Bioorganic & Medicinal Chemistry Letters 24 (2014) 233-236

Biographic & Medic Chemistry Letters Numeration and Annual Annual

journal homepage: www.elsevier.com/locate/bmcl

Rational design, synthesis and antitubercular evaluation of novel 2-(trifluoromethyl)phenothiazine-[1,2,3]triazole hybrids

Dinesh Addla^a, Anvesh Jallapally^a, Divya Gurram^a, Perumal Yogeeswari^b, Dharmarajan Sriram^b, Srinivas Kantevari^{a,c,*}

^a Organic Chemistry Division-II (CPC Division), CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India

^b Medicinal Chemistry and Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500078, India

^c Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India

ARTICLE INFO

Article history: Received 13 September 2013 Revised 29 October 2013 Accepted 14 November 2013 Available online 21 November 2013

Keywords: Phenothiazine Triazoles Molecular hybridization Antimycobacterial activity Mycobacterium tuberculosis

ABSTRACT

Molecular hybridization is an emerging structural modification tool to design molecules with better pharmacophoric properties. A series of novel 2-(trifluoromethyl)phenothiazine-1,2,3-triazoles **5a**–**v** designed by hybridizing two antitubercular drugs trifluoperazine and I-A09 in a single molecular architecture, were synthesized in very good yields using click chemistry. Among the all '22' compounds screened for in vitro antimycobacterial activity against *Mycobacterium tuberculosis* H37Rv (*Mtb*), three analogs **5c**, **5l** and **5o** were found to be most potent (MIC: 6.25 μ g/mL) antitubercular agents with good selectivity index.

© 2013 Elsevier Ltd. All rights reserved.

Tuberculosis (TB) is an ancient chronic infectious disease caused mainly by pathogen *Mycobacterium tuberculosis* (*Mtb*).¹ According to the latest world health organization (WHO) report² there were 8.7 million TB cases, including 1.1 million cases among people with HIV. In 2011 alone 1.4 million people died because of TB, including half a million are women and 430,000 people co-infected with HIV.³ Additionally, the evolution of its new virulent forms like multi drug resistant tuberculosis (MDR-TB) and extremely drug resistant tuberculosis (XDR-TB) has become a major threat to human kind.⁴ All the above facts necessitated an urgent need to develop new, potent and fast acting antitubercular drugs to combat the spread of TB.⁵ In this situation hybrid molecules⁶ (designed by molecular hybridization⁷ of different bioactive substances) were considered as one of the best and quicker way to access newer antitubercular agents preferably with novel mode of action.

The activity of phenothiazines against *M. tuberculosis* has been known since 1913.⁸ Some of the phenothiazine based successful drug candidates (Fig. 1) for treating neurodegenerative disorders were also effective inhibiting *M. tuberculosis*.⁹ Chlorpromazine, tri-fluoperazine (TPZ) and thioridazine are a few with phenathiazine architecture were found to act in synergy with *M. tuberculosis*

^{*} Corresponding author. Tel.: +91 4027191437; fax: +91 4027198933. E-mail addresses: kantevari@yahoo.com, kantevari@gmail.com (S. Kantevari).

Figure 1. Representative phenothiazine based drug candidates.

susceptible to regular antibiotics rifampicin and streptomycin.¹⁰ But these compounds are also known to exert toxic psychotropic effects by binding with a number of postsynaptic receptors. Among all, TPZ is comparatively less toxic and displays good antitubercular activity.¹¹ Besides this, triazole based antitubercular agents (Fig. 2) may be regarded as a new class providing truly effective lead candidates¹² which are reported to inhibit bacteria. Among them I-A09 is presently in clinical trials.¹³

Figure 2. Triazole based antitubercular agents I-IV.

Figure 3. Design strategy for new phenothiazine-1,2,3-triazole hybrids.

It is therefore of our interest to integrate both 2-(trifluoromethyl)-10*H*-phenothiazine and triazole pharmacophoric units¹⁴ in one molecular platform to generate a newer scaffold for biological evaluations. With the fact that 1,2,3-triazoles were efficiently made through Cu(I) catalyzed click chemistry,¹⁵ we herein report an efficient synthesis of a series of novel 2-(trifluoromethyl)phenothiazine-1,2,3-triazole hybrids **5a**–**v** in very good yields. Screening all new compounds **5a**–**v** for in vitro activity against *M. tuberculosis* H37Rv resulted three compounds **5c**, **5l** and **5o** (MIC: 6.25 µg/mL) as most potent antitubercular agents with lower toxicity (selectivity index >10). The designed scaffold (Fig. 3) is in three parts: N-substituted 1,2,3-triazole as a central backbone, 2-(trifluoromethyl)-10*H*-phenothiazine for enhancing desired pharmacophoric behavior with drug like properties and aliphatic or aromatic groups appended to other side of 1,2,3-triazole moiety for liphophilicity control. Variations in the proposed scaffold could be accomplished with the choice of aliphatic or aromatic alkynes **4a–v**. The method adopted for synthesis of 1,2,3-triazole hybrids was based on a Huisgen 1,3-dipolar cycloaddition reaction (click reaction)¹⁵ between azide **3** and alkynes **4a–v**.

As a starting point for the study, 2-azido-1-(2-(trifluoromethyl)-10*H*-phenothiazin-10-yl)ethanone **3** required for the preparation of 1,2,3-triazole hybrids was synthesized from 2-trifluoromethylphenothiazine **1** (Scheme 1) by modifying the literature procedures.¹⁶ Reaction of 2-chloro-1-(2-(trifluoromethyl)-10*H*-phenothiazin-10-yl)ethanone (**2**)¹⁷ (obtained by reacting **1** with chloroacetyl chloride in toluene), with sodium azide in the presence of *tetra-n*-butylammonium bromide produced 2-azido-1-(2-(trifluoromethyl)-10*H*-phenothiazin-10yl)ethanone **3**¹⁸ in 98% yield. The azide **3** was fully characterized by ¹H, ¹³C NMR and mass (ESI and HR-MS) spectral data. Alkynes **4a–v** required were procured from commercial sources and were used as such in the click reaction with azide **3**.

Having both alkynes **4a–v** and azide **3** in hand, we employed Huisgen's (3+2) cycloaddition reaction in the presence of CuSO₄ catalyst, sodium ascorbate in *t*-butanol and water (1:1, v/v). All al-kynes **4a–v** were reacted well with 2-azido-1-(2-(trifluoromethyl)-10*H*-phenothiazin-10-yl)ethanone **3** to give 1,2,3-triazole hybrids **5a–v** in excellent yields (Scheme 1).¹⁹ Triazoles **5a–v** obtained was fully characterized by ¹H, ¹³C NMR and mass (ESI and HR-MS) spectral data.¹⁹ Purity of all the new compounds **5a–v** (>95%) was determined by HPLC analysis.

The antimycobacterial activity of the synthesized phenothiazine-1,2,3-triazole hybrids **5a**–**v** has been screened against *M. tuberculosis* H37Rv (ATCC27294) by agar dilution method²⁰ for the determination of MIC in triplicates. The minimum inhibitory concentration (MIC) is defined as the minimum concentration of compound required to completely inhibit the bacterial growth. The MIC values (μ g/mL) of **5a–v** along with the standard drugs for comparison are furnished in Figure 4. Twenty two new compounds screened have showed in vitro activity against *Mtb* with MIC ranging from 6.25 to 50.0 μ g/mL. When compared to first line anti-TB drugs Isoniazid (0.1 μ g/mL), Ethambutol (MIC 3.13 μ g/mL), all the 22 compounds were found to be less potent than

Scheme 1. Synthesis of 2-(trifluoromethyl)phenothiazine-1,2,3-triazole hybrids **5a-v**. Reagents and conditions: (i) chloroacetyl chloride, toulene, reflux, 6 h, 97%; (ii) NaN₃, *tetra-n*-butylammonium bromide, dichloromethane/H₂O (1:1), 98%; (iii) CuSO₄:5H₂O, sodium ascorbate, *t*-BuOH, H₂O (1:1), 1–2 h, rt, 80–94%.

Figure 4. Antitubercular activity of phenothiazine analogues 5a-v.

Ethambutol and Isoniazid. But, all these triazole hybrids except **5p–q**, are more potent ($\leq 25 \text{ ug/mL}$) when compared to another anti-TB drug Pyrazinamide (50.0 µg/mL). Among all these phenothiazine hybrids, eleven derivatives 5a, 5e, 5g, 5i-k, 5n, 5r-t and 5v exhibited MIC 25 µg/mL and six derivatives 5b, 5d, 5f, 5h, 5m and 5u exhibited MIC 12.5 µg/mL. Three phenothiazine-triazole hybrids 5c, 5l, and 5o displayed MIC 6.25 µg/mL, a value postulated by the global program for the discovery of new antitubercular drugs as threshold for the evaluation of new M. tuberculosis therapies. Structure-activity correlations of new compounds **5a-c** with respect to their antitubercular activity revealed that the increase in inhibition of Mtb activity is attributed to the increase in alkyl chain length appended to 1,2,3-triazole nucleus. Also to note that alkyl chain with hydroxyl group (in 5d) and phenyl group (in 5e) displayed reduced Mtb inhibition activity. Among phenothiazinetriazole hybrids 5h-v with substituted aryls appended to 1,2,3-triazole nucleus revealed that two compounds 51 bearing electron donating methoxy group on phenyl ring and **50** bearing two fluoro substituents on phenyl ring are most active inhibiting *Mtb* activity.

The in vitro cytotoxicity of hybrid analogues evaluated for anti-TB activity with MIC $\leq 12.5 \ \mu g/mL$ were also assessed by 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT) assay²¹ against Human Embryonic Kidney (HEK-293T) cells at 50 $\mu g/mL$ concentration. Percentage inhibition of cells was reported in Figure 5. The most promising anti-TB compounds **5c**, **51** and **50** exhibited 25.6%, 34.6% and 30.6% inhibition, respectively, at 50 $\mu g/mL$ with selectivity index of approximately >10. Compounds that exhibited selectivity Index (SI) values greater than 10 in HEK-293Tcells were considered nontoxic. The results demonstrated that the compounds **5c**, **51** and **50** with high inhibitory activity against *M. tuberculosis* (6.25 $\mu g/mL$) also exhibited lowest toxicity, that is, high SI (>10) against HEK-293Tcells.

Figure 5. Percentage inhibition of HEK-293Tcells at a concentration of $50 \ \mu g/mL$ phenothiazine analogues.

In conclusion we have designed a series of novel 2-(trifluoromethyl)phenothiazine-1,2,3-triazoles **5a**–**v** by hybridizing two antitubercular drugs trifluoperazine and I-A09. The required azide building block **3** was prepared from 2-(trifluoromethyl)phenothiazine in two steps. New analogues **5a**–**v** were synthesized using Huisgen's (3+2) cycloaddition reaction between azide **3** and alkynes **4a**–**v** in presence of copper sulphate and sodium ascorbate. Evaluation of all the new hybrids **5a**–**v** against *M. tuberculosis* H37Rv (*Mtb*) and cytotoxicity revealed that three compounds **5c**, **5l** and **5o** are best active antitubercular agents with MIC 6.25 µg/ mL and with selectivity index >10. The results described here demonstrate the potential utility of molecular hybridization in designing new hybrid analogues of 2-(trifluoromethyl)phenothiazine with appended triazole fragment as potent antitubercular agents for further optimization.

Acknowledgments

Authors (D.A., A.J., D.G., S.K.) are thankful to Dr. Lakshmi Kantam, Director and Dr. V.J. Rao, Head, CPC Division, CSIR-IICT, Hyderabad for their continuous support, encouragement and financial assistance through CSIR-12th FYP projects [ORIGIN, CSC 0108; DENOVA, CSC0205 & INTELCOAT, CSC0114], OSDD project [HCP0001] and MLP0002 project. D.A. (CSIR-SRF) is thankful to CSIR for fellowship.

Supplementary data

Supplementary data (general experimental details, ¹H, ¹³C NMR and mass (ESI & HRMS) spectral data and copies of ¹H, ¹³C NMR and HRMS spectra of all the new compounds **2**, **3** & **5a**–**v**) associated with this article can be found, in the online version, at http:// dx.doi.org/10.1016/j.bmcl.2013.11.031.

References and notes

- (a) Zumla, A.; Raviglione, M.; Hafner, R.; von Reyn, C. F. N. Engl. J. Med. 2013, 368, 745; (b) Nikalje, A. G.; Mudassar, P. Asian. J. Biol. Sci. 2011, 4, 101; (c) Russell, D. G.; Barry, C. E., III; Flynn, J. L. Science 2010, 328, 852.
- (a) World Health Organization. Global Tuberculosis Report 2012 (WHO, 2012).;
 (b) European Centre for Disease Prevention and Control/WHO Regional Office for Europe. Tuberculosis Surveillance and Monitoring in Europe (European Centre for Disease Prevention and Control, 2012).
- Diel, R.; Loddenkemper, R.; Zellweger, J-P.; Sotgiu, G.; D'Ambrosio, L.; Centis, R.; van der Werf, M. J.; Dara, M.; Detjen, A.; Gondrie, P.; Reichman, L.; Blasi, F.; Migliori, G. B. *Eur. Respir. J.* 2013, 42, 785.
- (a) Lawn, S. D.; Mwaba, P.; Bates, M.; Piatek, A.; Alexander, H.; Marais, B. J.; Cuevas, L. E.; McHugh, T. D.; Zijenah, L.; Kapata, N.; Abubakar, I.; McNerney, R.; Hoelscher, M.; Memish, Z. A.; Migliori, G. B.; Kim, P.; Maeurer, M.; Schito, M.; Zumla, A. *Lancet Infect. Dis.* **2013**, *13*, 349; (b) Prabowo, S. A.; Gröschel, M. I.; Schmidt, E. D.; Skrahina, A.; Mihaescu, T.; Hastürk, S.; Mitrofanov, R.; Pimkina, E.; Visontai, I.; de Jong, B.; Stanford, J. L.; Cardona, P. J.; Kaufmann, S. H.; van der Werf, T. S. *Med. Microbiol. Immunol.* **2013**, *202*, 95.

- (a) Abubakar, I.; Zignol, M.; Falzon, D.; Raviglione, M.; Ditiu, L.; Masham, S.; Adetifa, L.; Ford, N.; Cox, H.; Lawn, S. D.; Marais, B.; McHugh, T. D.; Mwaba, P.; Bates, M.; Lipman, M.; Zijenah, L.; Logan, S.; McNerney, R.; Zumla, A.; Sarda, K.; Nahid, P.; Hoelscher, M.; Pletschette, M.; Memish, Z.; Kim, P.; Hafner, R.; Cole, S.; Migliori, G.; Maeurer, M.; Schito, M.; Zumla, A. *Lancet Infect. Dis.* 2013, *13*, 529; (b) Palomino, J. C.; Martin, A. *J. Antimicrob. Chemother.* 2013, 68, 275.
- (a) Dartois, V.; Barry, C. E., 3rd Bio. Org. Med. Chem. Lett. 2013, 23, 4741; (b) Dutra, L. A.; Ferreira de Melo, T. R.; Chin, C. M.; Santos, J. L. D. Int. Res. Pharm. Pharmacol. 2012, 2, 001; (c) Patani, G. A.; LaVoie, E. J. Chem. Rev. 1996, 96, 3147.
- Viegas-Junior, C.; Danuello, A.; Bolzani, V. S.; Barreiro, E. J.; Fraga, C. A. M. Curr. Med. Chem. 2007, 14, 1829.
- 8. Ehrlich, P. Lancet ii 1913, 445.
- (a) Wainwright, M.; Amaral, L.; Kristiansen, J. E. Open J. Pharmacol. 2012, 2, 1; (b) Pluta, K.; Mlodawska, M. B.; Jelen, M. Eur. J. Med. Chem. 2011, 46, 3179; (c) Shwetha, S.; Pandeya, S. N.; Anupam, V.; Deepika, Y. Int. J. Res. Ayurveda Pharm. 2011, 2, 1130; (d) Agarwal, P.; Dubey, S.; Mirza, Z.; Pathak, A. K. Int. J. Pharm. Biomed. Res. 2013, 4, 114; (e) Madrid, P. B.; Polgar, W. E.; Tolla, L.; Tanga, M. J. Bio. Org. Med. Chem. Lett. 2007, 17, 3014.
- (a) Amaral, L.; Kristiansen, J. E. Int. J. Antimicrob. Agents 2000, 14, 173; (b) Amaral, L.; Kristiansen, J. E.; Lorian, V. J. Antimicrob. Chemother. 1992, 30, 556.
- (a) Amaral, L.; Kristiansen, J. E.; Viveiros, M.; Atouguia, J. J. Antimicrob. Chemother. 2001, 47, 505; (b) Gupta, R. L.; Jain, S.; Talwar, V.; Gupta, H. C.; Murthy, P. S. Indian J. Clin. Biochem. 1998, 13, 92.
- (a) Zhou, C. H.; Wang, Y. Curr. Med. Chem. 2012, 19, 239; (b) Ahirrao, P. Mini Rev. Med. Chem. 2008, 8, 1441.
- 13. Zumla, A.; Nahid, P.; Cole, S. T. Nat. Rev. Drug Disc. 2013, 12, 388.
- (a) Patpi, S. R.; Pulipati, L.; Yogeeswari, P.; Sriram, D.; Jain, N.; Sridhar, B.; Murthy, R.; Devi, A. T.; Kalivendi, S. V.; Kantevari, S. J. Med. Chem. 2012, 55, 3911; (b) Yempala, T.; Sridevi, J. P.; Yogeeswari, P.; Sriram, D.; Kantevari, S. Bioorg. Med. Chem. Lett. 2013, 23, 5393; (c) Yempala, T.; Yogeeswari, P.; Sriram, D.; Kantevari, S. Bioorg. Med. Chem. Lett. 2012, 22, 7426; (d) Yempala, T.; Yogeeswari, P.; Sriram, D.; Sridhar, B.; Kantevari, S. Bioorg. Med. Chem. Lett. 2011, 21, 4316; (e) Kantevari, S.; Yempala, T.; Surineni, G.; Sridhar, B.; Yogeeswari, P.; Sriram, D. Eur. J. Med. Chem. 2011, 46, 4827; (f) Kantevari, S.; Patpi, S. R.; Addla, D.; Putapatri, S.; Yogeeswari, P.; Sriram, D. ACS Comb. Sci. 2011, 13, 427.
- 15. Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Chem. Rev. 2013, 113, 4905.
- 16. Belei, D.; Bicu, E.; Birsa, L. Acta Chemica IASI 2009, 17, 197.
- 2-Chloro-1-(2-(trifluoromethyl)-10H-phenothiazin-10-yl)ethanone (2): To a solution of 2-trifluoromethyl phenathiazine 1 (2.0 g, 7.49 mmol) in toluene (30 mL) was added chloroacetyl chloride (0.88 mL, 11.23 mmol) at 0 °C and then heated at 80 °C for 12 h. The reaction mixture was cooled to rt, concentrated under reduced pressure and the crude residue was dissolved in dichloromethyl)-10H-phenothiazin-10-yl)ethanone (2) as white solid (2.5 g, 97%). ¹H NMR (500 MHz, CDCl₃) δ 7.91 (s, 1H), 7.47–7.57 (m, 4H), 7.28–7.42 (m, 1H), 7.17 (d, J = 7.55 Hz 1H), 4.25 (d, J = 12.8 Hz 1H), 4.12 (d, J = 12.8 Hz, 1H).
 ¹³C NMR (75 MHz, CDCl₃) δ 165.4, 138.0, 137.1, 128.9, 128.3, 128.2, 127.9,

126.1, 125.2, 123.99, 123.96, 41.5. IR (KBr) 3003, 2950, 1692, 1608, 1467, 1329, 1244, 1168, 1132, 1086, 824, 747, 641 cm⁻¹. MS (ESI) m/z 344 [M+H]⁺.

- 18. 2-Azido-1-(2-(trifluoromethyl)-10H-phenothiazin-10-yl)ethanone (3): Compound 2 (2.0 g, 5.83 mmol) in dichloromethane (15 mL) was added sodium azide (0.75 g, 11.66 mmol) in water (15 mL) and *tetra*-*n*-butyl ammonium bromide (0.04 g, 0.12 mmol) and stirred at rt for 12 h. The organic layer was separated, washed with water (3 × 30 mL), dried over sodium sulfate and concentrated under reduced pressure to give product 3 (2.01 g, 98%) as colorless solid. ¹H NMR (500 MHz, CDCl₃) δ 7.86(br s, 1H), 7.55–7.57(m, 1H),7.44–7.52(m, 3H), 7.38 (t, *J* = 7.32 Hz, 1H), 7.32(t, *J* = 7.47 Hz, 1H), 4.07(d, *J* = 15.1 Hz, 1H), 3.87 (d, *J* = 15.8 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 166.6, 137.8, 136.6, 132.4, 129.8, 129.4, 128.4, 128.3, 128.0, 127.8, 126.3, 123.9, 50.8. IR (KBr) 2936, 2102, 1619, 1467, 1330, 1248, 1164, 1123, 1087, 887, 767, 629 cm⁻¹. MS (ESI) m/z 351 [M+H]⁺.
- 19. Synthesis of 2-(trifluoromethyl)phenothiazine-1,2,3-triazole hybrids 5a-v: Azide 3 (1.0 mmol), alkynes 4a-4v (1.0 mmol), copper sulfate.5H₂O (20 mol %) and sodium ascorbate (20 mol %) in t-butanol & water (1:1, v/v, 4 mL), was stirred at rt for 1-2 h. After completion (TLC), the reaction mixture was diluted with ethyl acetate (20 mL) and water (5 mL), the organic layer was separated, washed with brine solution (2 × 10 mL), dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude residue thus obtained was purified over silica gel column chromatography eluted with ethyl acetate/ hexane (1:2) to give pure 1,2,3-triazole hybrids 5a-v.

Representative spectral data for products **5a**–**v**: 2-(4-butyl-1*H*-1,2,3-triazol-1-yl)-1-(2-(trifluoromethyl)-10*H*-phenothiazin-10-yl)ethanone (**5a**): mp:126 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.89 (s, 1H), 7.57–7.60 (m, 2H), 7.52 (d, *J* = 7.93 Hz 2H), 7.42–7.45 (m, 2H), 7.36 (t, *J* = 7.62 Hz, 1H), 5.55 (br d, 2H), 2.71 (t, *J* = 7.62 Hz, 2H), 1.61–1.68(m, 2H), 1.33–1.42 (m, 2H), 0.91 (t, *J* = 7.32 Hz, 3H), ¹³C NMR (75 MHz, CDCl₃) δ 164.6, 148.7, 137.6, 136.3, 128.6, 128.3, 128.1, 124.1, 122.2, 51.3, 31.3, 25.3, 22.2, 13.7. IR (KBr) 3156, 2923, 2855, 1704, 1608, 1467, 1328, 1251, 1127, 1086, 829, 755, 641 cm⁻¹. MS (ESI) *m*/z 433[M+H]*; HR-MS (ESI) calcd for C₂₁H₂₀M₄OF₄S [M+H]*(433.13044, found:433.12986.

- 20. Antitubercular evaluation assay: Two-fold serial dilutions (50.0, 25.0, 12.5, 6.25, 3.13, 1.56, 0.78 and 0.4 µg/mL) of each test compounds **5a-v** and drugs were prepared and incorporated into Middlebrook 7H11 agar medium with OADC Growth Supplement. Inoculum of *M. tuberculosis* H37Rv ATCC 27294 was prepared from fresh Middlebrook 7H11 agar slants with OADC (oleic acid, albumin, dextrose and catalase; Difco) Growth Supplement adjusted to 1 mg/mL (wet weight) in Tween 80 (0.05%) saline diluted to 10^{-2} to give a concentration of ~ 10^7 cfu/mL. A 5 µL amount of bacterial suspension was spotted into 7H11 agar tubes containing 10-fold serial dilutions of drugs per mL. The tubes were incubated at 37 °C, and final readings were recorded after 28 days. This method is similar to that recommended by the National Committee for Clinical Laboratory Standards for the determination of MIC in triplicate.
- 21. Evaluation of cytotoxicity: Antitubercular active compounds with MIC ≤12.5 µg/mL were further examined for toxicity in a HEK-293T cell line at the concentration of 50 µg/mL. After 72 h of exposure, viability was assessed on the basis of cellular conversion of MTT into a formazan product using the Promega Cell Titer 96 non-radioactive cell proliferation assay.