
I	NBS	NMP	120	Trace
2	NIS	NMP	120	Trace
3	TBAI	NMP	120	10
4	NH₄I	NMP	120	52
5	KI	NMP	120	Trace
6	None	NMP	160	0
7	NH₄I	CH,CN	80	Trace
8	NH₄I	Toluene	110	Trace
9	NH₄I	DMSO	160	Trace
10	NH₄I	NMP	140	64
11	NH₄I	NMP	160	85
12 ^c	NH₄I	NMP	160	85
13 ^d	NH₄I	NMP	160	86
14 ^e	NH₄Ì	NMP	160	85
l 5 ^f	NH₄Ì	NMP	160	18
16 ^g	NH₄I	NMP	160	86

 Table I. Optimization of the reaction conditions for the synthesis of 3a.^a

NBS: N-bromosuccinimide; NIS: N-iodosuccinimide; TBAI: tetra-nbutylammonium iodide; DMSO: dimethyl sulfoxide.

^aReaction conditions: 1a (1.0 mmol), 2a (3.0 mmol), catalyst (1.2 equiv), solvent (4 mL), in air, 10 h.

^blsolated yield.

Reaction time: 14h.

^dReaction time: 18h.

^eReaction time: 24 h.

^fUnder N₂. ^gUnder O₂.

$R \xrightarrow{II} NH_{2} + NH_{2} \xrightarrow{NH_{4}I} R \xrightarrow{R} NH_{4}I \xrightarrow{R} $				
Entry	R	Product ^b	Yield (%) ^c	
I	(I a) H	3a	85	
2	(Ib) 3-CH ₃	3b	73	
3	(Ic) 3-Br	3с	80	
4	(Id) 4-CH ₃	3d	61	
5	(Ie) 4-Cl	3е	68	
6	(If) 6-CH ₃	3f	82	
7	(I g) 6-Cl	3g	93	
8	(Ih) 6-Br	3h	89	
9	(Ii) 7-CH ₃	3i	83	
10	(Ij) 7-Cl	Зј	90	
11	(Ik) 7-Br	3k	87	
12	(II) 8-CH ₃	31	54	
13	(Im) 8-Cl	3m	59	
14		3n N N	60	
15	(1 o)	30 N	51	

Table 2. Substrate scope of various quinolines having sp³ carbons in the oxidative cross-dehydrogenative coupling reaction.^a

^aReaction condition: I (1.0 mmol), **2a** (3.0 mmol), NH₄I (1.2 equiv), NMP (4 mL), air, 160 °C, 10 h. ^bStructures were confirmed by ¹H and ¹³C nuclear magnetic resonance (NMR) spectroscopy. ^cIsolated yield based on I.

improved (Table 1, entries 11–14). The optimum reaction time was therefore about 10 h (Table 1, entry 11). When the reaction was carried out under N₂, the yield of **3a** decreased dramatically (Table 1, entry 15), which indicated that the mixture required the presence of O₂ or air. Subsequently, the reaction was carried out under an O₂ atmosphere and the yield of target product **3a** was found to be almost equal to the yield in air (Table 1, entries 11 and 16). So the optimal reaction conditions were established as follows: using NH₄I as the additive, NMP as the solvent, 160 °C, 10 h.

With optimized conditions in hand, we set out to explore the substrate scope of various quinolines having sp3 carbons for oxidative cross-dehydrogenative coupling reactions. The target products 3 were obtained in moderate to good yields ranging from 51% to 93% by reacting quinolines 1 with benzylamine (2a) in NMP under air at 160 °C for 10h. The results are shown in Table 2. The nature of the substituents on substrates 1 affected the reaction yields to some degree. Both halogen-substituted and methyl-substituted 2-methylquinoline smoothly afforded the corresponding products in 54%–93% yields (Table 2, entries 2-12). Among them, when substituents were attached to C-3, C-4, C-6, C-7, or C-8, the yields of the halogen-substituted products were slightly higher than those of the methyl-substituted products. Notably, dimethyl-substituted quinolines only offered the products of olefination at the 2-methyl position, the methyls attached

at other positions were unreactive (Table 2, entries 2, 4, 6, 9, and 12). Besides, 2-methylquinoxaline and 1-methylisoquinoline also exhibited excellent reactivity with benzylamine (**2a**) under the standard conditions and gave the olefination products **3n** in 60% and **3o** in 51% yields (Table 2, entries 14 and 15).

Subsequently, we set out to examine the substrate scope of various methanamines 2 in reactions with 2-methylquinoline (1a). The target products 3 were obtained in good vields ranging from 30% to 90% under the optimized conditions. The results are shown in Table 3. The nature of different R groups of benzylamines 2 affected the reaction yields slightly. Halogen-substituted benzylamines and methyl-substituted benzylamines reacted with 1a to afford the corresponding olefination products in 72%-90% yields (Table 2, entries 1–8). It is worth noting that naphthalen- α methanamine (2i) provided the desired product 3x in excellent yield 88% (Table 2, entry 9). Besides, a heterocyclic methanamine such as 2-thiophene-methanamine (2j) and an aliphatic amine such as cyclohexyl methanamine (2k) also underwent deamination and were transformed effectively into the corresponding products 3y and 3z in yields of 73% and 30%, respectively (Table 2, entries 10 and 11). According to the ¹H nuclear magnetic resonance (NMR) spectra of olefination products 3 and earlier studies,^{14–16} we were able to conform the (E)-configurations of the olefination products 3.

Table 3. Substrate scope of various primary amines.^a

To further explore the mechanism of oxidative olefination for the construction of *E*-2-styrylquinolines, several control experiments were carried out. First, when adding the radical scavenger TEMPO (1.0 equiv) to the standard reaction, **3a** could be afforded in 84% yield (Scheme 2(a)), which suggested that the reaction may not proceed through a radical intermediate. Second, when **2a** alone was subjected to the standard reaction conditions, 30% yield of phenylmethanimine, 10% yield of *N*-benzylbenzamide, and a trace amount of benzaldehyde were observed (Scheme 2(b)). Finally, when **1a** reacted with phenylmethanimine under the standard conditions, an 86% yield of **3a** was obtained (Scheme 2(c)), suggesting that phenylmethanimine might be an intermediate in this reaction.

Based on these observations and related references,^{13,15} a plausible mechanism is proposed in Scheme 3. Initially, NH_4I is oxidized to a highly active "I⁺" species in air. Second, the benzylamine is transformed into a phenylmethanimine by elimination under the influence of "I⁺." Finally, phenylmethanimine is attacked by the 2-methylquinoline and is transformed into the corresponding ole-fination product *via* elimination of a molecule of NH_3 .

Conclusion

In summary, we have developed an efficient approach for the synthesis of a variety of *E*-2-styrylquinolines through sp^3 C-H cross-dehydrogenative coupling of benzylamines with 2-methylquinolines promoted by NH₄I under air without any metal catalyst. The approach provides relatively mild reaction conditions, moderate to good yields, and encompasses a broad substrate scope. A plausible mechanism has been proposed for the oxidative olefination through deamination.

Experimental

Infrared spectra were determined on a Nicolet Avatar-370 spectrometer in KBr (ν in cm⁻¹). Melting points were measured on a Büchi B-540 capillary melting point apparatus and are uncorrected. Mass spectra (ESI-MS) were recorded on a Thermo Finnigan LCQ-Advantage spectrometer. High-resolution mass spectra (ESI-HRMS) were obtained using an Agilent 6210 TOF instrument. ¹H NMR and ¹³C NMR spectra were recorded on a Varian Mercury Plus-400 spectrometer (400 and 100 MHz), δ in parts per million, *J* in Hertz, using TMS as the internal standard. Signal multiplicities are assigned as singlet (s), doublet (d), multiplet (m). All analytical reagents were commercially available and were used directly without further purification.

Synthesis of E-2-styrylquinolines (**3a** selected as an example); general procedure

A mixture of 2-methylquinoline (1a) (0.14 g, 1 mmol), benzylamine (0.32 g, 3.0 mmol), and NH_4I (0.17 g, 1.2 mmol) in NMP (4 mL) was stirred at 160 °C for 10h until the total

^aReaction condition: **Ia** (1.0 mmol), **2** (3.0 mmol), NH₄I (1.2 equiv), NMP (4 mL), air, 160 °C, 10 h. ^bStructures were confirmed by ¹H and ¹³C nuclear magnetic resonance (NMR) spectroscopy. ^cIsolated yield based on **Ia**.

Scheme 2. Control experiments.

Scheme 3. A plausible mechanism.

consumption of **1a**. After cooling, the reaction mixture was washed with brine (20 mL) and extracted with CH_2Cl_2 (2 × 20 mL). The combined organic extract was dried over Na_2SO_4 and concentrated under vacuum. The residue was purified by column chromatography (petroleum ether/ EtOAc=6:1) to afford the target product **3a** (pale yellow solid, 85%, 0.20 g).

2-[(1E)-2-phenylethenyl]quinoline (**3a**). Pale yellow solid; 85%, 0.20 g; m.p. 91–92 °C (Lit.²¹ 91–93 °C).²¹ 1H NMR (400 MHz, CDCl₃): δ =8.14–8.06 (m, 2H), 7.76 (d, J=8.2 Hz, 1H), 7.74–7.64 (m, 5H), 7.55–7.46 (m, 1H), 7.43–7.38 (m, 3H), 7.34–7.30 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ =156.4, 148.2, 136.6, 136.3, 134.5, 129.7, 129.3, 129.0, 128.9, 128.6, 127.6, 127.5, 127.2, 126.3, 118.9. MS (ESI): m/z (%)=232.1 ([M]⁺, 100). HRMS (ESI): m/z [M]⁺ calcd for C₁₇H₁₄N: 232.1126, found: 232.1133.

3-*Methyl*-2-*[(1E)*-2-*phenylethenyl]quinoline* **(3b)**. Pale yellow solid; 73%, 0.18 g; m.p. 98–100 °C (Lit.21 98–100 °C).²¹ 1H NMR (400 MHz, CDCl₃): δ =8.09 (d, *J*=8.4 Hz, 1H), 8.02 (d, *J*=15.6 Hz, 1H), 7.88 (s, 1H), 7.72–7.63 (m, 4H), 7.51 (d, *J*=15.6 Hz, 1H), 7.47–7.39 (m, 3H), 7.35–7.32 (m, 1H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ =154.9, 146.9, 137.1, 136.2, 135.6, 129.4, 129.1, 128.7, 128.6, 128.5, 127.8, 127.5, 126.7, 125.8, 124.3, 19.6. MS (ESI): m/z (%)=246.1 ([M]⁺, 100). HRMS (ESI): m/z [M]⁺ calcd for C₁₈H₁₆N: 246.1283, found: 246.1290.

3-Bromo-2-*[*(*IE*)-2-phenylethenyl]quinoline (**3c**). Pale yellow solid; 80%, 0.25 g; m.p. 103–105 °C (Lit.21 103–105 °C).²¹ 1H NMR (400 MHz, CDCl₃): δ =8.37 (s, 1H), 8.08–8.03 (m, 2H), 7.80 (d, *J*=15.6 Hz, 1H), 7.73–7.67 (m, 4H), 7.50 (t, *J*=7.3 Hz, 1H), 7.45–7.40 (m, 2H), 7.37–7.32 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ =152.9, 147.0, 139.1, 136.9, 136.6, 130.1, 129.2, 128.9, 128.6, 128.4, 127.7, 126.8, 126.5, 124.8, 118.3. MS (ESI): m/z (%)=310.0 ([M]⁺, 51), 312.0([M]⁺, 49). HRMS (ESI): m/z [M]⁺ calcd for C₁₇H₁₃⁷⁹BrN: 310.0231, found: 310.0239; C₁₇H₁₃⁸¹BrN: 312.0211, found: 312.0218.

4-Methyl-2-[(*IE*)-2-phenylethenyl]quinoline¹⁵ (**3d**). Pale yellow solid; 61%, 0.15 g; m.p. 122–124 °C (Lit.¹⁵ 122–123 °C). 1H NMR (400 MHz, CDCl₃): δ =8.04 (d, *J*=8.0 Hz, 1H), 7.75 (d, *J*=8.0 Hz, 1H), 7.56–7.47 (m, 4H), 7.37–7.32 (m, 2H), 7.28–7.24 (m, 3H), 7.22–7.17 (m, 1H), 2.61(s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ =156.0, 148.2, 144.3, 136.8, 134.2, 129.8, 129.5, 129.2, 128.8, 128.5, 127.5, 127.3, 125.9, 123.7, 119.8, 19.2. MS (ESI): m/z (%)=246.1 ([M]⁺, 100). HRMS (ESI): m/z [M]⁺ calcd for C₁₈H₁₆N: 246.1283, found: 246.1291.

4-Chloro-2-*[*(*IE*)-2-phenylethenyl]quinoline (**3e**). Pale yellow solid; 68%, 0.18 g; m.p. 109–111 °C (Lit.²¹ 110–111 °C).²¹ 1H NMR (400 MHz, CDCl₃): δ =8.19–8.16 (m, 1H), 8.09 (d, *J*=8.4 Hz, 1H), 7.77–7.72 (m, 2H), 7.69–7.63 (m, 3H), 7.60–7.56 (m, 1H), 7.43–7.37 (m, 2H), 7.36–7.31 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ =156.1, 149.2, 142.7, 136.2, 135.3, 130.5, 129.5, 128.9, 128.7, 127.9, 127.3,

127.0, 125.3, 124.0, 119.0. MS (ESI): m/z (%)=266.1 ([M]⁺, 75), 268.1 ([M]⁺, 25). HRMS (ESI): m/z [M]⁺ calcd for $C_{17}H_{13}^{35}$ ClN: 266.0736, found: 266.0743; $C_{17}H_{13}^{37}$ ClN: 268.0707, found: 268.0716.

6-Methyl-2-[(1E)-2-phenylethenyl]quinoline (**3f**). Pale yellow solid; 82%, 0.20 g; m.p. 141–143 °C (Lit.²¹ 142–144°C).²¹ 1H NMR (400 MHz, CDCl₃): δ =8.11 (d, *J*=8.4 Hz, 1H), 7.97 (d, *J*=8.8 Hz, 1H), 7.67–7.62 (m, 4H), 7.55–7.53 (m, 2H), 7.43–7.38 (m, 3H), 7.34–7.31 (m, 1H), 2.49 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ =155.3, 146.2, 136.9, 136.2, 135.7, 133.9, 132.0, 129.2, 128.8, 128.6, 128.5, 127.3, 127.2, 126.4, 118.9, 21.7. MS (ESI): m/z (%)=246.1 ([M]⁺, 100). HRMS (ESI): m/z [M]⁺ calcd for C₁₈H₁₆N: 246.1283, found: 246.1290.

6-Chloro-2-*[*(*IE*)-2-phenylethenyl]*quinoline* (**3g**). White solid; 93%, 0.25 g; m.p. 147–149 °C (Lit.²¹ 148–149°C).²¹ 1H NMR (400 MHz, CDCl₃): δ =8.09 (d, *J*=8.8 Hz, 1H), 8.03 (d, *J*=9.0 Hz, 1H), 7.80–7.78 (m, 1H), 7.72–7.61 (m, 5H), 7.43–7.31 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ =156.4, 146.3, 136.6, 135.5, 134.8, 131.7, 130.7, 130.5, 128.9, 128.6, 128.5, 127.8, 127.3, 126.2, 120.0. MS (ESI): m/z (%)=266.1 ([M]⁺, 75), 268.1 ([M]⁺, 25). HRMS (ESI): m/z [M]⁺ calcd for C₁₇H₁₃³⁵CIN: 266.0736, found: 266.0744; C₁₇H₁₃³⁷CIN: 268.0707, found: 268.0715.

6-Bromo-2-[(*IE*)-2-phenylethenyl]quinoline (**3h**). Pale yellow solid; 89%, 0.28 g; m.p. 164–166 °C (Lit.²¹ 164–166 °C).²¹ 1H NMR (400 MHz, CDCl₃): δ =8.11 (d, *J*=8.6Hz, 1H), 8.05–7.98 (m, 2H), 7.71–7.68 (m, 1H), 7.69–7.61 (m, 4H), 7.42–7.31 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ =156.6, 147.0, 136.6, 135.5, 135.0, 133.0, 130.8, 129.5, 128.9, 128.8, 128.5, 128.4, 127.3, 120.5, 119.5. MS (ESI): m/z (%)=310.0 ([M]⁺, 51), 312.0 ([M]⁺, 49). HRMS (ESI): m/z [M]⁺ calcd for C₁₇H₁₃⁷⁹BrN: 310.0231, found: 310.0238; C₁₇H₁₃⁸¹BrN: 312.0211, found: 312.0219.

7-Methyl-2-[(1E)-2-phenylethenyl]quinoline (**3i**). Pale yellow solid; 83%, 0.20 g; m.p. 106–108 °C (Lit.²¹ 106–108 °C).²¹ 1H NMR (400 MHz, CDCl₃): δ =8.11 (d, *J*=8.6 Hz, 1H), 7.89–7.86 (m, 1H), 7.66–7.59 (m, 5H), 7.41–7.35 (m, 3H), 7.32–7.29 (m, 2H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ =156.2, 148.6, 140.0, 136.2, 136.0, 134.1, 129.1, 128.8, 128.5, 128.4, 128.2, 127.3, 127.1, 125.5, 118.0, 21.9. MS (ESI): m/z (%)=246.1 ([M]⁺, 100). HRMS (ESI): m/z [M]⁺ calcd for C₁₈H₁₆N: 246.1283, found: 246.1291.

7-*C*hloro-2-*[*(*1E*)-2-*p*henylethenyl]*quinoline* (**3***j*). Pale yellow solid; 90%, 0.24 g; m.p. 118–120 °C (Lit.²¹ 118–119°C).²¹ 1H NMR (400 MHz, CDCl₃): δ =7.98–7.97 (m, 2H), 7.82 (d, *J*=8.2 Hz, 1H), 7.80–7.74 (m, 5H), 7.50–7.47 (m, 1H), 7.40–7.37 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ =156.7, 148.5, 136.3, 136.0, 135.6, 135.0, 128.9, 128.7, 128.6, 128.4, 128.1, 127.4, 127.0, 125.6, 119.3. MS (ESI): m/z (%)=266.1 ([M]⁺, 75), 268.1 ([M]⁺, 25). HRMS (ESI): m/z [M]⁺ calcd for C₁₇H₁₃³⁵CIN: 266.0736, found: 266.0742; C₁₇H₁₃³⁷CIN: 268.0707, found: 268.0717.

7-Bromo-2-[(1E)-2-phenylethenyl]quinoline (**3k**). Pale yellow solid; 87%, 0.27 g; m.p. 127–129 °C (Lit.¹⁴ 127–129 °C).¹⁴ 1H NMR (400 MHz, CDCl₃): δ =8.22 (d, *J*=1.6 Hz, 1H), 8.08 (d, *J*=8.8 Hz, 1H), 7.79–7.74 (m, 5H), 7.65–7.62 (m, 1H), 7.41–7.32 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ =156.8, 148.7, 136.4, 136.2, 135.2, 131.7, 129.6, 128.9, 128.8, 128.7, 128.4, 127.5, 125.8, 123.8, 119.6. MS (ESI): m/z (%)=310.0 ([M]⁺, 51), 312.0 ([M]⁺, 49). HRMS (ESI): m/z [M]⁺ calcd for C₁₇H₁₃⁷⁹BrN: 310.0231, found: 310.0238; C₁₇H₁₃⁸¹BrN: 312.0211, found: 312.0219.

8-Methyl-2-[(*IE*)-2-phenylethenyl]quinoline (**3**I). Pale yellow solid; 54%, 0.13 g; m.p. 72–73 °C (Lit.²¹ 72°C).²¹ 1H NMR (400 MHz, CDCl₃): δ =8.05 (d, *J*=8.6Hz, 1H), 7.76 (d, *J*=16.2Hz, 1H), 7.68–7.62 (m, 4H), 7.56 (d, *J*=6.7Hz, 1H), 7.43–7.31 (m, 5H), 2.76 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ =154.7, 147.2, 137.1, 136.7, 136.3, 133.7, 129.7, 129.4, 128.7, 128.4, 127.2, 127.1, 125.8, 125.3, 119.2, 18.4. MS (ESI): m/z (%)=246.1 ([M]⁺, 100). HRMS (ESI): m/z [M]⁺ calcd for C₁₈H₁₆N: 246.1283, found: 246.1289.

8-*Chloro-2-[(1E)-2-phenylethenyl]quinoline* (**3m**). Pale yellow solid; 59%, 0.16 g; m.p. 88–90 °C (Lit.¹⁶ 88–90 °C).¹⁶ 1H NMR (400 MHz, CDCl₃): δ =8.11 (d, *J*=8.3 Hz, 1H), 7.80–7.75 (m, 2H), 7.64–7.68 (m, 4H), 7.47–7.31 (m, 5H). ¹³C NMR (100 MHz, CDCl₃): δ =156.8, 144.3, 136.6, 136.4, 135.2, 133.1, 129.7, 128.8, 128.7, 128.4, 127.3, 127.1, 126.4, 125.8, 119.6. MS (ESI): m/z (%)=266.1 ([M]⁺, 75), 268.1 ([M]⁺, 25). HRMS (ESI): m/z [M]⁺ calcd for C₁₇H₁₃³⁵CIN: 266.0736, found: 266.0745; C₁₇H₁₃³⁷CIN: 268.0707, found: 268.0715.

2-[(1E)-2-phenylethenyl]quinoxaline (**3n**). Pale yellow solid; 60%, 0.14 g; m.p. 101–103 °C (Lit.²¹ 101–103 °C).²¹ 1H NMR (400 MHz, CDCl₃): δ =9.01 (s, 1H), 8.08 (d, J=7.9 Hz, 2H), 7.88 (d, J=16.3 Hz, 1H), 7.75–7.62 (m, 4H), 7.44–7.33 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ =150.4, 144.7, 142.4, 141.6, 136.6, 135.9, 130.0, 129.4, 129.3, 129.2, 129.1, 128.9, 127.4, 125.1. MS (ESI): m/z (%)=233.1 ([M]⁺, 100). HRMS (ESI): m/z [M]⁺ calcd for C₁₈H₁₆N: 233.1079, found: 233.1086.

I-[(*IE*)-2-phenylethenyl]isoquinoline (**3o**). Pale yellow solid; 51%, 0.12 g; m.p. 97–99 °C (Lit.²¹ 97–98 °C).²¹ 1H NMR (400 MHz, CDCl₃): δ =8.58 (d, *J*=5.6Hz, 1H), 8.36 (d, *J*=8.5Hz, 1H), 8.01 (d, *J*=1.2Hz, 2H), 7.83 (d, *J*=7.8Hz, 1H), 7.72–7.66 (m, 3H), 7.65–7.62 (m, 1H), 7.57 (d, *J*=5.5Hz, 1H), 7.44–7.41 (m, 2H), 7.35–7.32 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ =154.6, 142.7, 136.9, 136.7, 135.8, 129.9, 128.7, 128.6, 127.4, 127.3, 127.1, 126.7, 124.5, 122.8, 119.7. MS (ESI): m/z (%)=232.1 ([M]⁺, 100). HRMS (ESI): m/z [M]⁺ calcd for C₁₇H₁₄N: 232.1126, found: 232.1134.

2-[(1E)-2-(2-Methyl)-phenylethenyl]quinoline (**3p**). Pale yellow solid; 89%, 0.22 g; m.p. 69–71 °C (Lit.²² 69–71 °C).²¹ 1H NMR (400 MHz, CDCl₃): δ =8.30 (d, J=8.4 Hz, 1H), 8.06–8.01 (m, 2H), 7.98–7.92 (m, 2H), 7.83–7.77 (m, 2H), 7.60–7.57 (m, 1H), 7.37 (d, J=16.2 Hz, 1H), 7.27–7.21 (m, 3H), 2.48 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ =156.4,

148.2, 136.9, 136.8, 135.2, 131.9, 131.0, 130.4, 130.3, 129.1, 129.0, 128.2, 127.6, 126.9, 126.7, 126.2, 120.5, 20.0. MS (ESI): m/z (%)=246.1 ([M]⁺, 100). HRMS (ESI): m/z [M]⁺ calcd for $C_{18}H_{16}N$: 246.1283, found: 246.1291.

2-[(1E)-2-(2-Chloro)-phenylethenyl]quinoline (**3q**). Pale yellow solid; 72%, 0.19 g; m.p. 78–80 °C (Lit.22 78–80 °C).²¹ 1H NMR (400 MHz, CDCl₃): δ =8.35 (d, *J*=8.4 Hz, 1H), 8.11 (d, *J*=16.2 Hz, 1H), 8.06–7.98 (m, 2H), 7.95 (d, *J*=8.0 Hz, 1H), 7.83–7.76 (m, 2H), 7.60–7.53 (m, 3H), 7.44–7.37 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ =155.6, 148.2, 137.3, 134.2, 133.4, 132.0, 130.5, 130.4, 130.3, 129.4, 129.2, 128.3, 128.1, 127.8, 127.7, 126.9, 121.0. MS (ESI): m/z (%)=266.1 ([M]⁺, 75), 268.1 ([M]⁺, 25). HRMS (ESI): m/z [M]⁺ calcd for C₁₇H₁₃³⁵ClN: 266.0736, found: 266.0744; C₁₇H₁₃³⁷ClN: 268.0707, found: 268.0715.

2-[(1E)-2-(3-Methyl)-phenylethenyl]quinoline (**3r**). Pale yellow solid; 76%, 0.19g; m.p. 68–69 °C (Lit.²² 68–69 °C).²² 1H NMR (400 MHz, CDCl₃): δ =8.33 (d, J=8.4 Hz, 1H), 8.10 (d, J=16.2 Hz, 1H), 8.04–7.95 (m, 3H), 7.83 (d, J=8.4 Hz, 1H), 7.81–7.78 (m, 1H), 7.40–7.33 (m, 3H), 7.24–7.16 (m, 2H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ =156.4, 148.2, 138.3, 136.9, 135.6, 132.1, 131.2, 130.5, 130.3, 129.2, 129.0, 128.3, 127.5, 126.7, 126.5, 126.2, 120.7, 21.1. MS (ESI): m/z (%)=246.1 ([M]⁺, 100). HRMS (ESI): m/z [M]⁺ calcd for C₁₈H₁₆N: 246.1283, found: 246.1292.

2-[(1E)-2-(3-Fluoro)-phenylethenyl]quinoline (3s). Yellow solid; 83%, 0.21 g; m.p. 91–93 °C (Lit.¹⁶ 91–93 °C).¹⁶ 1H NMR (400 MHz, CDCl₃): δ =8.12 (d, J=8.4 Hz, 1H), 8.07–48.0 (m, 1H), 7.72–7.67 (m, 2H), 7.58–7.53 (m, 2H), 7.52–7.46 (m, 1H), 7.41–317 (m, 4H), 7.01 (t, J=8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ =163.1 (d, J=243 Hz), 155.2, 148.1, 138.8 (d, J=8 Hz), 136.3, 132.9 (d, J=3 Hz), 130.2, 130.0, 129.6, 129.1, 127.4, 127.3, 126.1, 123.1 (d, J=3 Hz), 119.3, 115.2 (d, J=21 Hz), 113.3 (d, J=22 Hz). MS (ESI): m/z (%)=250.1 ([M]⁺, 100). HRMS (ESI): m/z [M]⁺ calcd for C₁₇H₁₃FN: 250.1032, found: 250.1039.

2-[(1E)-2-(3-Chloro)-phenylethenyl]quinoline (3t). Yellow solid; 87%, 0.23 g; m.p. 90–92 °C (Lit.²¹ 90–91 °C).²¹ 1H NMR (400 MHz, CDCl₃): δ =8.16 (d, *J*=8.5 Hz, 1H), 8.08 (d, *J*=8.4 Hz, 1H), 7.79–37.7 (m, 2H), 7.64–7.61 (m, 3H), 7.53–7.49 (m, 2H), 7.38 (d, *J*=16.2 Hz, 1H), 7.34–7.29 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ =155.6, 148.2, 138.4, 136.5, 134.6, 132.8, 130.2, 130.1, 129.8, 129.3, 128.4, 127.5, 127.3, 127.0, 126.4, 125.4, 119.6. MS (ESI): m/z (%)=266.1 ([M]⁺, 75), 268.1 ([M]⁺, 25). HRMS (ESI): m/z [M]⁺ calcd for C₁₇H₁₃³⁵CIN: 266.0736, found: 266.0742; C₁₇H₁₃³⁷CIN: 268.0707, found: 268.0715.

2-[(1E)-2-(4-Methyl)-phenylethenyl]quinoline (**3u**). Yellow solid; 90%, 0.22 g; m.p. 110–112 °C (Lit.¹⁶ 110–112 °C).¹⁶ 1H NMR (400 MHz, CDCl₃): δ =8.08 (m, 2H), 7.77–7.66 (m, 4H), 7.55 (d, *J*=8.2Hz, 2H), 7.46 (t, *J*=7.4Hz, 1H), 7.38 (d, *J*=16.2Hz, 1H), 7.22 (d, *J*=7.9Hz, 2H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ =156.3, 148.2, 138.6,

136.3, 134.5, 133.6, 129.6, 129.3, 129.0, 127.9, 127.5, 127.2, 127.1, 126.2, 119.1, 21.2. MS (ESI): m/z (%)=246.1 ([M]⁺, 100). HRMS (ESI): m/z [M]⁺ calcd for $C_{18}H_{16}N$: 246.1283, found: 246.1292.

2-[(1E)-2-(4-Fluoro)-phenylethenyl]quinoline (**3v**). Yellow solid; 86%, 0.21 g; m.p. 120–122 °C (Lit.¹⁶ 120–122 °C).²¹ 1H NMR (400 MHz, CDCl₃): δ = 8.10–8.06 (m, 2H), 7.78 (d, *J*=8.2 Hz, 1H), 7.74–637 (m, 5H), 7.56–7.49 (m, 1H), 7.32 (d, *J*=16.2 Hz, 1H), 7.13–77.0 (m, 2H).¹³C NMR (100 MHz, CDCl₃): δ = 163.0 (d, *J*=246 Hz), 155.9, 148.3, 136.3, 133.4, 132.8 (d, *J*=3 Hz), 129.8, 129.2, 128.9, 128.6 (d, *J*=3 Hz), 127.6, 127.3, 126.4, 119.6, 115.9 (d, *J*=22 Hz). MS (ESI): m/z (%)=250.1 ([M]⁺, 100). HRMS (ESI): m/z [M]⁺ calcd for C₁₇H₁₃FN: 250.1032, found: 250.1040.

2-[(1E)-2-(4-Chloro)-phenylethenyl]quinoline (**3w**). Yellow solid; 80%, 0.21 g; m.p. 141–143 °C (Lit.¹⁶ 141–142 °C).¹⁶ 1H NMR (400 MHz, CDCl₃): δ =8.09 (d, J=8.4 Hz, 2H), 7.77 (d, J=8.0 Hz, 1H), 7.72–7.68 (m, 1H), 7.65–87.5 (m, 2H), 7.55–67.4 (m, 3H), 7.36–17.3 (m, 3H).¹³C NMR (100 MHz, CDCl₃): δ =155.7, 148.3, 136.3, 135.1, 134.2, 132.8, 129.8, 129.5, 129.1, 128.9, 128.4, 127.5, 127.4, 126.2, 119.2. MS (ESI): m/z (%)=266.1 ([M]⁺, 75), 268.1 ([M]⁺, 25). HRMS (ESI): m/z [M]⁺ calcd for C₁₇H₁₃³⁵CIN: 266.0736, found: 266.0742; C₁₇H₁₃³⁷CIN: 268.0707, found: 268.0715.

2-[(1E)-2-(2-(Naphthalen-1-yl))vinyl]quinoline (**3x**). Yellow solid; 88%, 0.25 g; m.p. 104–106 °C (Lit.²² 105–106 °C).¹⁷ 1H NMR (400 MHz, CDCl₃): δ =8.50 (d, *J*=16.2 Hz, 1H), 8.32 (d, *J*=8.4 Hz, 1H), 8.12 (d, *J*=8.4 Hz, 2H), 7.86–7.71 (m, 6H), 7.56–7.45 (m, 5H). ¹³C NMR (100 MHz, CDCl₃): δ =156.2, 148.3, 136.2, 134.1, 133.7, 131.6, 131.5, 131.3, 129.6, 129.3, 128.8, 128.6, 127.5, 127.4, 126.3, 126.2, 125.8, 125.7, 124.1, 123.8, 119.5. MS (ESI): m/z (%)=282.1 ([M]⁺, 100). HRMS (ESI): m/z [M]⁺ calcd for C₂₁H₁₆N: 282.1283, found: 282.1292.

2-[(1E)-2-(2-(Thiophen-2-yl))vinyl]quinoline (**3y**). Yellow solid; 73%, 0.17 g; m.p. 89–91 °C (Lit.¹⁷ 89–91 °C).¹⁷ 1H NMR (400 MHz, CDCl₃): δ =8.07–8.00 (m, 2H), 7.84 (d, J=16.2Hz, 1H), 7.77–7.72 (m, 2H), 7.56 (d, J=8.4Hz, 1H), 7.50–7.47 (m, 1H), 7.30–7.19 (m, 3H), 7.05–7.02 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ =155.6, 155.5, 148.2, 142.1, 136.2, 129.8, 129.1, 128.2, 128.0, 127.7, 127.4, 127.2, 126.0, 125.9, 119.2. MS (ESI): m/z (%)=238.1 ([M]⁺, 100). HRMS (ESI): m/z [M]⁺ calcd for C₁₅H₁₂NS: 238.0690, found: 238.0697.

2-[(1E)-2-(2-Cyclohexylvinyl)]quinoline (**3**z). Pale yellow oil; 30%, 0.07 g.¹⁷ 1H NMR (400 MHz, CDCl₃): δ =8.07–8.02 (m, 2H), 7.76–7.72 (m, 1H), 7.68–7.63 (m, 1H), 7.54 (d, J=8.4 Hz, 1H), 7.47–7.43 (m, 1H), 6.80–6.76 (m, 1H), 6.66 (d, J=16.2 Hz, 1H), 2.30–2.15 (m, 1H), 1.77–1.64 (m, 4H), 1.33–1.19 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ =156.6, 148.2, 143.5, 136.2, 129.4, 129.1, 128.5, 127.4, 127.2, 125.8, 118.6, 41.0, 32.3, 26.1, 26.0. MS (ESI): m/z (%)=238.2 ([M]⁺, 100). HRMS (ESI): m/z [M]⁺ calcd for C₁₇H₂₀N: 238.1596, found: 238.1604.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: We are grateful to the Traditional Chinese Medicine Research Projects of Health and Family Planning Commission of Jiangxi Province (No. 2019A228 and 2020B0388) for financial support.

ORCID iD

Xue Li (i) https://orcid.org/0000-0002-9499-2033

References

- Yuan HB and Parrill AL. *Bioorg Med Chem* 2002; 10: 4169– 4183.
- 2. Solomon VR and Lee H. Curr Med Chem 2011; 18: 1488–1508.
- Bonnenfant S, Thomas CM, Vita C, et al. J Virol 2004; 78: 5728–5736.
- Mousnier A, Leh H, Mouscadet JF, et al. *Mol Pharmacol* 2004; 66: 783–788.
- 5. Polanski J, Zouhiri F, Jeanson L, et al. *M J Med Chem* 2002; 45: 4647–4654.
- Merschaert A, Boquel P, Van Hoeck JP, et al. Org Process Res Dev 2006; 10: 776–783.
- King AO, Corley EG, Anderson RK, et al. J Org Chem 1993; 58: 3731–3735.

- 8. Belley ML, Leger S, Labelle M, et al. Patent 5565473, 1996, USA.
- 9. Susanta H, Vikas T, Ashutosh V, et al. *Org Lett* 2020; 22: 5496–5501.
- 10. Zhang CY, Li ZH, Fang YC, et al. *Tetrahedron* 2020; 76: 130968.
- 11. Chandan C, Siddiki H and Ken-Ichi S. *Tetrahedron Lett* 2013; 54: 6490–6493.
- 12. Matteo S, Nieves C, Maria Laura B, et al. *Synlett* 2011; 17: 2577–2579.
- Sharma R, Abdullaha M and Bharate SB. *J Org Chem* 2017; 82: 9786–9793.
- Mao D, Zhu XY, Hong G, et al. Synlett 2016; 27: 2481– 2484.
- 15. Gong L, Xing LJ, Xu T, et al. *Org Biomol Chem* 2014; 12: 6557–6560.
- Liang E, Wang JQ, Wu YR, et al. *Adv Synth Catal* 2019; 361: 3619–3623.
- 17. Jamal Z, Teo YC and Lim GS. *Tetrahedron* 2016; 72: 2132–2138.
- Yaragorla S, Singh G and Dada R. *Tetrahedron Lett* 2015; 56: 5924–5929.
- Pi DW, Jiang K, Zhou HF, et al. RSC Adv 2014; 4: 57875– 57884.
- 20. Qian B, Xie P, Xie Y, et al. Org Lett 2011; 13: 2580-2583.
- 21. Zhang ZH, Pi C, Tong H, et al. Org Lett 2017; 19: 440– 443.
- 22. Xu LB, Shao ZZ, Wang L, et al. *Tetrahedron Lett* 2014; 50: 6856–6860.