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ABSTRACT: A new type of coupling between unactivated olefins and nonstabilized alkyl radicals was achieved, which enabled the
first intermolecular Heck-type reaction of cycloketone oxime esters and unactivated alkenes. This directing-group-based strategy was
compatible with various unactivated alkenes and cyclobutanone-, cyclopentanone-, and cyclohexanone-derived oxime esters. Density
functional theory calculations showed that both excellent regioselectivities and good diastereoselectivities could be ascribed to the 2-
butanol-assisted concerted H−OBz elimination of the conformationally strained metallacyclic transition state.

The Nobel Prize-winning Mizoroki−Heck reaction of aryl/
vinyl (pseudo) halides and alkenes is considered as one of

the most powerful methods in constructing Csp2−Csp2 bonds.
1

Recent advances show that alkyl electrophiles could serve as
alternative partners to couple with alkenes and ultimately forge
the Csp2−Csp3 bonds.2 This Heck-type alkenylation typically
relies on a single-electron transfer (SET) process of alkyl
electrophiles to generate alkyl radical intermediates, which can
avoid neither slow oxidative addition nor β-hydride elimination
(Figure 1a).3 Current research mainly focuses on the
exploration of new catalytic systems or appropriate alkyl
radical precursors to cooperate with activated alkenes, e.g.,
styrenes, acrylates, or vinyl ethers (type I).4 In comparison, the
intermolecular Heck-type reaction of alkyl electrophiles with
unactivated olefins has received far less attention, with only a
few cases using functionalized alkyl electrophiles bearing
adjacent functionalities (type II). Dong,5 Gevorgyan,6 and
Fu7 have independently reported the Heck-type reaction of
unactivated alkenes and α-cyano/ester alkyl radical intermedi-
ates, leading to the formation of γ,δ-unsaturated nitriles and
esters. Various electrophilic trifluoromethylating reagents8 and
benzyl electrophiles9 were successfully employed to couple
with unactivated alkenes via either radical or ionic (due to no
detachable β-hydrogens) pathways. However, to the best of
our knowledge, the intermolecular Heck-type reaction of
unactivated alkenes and nonstabilized alkyl radical intermedi-
ates without adjacent functionalities10 has remained underex-
plored (type III). Without the stabilization by an adjacent

functional group, the fleeting carbon radical intermediate is
difficult to efficient capture with the already weakly reactive
olefin partners. In addition, the control of both regio- and
diastereoselectivities would be challenging due to the potential
competing pathways for the final β-hydride elimination.7

Recently, the β-C−C bond cleavage of cycloketone oxime
esters11 has been demonstrated to be an efficient way to access
nonstabilized alkyl radicals containing a distal cyano group via
a SET process with transition metal catalysts12 or photoredox
catalysis.13 This chemistry has been successfully applied to a
variety of transformations of alkenes, including difunctionaliza-
tions,14 couplings,15 and type I Heck-like reactions16 (Figure
1b). However, all of these reactions are restricted to activated
alkene partners, presumably due to the difficulty in handling
these highly reactive alkyl radicals without the stabilization
modes.
In conjunction with our continuing efforts in directed

copper-catalyzed functionalizations of unactivated alkenes,7,17

we envisioned that a combination of cycloketone oxime esters
and a directing-group-based strategy might be a potential
solution to realizing type III Heck-type reaction. The weak N−
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O bond and ring strain make the cycloketone oxime esters
easily undergo SET processes with the metal salts, especially
these having a low oxidation−reduction potential, such as
Cu(I), and therefore generate the nonstabilized alkyl radicals
very fast. In the meantime, installation of a directing group
might facilitate the intermolecular addition of a newly formed
alkyl radical to an unactivated olefin moiety and control the
regioselectivity via a kinetically favorable conformation of the
metallacyclic intermediate.18 This hypothesis ultimately
enabled the development of the first case of type III Heck-
type reaction of cycloketone oxime esters and unactivated
alkenes, providing an efficient cyanide-free synthesis of diverse
cyanoalkenes with excellent regioselectivities and good E
selectivities.
For optimization of the reaction conditions, we used 3-

butenoic acid masked as its 8-aminoquinoline (AQ)19 amide
1a and cyclobutanone O-benzoyl oxime 2a as standard
substrates (Table 1). Primary results demonstrated that
running the reactions in the presence of copper salts in
DMSO at 80 °C led to the formation of the desired coupled
products (entries 1−6). Despite excellent regioselectivities, as
expected, probably due to the assistance of DMSO,7 these
reactions suffered from inefficiency as well as low diaster-
eoselectivities.20 Other reductive metal salts, including Fe(II)
and Ni(II), were shown to be ineffective (entries 7 and 8,
respectively). Here we chose more readily available Cu(OAc)2
for further screening of conditions, although Cu(OBz)2
afforded a similar result. Contrary to expectation, addition of
base, which was thought to be beneficial for the coordination
of the directing group and metal salt, gave only a trace amount
of the desired product (entry 9).21 Switching the solvent to
THF or 1,4-dioxane resulted in a dramatically decreased
regioselective ratio, and only 3a′ was isolated in 25% yield
when nonpolar toluene was used (entries 10−12). Further
screening of solvents showed that the alcohols were crucial for
controlling both regio- and diastereoselectivities (entries 13−
16), with 2-butanol serving as the most effective solvent to

afford 3a in a yield of 68% with an excellent rr value (>20:1)
and a good E:Z ratio (7.5:1) (as standard reaction conditions).
A control experiment performed without Cu(OAc)2·H2O
demonstrated that a copper catalyst is essential for the reaction
(entry 17). In addition, O-acetyl oximes 2a′ showed an inferior
yield of 56% with a moderate E:Z ratio (entry 18), while other
amide directing groups22 all failed to give either 3a or 3a′.
With the optimal reaction conditions established, we then

investigated the substrate scope of unactivated alkenes
(Scheme 1). A wide range of α-substituted terminal alkenes,
including n-butyl, electronically diverse (−OMe, −Cl, and
−Br) benzyl, and naphthyl forms, proved to be good partners
to afford 3b−g as single regioisomers with good to excellent
E:Z ratios. It is noteworthy that the addition of 2,6-di-tert-
butylpyridine in a mixed solvent improved the E:Z ratios for 3e
and 3g.23 The β−γ double bond could be selectively
functionalized in the presence of γ−δ olefin or acetylene
moieties to produce 3h and 3i. The formation of 3j−n
demonstrated that this reaction was compatible with diverse
functionalities, including halogen atom, ether, acetal, cyclo-
propyl, and even free hydroxyl groups. With regard to the
sterically hindered α,α-dimethyl- or -dibutyl-substituted
alkenes, the Heck-type reactions gave the corresponding
products 3o and 3p as single regioisomers and E isomers.
For the 1,1-disubstituted alkene, 3q was obtained with a minor

Figure 1. Intermolecular Heck-type reaction of alkyl electrophiles and
alkenes.

Table 1. Optimization of the Reaction Conditionsa

entry catalyst solvent

% yield
(recovery of

1a)b
rrc

(3a:3a′) E:Zc

1 CuCl DMSO 32 (46) >20:1 1:1.2
2 CuI DMSO 44 (32) >20:1 1:1.8
3 Cu(MeCN)4PF6 DMSO 34 (47) >20:1 1:1.4
4 CuCl2 DMSO 35 (36) >20:1 1:1.5
5 Cu(OAc)2·H2O DMSO 48 (35) >20:1 1:1.7
6 Cu(OBz)2 DMSO 46 (40) >20:1 1:1.5
7 FeCl2 DMSO 0 (90) − −
8 NiCl2 DMSO 0 (84) − −
9d Cu(OAc)2·H2O DMSO trace (82) − −
10 Cu(OAc)2·H2O THF 42 (35) 5:1 2.5:1
11 Cu(OAc)2·H2O 1,4-

dioxane
34 (40) 5:1 2:1

12 Cu(OAc)2·H2O toluene 25 (57) <1:20 −
13 Cu(OAc)2·H2O MeOH 45 (23) >20:1 4:1
14 Cu(OAc)2·H2O

iPrOH 60 (12) >20:1 3:1

15 Cu(OAc)2·H2O
tBuOH 31 (40) 13:1 1.5:1

16 Cu(OAc)2·H2O 2-butanol 68 (6) >20:1 7.5:1
17 − 2-butanol 0 (81) − −
18e Cu(OAc)2·H2O 2-butanol 56 (16) >20:1 6:1

aConditions: 1a (0.20 mmol) and 2a (0.50 mmol) in solvent (2.0
mL) with metal salt (0.04 mmol) at 80 °C. bIsolated yields of 3a and
3a′. cThe rr values and E:Z ratios were determined by 1H NMR.
dWith Cs2CO3 (0.20 mmol). eReplacement of 2a with 2a′ (0.50
mmol).
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amount of regioisomer (rr = 10:1) that was most likely
generated through the β-hydride elimination of a hydrogen on
the methyl group. To our delight, internal alkenes were shown
to be suitable substrates. The linear coupled product 3r was
isolated in a moderate yield of 48% (30% of alkene recovered;
2:1 E:Z), while cyclic 3s was formed in 73% yield in a highly
regioselective manner (rr = 13:1). However, as a limitation of
this protocol, the substrate with a γ−δ double bond failed.24

Next, we continued to test the generality of the developed
sequence by varying the structure of cycloketone oxime esters
(Scheme 2). The nonsymmetrical cyclobutanone oxime esters
with alkyl, olefin, substituted benzyl, haloalkyl, or ether groups
at the C2 position all underwent ring-opening processes
selectively at the more substituted carbon center, giving the
corresponding products 4a−i in good yields with both
excellent rr values and E:Z ratios. For symmetrical mono-
and disubstituted cyclobutanone oxime esters, including those
with diverse functionalities (substituted phenyl, ester, ether,
and amide groups), the internal alkenes 4j−t were obtained in
62−90% yields with slightly inferior E:Z ratios compared to
those of the C2-substituted oxime esters. Notably, the bicyclic
oxime esters proved to be suitable partners. The bicy-
clo[4.2.0]-type oxime ester afforded trans product 4u as a
major product, while the oxime ester derived from camphor
furnished 4v in 91% yield. To our delight, the less strained

cyclopentanone- and cyclohexanone-derived oxime esters
could also undergo the desired reaction pathway in a highly
regio- and diastereoselective manner. Products 4w−z were
obtained in superior yields (>90%), and a relatively low yield
of 45% for 4aa was found in the presence of Cu(acac)2.
Subjecting the estrone-based oxime derivative to the optimized
reaction conditions produced 4ab in 87% yield as a mixture of
diastereoisomers, showing the potential application of this
protocol in complex systems.
To demonstrate the synthetic applications, further trans-

formations of the coupled product 4b have been performed
(Scheme 3). Treatment of 4b with BF3·OEt2 in ethanol could

Scheme 1. Substrate Scope of Unactivated Alkenesa,b

aStandard reaction conditions. bIsolated yields. c2-Butanol/1,4-
dioxane (2:1, 2.0 mL) as the solvent with 2,6-di-tert-butylpyridine
(0.20 mmol) as the additive. d2-Butanol/THF (2:1, 2.0 mL) as the
solvent with 2,6-di-tert-butylpyridine (0.20 mmol) as the additive.
eCuI (0.04 mmol). fCuI (0.08 mmol).

Scheme 2. Substrate Scope of Cycloketone Oxime Estersa,b

aStandard reaction conditions. bIsolated yields. c2-Butanol/THF (2:1,
2.0 mL) as the solvent with 2,6-di-tert-butylpyridine (0.20 mmol) as
the additive. dCu(acac)2 (0.04 mmol).
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convert the amide into corresponding ester 5 in 94% yield. A
two-step approach via protection followed by substitution
achieved the secondary amide transamidation to afford tertiary
amide 6. The cyano and amide groups could be reduced by
diisobutyl aluminum hydride into aldehyde and secondary
amine moieties, respectively, to give 7 in 85% yield. In
comparison, diamine compound 8 was obtained when
reduction of 4b with lithium aluminum hydride in refluxing
diethyl ether. Moreover, 4b could be hydrogenated into
cyanoamide 9 or undergo dihydroxylation to produce diol 10.
Several control experiments were conducted to gain insight

into the mechanism (Scheme 4). Addition of 3.0 equiv of

either BHT or TEMPO to the reaction mixture completely
suppressed the formation of desired product 3a, and the
cyanoalkyl−BHT and −TEMPO adducts 11 and 12 were
isolated in 57% and 68% yields, respectively, based on the
amount of oxime ester 2a.12f Moreover, a radical clock
experiment using oxime ester 13 as the substrate produced
ring-closed product 14 in 45% yield as a mixture of
diastereoisomers.12b,d These results indicate that the reaction
may involve a cyanoalkyl radical species.
According to the aforementioned experimental results and

previous reports,25−27 we propose a plausible reaction
mechanism. As shown in Figure 2, the disproportionation
reaction of the Cu(II) catalyst generated a Cu(I) species.28

Then species M1 was generated through the coordination of
Cu(I) salt with alkene 1a. A SET process between M1 and
oxime ester 2a would give the oxidized Cu(II)−OBz species
M2 and an iminyl radical M3, which underwent a fast selective
β-C−C bond scission to generate cyanoalkyl radical M4.
Subsequently, the nonstabilized radical species M4 might be
trapped in time by the environmental olefin moiety of M2, and
the resultant carbon radical would recombine rapidly with the

nearby Cu(II) species. This formal migratory insertion process
afforded a putative directing-group-coordinated Cu(III)
intermediate M5.7,27,29 Eventually, Ha and Hb were distin-
guished during the concerted Ha−OBz (path a) or Hb−OBz
(path b) elimination of the conformationally strained metal-
lacyclic intermediateM5.8b,18 Major product 3a and minor one
3a′ were produced through the subsequent protodemetalation,
along with the regeneration of Cu(I) salt. The screening
conditions in Table 1 indicated that the solvent played a key
role in controlling the reaction selectivities, with 2-butanol
serving as the most effective one. Further DFT calculations
performed at the SMD(2-butanol)/(U)M06/[6-31G(d,p)/
LanL2DZ(Cu)] level (see Figure S1) showed that 2-butanol
was involved in the transition state of the concerted H−OBz
elimination process. The concerted Ha−OBz elimination is
much more difficult than concerted Hb−OBz elimination
(ΔΔG⧧ = 2.2 kcal/mol), and the barriers leading to the
formation of E- and Z-M7 were 19.0 and 20.5 kcal/mol,
respectively. It was found that the slight preference for E-M7
was attributed to the steric effect. In the transition state leading
to the formation of Z-M7, the distance between the hydrogen
of 2-butanol and the hydrogen of the substrate was only 2.2 Å.
These calculated results were consistent with the experimental
data of an excellent rr value and a good E:Z ratio.
In summary, a directed intermolecular Heck-type reaction of

cycloketone oxime esters and unactivated alkenes was achieved
for the first time, which represented a conceptually new type of
coupling between the unactivated alkene and alkyl electrophile
via nonstabilized alkyl radical species. All cyclobutanone-,
cyclopentanone-, and cyclohexanone-derived oxime esters and
a wide range of unactivated alkenes, including α-substituted,
1,1-disubstituted, and internal alkenes, were compatible.
Further derivatization of the resultant cyanoalkenes showed
the potential application prospect of this methodology in
organic synthesis. Detailed mechanistic studies and DFT
calculations disclosed that 2-butanol-assisted concerted H−
OBz elimination of the conformationally strained Cu(III)
cyclic transition state is the key to delivering the coupled
products in excellent regioselectivities and good E:Z ratios.

Scheme 3. Representative Derivatizations

Scheme 4. Mechanistic Investigations

Figure 2. Proposed reaction mechanism.
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