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43 Blvd du 11 Novembre 1918, 69622 Villeurbanne cedex, France

Received 8 August 2005; revised 16 September 2005; accepted 21 September 2005
Available online 10 October 2005
Abstract—The addition of 3-methylindolylmagnesium bromide to tetra-O-benzyl-a-DD-gluconothionolactone yields the expected
indole N-gluconothioamide as its hemiorthothioamide tautomer. The thiol function is alkylated to yield the corresponding ortho-
thioamide, a 1 0-alkylthio-substituted N-glycoside. Alternatively, the 1 0-alkylthio-N-glycoside can be accessed from the correspond-
ing indole N-gluconamide via a boron trifluoride-etherate mediated orthoesterification with ethanethiol. Radical reduction of the
orthothioamide yields the N-glycosides in 2:1 stereoselectivity in favor of the b-N-glycoside, while reduction via the oxonium ion
leads to an improved 6:1 selectivity.
� 2005 Elsevier Ltd. All rights reserved.
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Scheme 2. Synthesis of hemiorthothioamide 2b and orthothioamide 3.
We recently reported a reductive strategy toward N-gly-
cosides from thionolactones (Scheme 1),1 which is
extended here to the carbohydrate series. The chemical
behavior is quite distinct from that observed for the sim-
ple thionolactones, and we report herein two routes to a
family of novel 1 0-alkylthio-substituted N-glycosides.2,3

These compounds may be interesting N-glycoside ana-
logs, as well as polyvalent intermediates for the synthesis
of other classes of analogs.2,4,5

The acylation conditions were applied to the known
tetra-O-benzyl-a-DD-gluconothionolactone 16 (Scheme 2).
Treatment of a solution of 3-methylindolylmagnesium
bromide in toluene with thionolactone 1 in THF yields
N-[1 0-sulfhydryl-a-DD-glucopyranosyl]-3-methylindole 2b
in a modest 32% yield. It is nonetheless noteworthy that,
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Scheme 1. Reductive N-glycosylation.1
in contrast to the model thionobutyrolactone system,
the expected thioamide 2a exists preferentially as the
cyclic hemiorthothioamide tautomer 2b.7,8

The hemiorthothioamide structure is assigned based on
the 13C NMR chemical shift of the C1 0 carbon, at
104.0 ppm versus 208.3 ppm for the open form indole
N-thioamide reported previously.1 The coupling con-
stants around the pyranose ring (J4 0,5 0 = 9.7, J4 0,3 0 =
8.8 Hz) are consistent with a cyclic form.9 Alkylation
of hemiorthothioamide 2b with iodomethane and trieth-
ylamine yields the corresponding orthothioamide 3.10
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Scheme 3. Synthesis of orthothioamides via amides.
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Scheme 4. Stereoselectivity of the reduction of orthothioamides.
Reagents and conditions: (a) R = Et; Bu3SnH, AIBN, toluene, reflux.
7b:7a = 2:1; (b) R = H; Me3OBF4, CH3CN, �20 �C, then NaBH4,
�20 �C–rt. 7b:7a = 6:1.
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Scheme 5. Synthesis of orthothioamide 10. Reagents and conditions:
(a) (i) p-methoxybenzyl chloride, NaH, THF–DMF (70%); (ii) TBAF,
THF (93%); (iii) TEMPO, NaOCl, KBr, Bu4NCl, NaHCO3, THF–
H2O (72%). (b) (i) 1-Dimethylamino-1-chloro-2-methylpropene, CH2Cl2
(Ghosez�s reagent); (ii) N-benzyl-2,3-bis(indolyl) maleimide, Cs2CO3,
THF–DMF (50% for two steps). (c) BF3Æetherate, ethanethiol,
CH3CN, �20 �C (75%).
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This compound is related to the 1 0-thiophenyl nucleo-
sides synthesized by Kumamoto et al. by an alternative
route.2 The orthothioamide structure was further estab-
lished based on the analogy of the 1H and 13C NMR
spectra to those of the corresponding bisindolylmale-
imide 1 0-ethylthio-N-glycoside 10 described below.

A more efficient route was sought to the 1 0-thio-substi-
tuted N-glycoside compounds such as 2b or 3. An alter-
native would be to convert the indole N-amide to the
corresponding thioamide. Treatment of 2,3,4,6-tetra-O-
benzylgluconolactone11 with 3-methylindolylmagnesium
bromide at �20 �C in toluene/THF yielded amide 4
(Scheme 3). As in our previous study, however, treat-
ment of amide 4 with either Lawesson�s reagent12 or Bel-
leau�s reagent13 under standard conditions failed to give
even traces of thioamide 2a or 2b. Nonetheless, treat-
ment of amide 4 with ethanethiol and BF3-etherate at
�35 �C in acetonitrile for 3 h was found to yield ortho-
thioamide 5 in a respectable 59% yield.14 While such a
conversion is well established for C-glycosides (ketone
to monothioketal equilibrium), it is unusual at the higher
oxidation state corresponding to the indolyl N-amide
(amide to orthothioamide equilibrium).8 Pushing the
reaction to higher conversion, via higher temperatures
or longer reaction times, led to the formation of dithio-
orthoester 6. Running the reaction to low conversion
and recycling the recovered starting material led to a
slight improvement, to a 73% yield after two recycles.

Kahne et al.5 and Kumamoto et al.2 have shown that 1 0-
thioalkyl-substituted glycosides are useful intermediates
for radical-mediated substitution chemistry. The reduc-
tion of the sulfur group was thus investigated in order
to determine the stereoselectivity of the reaction (Scheme
4). In the event, radical reduction of orthothioamide 5
yielded the corresponding alpha- and beta-glucopyr-
anosylindoles 7b and 7a as a 2:1 ratio of stereoisomers.
The stereoselectivity is thus considerably lower than that
observed by Kahne in the correspondingO-glycoside ser-
ies.5 The oxonium-mediated reduction conditions devel-
oped in our previous study were therefore applied to this
case. Treatment of hemiorthothioamide 2b with tri-
methyloxonium tetrafluoroborate (Meerwein�s reagent)
gives the corresponding oxonium ion, which is treated
in situ with sodium borohydride to yield the glucopyr-
anosyl indoles 7b and 7a in a 6:1 ratio, in favor of axial
hydride addition, along with orthothioamide 3.

In connection with our initial interests,1 we applied this
methodology to N-benzyl-2,3-bis(1H-indol-3-yl)male-
imide (Scheme 5). The acid chloride was prepared from
the differentially protected carboxylic acid 8 by treat-
ment with Ghosez�s reagent.15,16 Monoacylation of the
protected bis(indolyl)maleimide gave monoamide 9 in
50% yield for the two steps from the acid, along with
the expected bisamide and recovered starting material.
Treatment of the amide with boron trifluoride-etherate
and ethanethiol at �20 �C, without the need for prior
removal of the p-methoxybenzyl protecting group, gave
orthothioamide 10 in 75% yield.17

Crystals of compound 10 were obtained of sufficient
quality to obtain a partial X-ray crystal structure in
which the C4 benzyl protecting group carbons were
not located precisely. The structure in Figure 1 confirms
the orthothioamide, 1 0-thioethyl-substituted N-glycoside
structure, as well as the b-(equatorial) stereochemistry of
the indole ring. The S1-C28-N3-C21 (S-C1 0-N-C2) dihe-
dral angle is near 0�, indicating minimal overlap between



Figure 1. Partial X-ray structure of 10.
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the indole ring p system and the r* orbital of the axial
C–S bond. The thioethyl group is oriented in the
expected exo-anomeric conformation, and the confor-
mation of the bis(indolyl)maleimide moiety is similar
to that observed in the crystal structure of the parent
bis(indolyl)maleimide.18

In conclusion, two routes have been developed to pyra-
nose orthothioamide functions, which can be accessed
conveniently via indole N-amides or N-thioamides.
The unusual reactivity of the latter compounds reflects
both the fulvenoid character of the indole N-amides,
as well as the particular steric and electronic environ-
ment of the pyranose ring. The synthesis is complemen-
tary to that of Kumamoto et al.,2 giving access to the
pyranose series bearing substitutents in the C2 position.
These compounds are interesting N-glycoside analogs,
as well as potential intermediates for the preparation
of other N-glycoside analogs. The scope of this reaction,
as well as the substitution chemistry of this functional
group are currently under investigation.
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