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Abstract
In this work, ruthenium nanoparticles were immobilized on thiol-based dendrimer functionalized nano-silica and its catalytic 
activity was investigated in the oxidation reactions. To do this, silica nanoparticles were functionalized with a thiol-based 
dendrimer, and this dendritic material was used as a host for immobilization of ruthenium nanoparticles as guest species. 
Different analytical tools such as FT–IR and UV–vis spectroscopies, CHNS, ICP and TGA analyses, and TEM and SEM 
microscopic techniques were used to characterize the prepared catalyst. The catalytic activity of this nanocomposite material 
as a heterogeneous catalyst was studied in the epoxidation of alkenes and oxidation of alcohols with tert-butyl hydroperoxide 
(tert-BuOOH) and the corresponding products were obtained in good to excellent yields. Moreover, this catalyst can be 
well-dispersed in the reaction medium, conveniently separated from the reaction mixture, and reused several times without 
significant loss of its activity.

Graphical Abstract
Runp–nSTDP provided a highly stable, active, reusable, and solid-phase catalyst for preparation of a series of epoxides and 
aldehydes.
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1 Introduction

Application of transition metal nanoparticles has received 
much attention in the field of catalysis [1]. But these nano-
particles should be stabilized by various methods such as 
using ionic liquids [2], polymers [3], low molecular weight 
[4] and macromolecular organic ligands [5]. Dendrimers 
are tree- like hyper branched macromolecular polymers in 

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s1056 2-018-2313-8) contains 
supplementary material, which is available to authorized users.

Extended author information available on the last page of the article

http://orcid.org/0000-0001-8984-1225
http://crossmark.crossref.org/dialog/?doi=10.1007/s10562-018-2313-8&domain=pdf
https://doi.org/10.1007/s10562-018-2313-8


 S. Haghshenas Kashani et al.

1 3

which their size depends on the generation [6]. One of the 
most useful applications of dendrimers is their ability in the 
stabilization of nanoparticles in solution by their internal 
functional groups that act as coordination sites for nanopar-
ticles [7, 8].

Epoxidation of alkene is an important reaction in organic 
synthesis because epoxides as useful starting materials in the 
synthesis of fine chemicals [9]. For example, cyclohexene 
oxide is an important organic intermediate for production 
of pharmaceuticals, plant-protection agents, pesticides, and 
stabilizers for chlorinated hydrocarbons [10]. In this way, a 
wide variety of homogeneous catalysts have been reported 
for epoxidation of alkenes [11–17]. But catalysis under 
homogeneous conditions suffers from disadvantages such 
as difficulty in the catalyst recovery and reuse and also con-
tamination of the reaction media with metal species. Appli-
cation of heterogeneous catalysts instead of homogeneous 
ones can solve the above mentioned problems [18, 19]. For 
example nanosilica supported metal nanoparticles have been 
used as catalysts in organic reactions [20–23].

Another important reaction in organic synthesis is oxida-
tion of alcohols to aldehydes or ketones [24, 25], or their 
complete oxidation to carboxylic acids [26–29]. Also, these 
reactions are of interest for the development of environmen-
tally benign processes [30, 31], production of new materials 
[32, 33] and energy sources [34, 35].

Ruthenium catalysts have been used in many reactions 
such as cis–dihydroxylation and oxidative cleavage of alk-
enes [36], Heck-type olefination and Suzuki coupling reac-
tions [37], conversion of nitriles to amides [38], hydrogena-
tion of quinolone [39], oxidative Wittig coupling reactions 
[40], semihydrogenation of alkynes [41], transfer hydrogena-
tion of carbonyl compounds [42] and oxidation reactions 
[43].

Recently, we reported the application of dendritic materi-
als containing metals nanoparticles and metal complexes in 
organic synthesis [44–51]. By combination of the potential 
activity of ruthenium nanoparticles in the oxidation reac-
tions [52–57] and also the ability of dendrimers in stabiliz-
ing the nanoparticles [58, 59], here we wish to report the 
preparation, characterization and investigation of catalytic 
activity of ruthenium nanoparticles supported on nano–silica 
functionalized with a thiol-based dendrimer in the alkene 
epoxidation and oxidation of alcohols with tert-BuOOH 
(Scheme 1).

2  Experimental Section

2.1  General Remarks

The chemicals used were purchased from Fluka and Merck 
chemical companies. FT–IR spectra were recorded on a 

Jasco 6300D spectrophotometer. Diffuse reflectance UV–vis 
(DR UV–vis) spectra were obtained on a JASCO V–670 
spectrophotometer. The SEM and TEM images were taken 
by a Hitachi S-400 field emission-scanning electron micro-
scope (FE–SEM) and a Philips CM10 Transmission Electron 
Microscope operating at 100 kV, respectively. BET measure-
ments were performed using Micromeritics TriStar II Plus. 
Thermogravimetric analysis was carried out with a TG 50 
Mettler thermogravimetric analyzer, under nitrogen flow 
at a uniform heating rate of 20 °C  min−1 in the range of 
30–900 °C. The Ru content of the catalyst was determined 
by a Jarrell–Ash 1100 ICP analysis. The X-ray photo–elec-
tron spectroscopy (XPS) measurements were performed 
using a Gamma data–scienta ESCA200 hemispherical ana-
lyzer equipped with an Al (Kα = 1486.6 eV) X-ray source. 
Gas chromatography (GC) experiments were performed with 
a Shimadzu GC–16A instrument equipped with a FID detec-
tor using a 2 m column packed with silicon DC–200 or Car-
bowax 20M. The GC yields were calculated by the “internal 
standard addition” method and in this manner; n-decane was 
used as internal standard. All products were isolated and 
characterized by 1H NMR spectroscopy.

2.2  Preparation of Nano‑silica Thiolated Dendritic 
Polymer Supported Ruthenium Nanoparticles 
 (Runp–nSTDP)

Ruthenium(III) chloride (50 mg) was added to a suspension 
of nano-silica supported dendrimer (200 mg) in distilled 
water (100 ml). The suspension was rapidly turned black. 
The reaction mixture was stirred at room temperature for 
12 h. At the end of reaction, the mixture was evaporated to 
dryness by a rotary evaporator. The obtained powder was 
suspended in a mixture of EtOH (50 ml) and water (10 ml). 
Then,  NaBH4 (90 mg) was added to the resulting slurry 
and the reaction mixture was stirred at room temperature 
for 12 h. After then, the solvent was evaporated and the 
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R

H
R

O

O

Scheme  1  Alkene epoxidation and alcohol oxidation with tert-
BuOOH catalyzed by  Runp–nSTDP
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obtained dark grey powder washed twice with water and 
ethanol and dried under air. The nano–silica thiol–based 
dendritic polymer (nSTDP) was prepared according to our 
recently reported procedure [51].

2.3  General Procedure for Epoxidation of Olefins 
with tert‑BuOOH Catalyzed by  Runp–nSTDP

The catalytic oxidation reactions of alkenes were carried out 
in a 25 ml flask equipped with a magnetic stirrer and a reflux 
condenser. In a typical run, the reaction vessel was charged 
with ruthenium catalyst (40  mg, 0.84  mol %),  CH3CN 
(5 ml), substrate (0.5 mmol) and tert-BuOOH (1 mmol). 
The reaction mixture was refluxed in an oil bath at 80 °C 
and its progress was monitored by GC. At the end of the 
reaction, the catalyst was removed by simple filtration and 
washed with the adequate amount of acetonitrile (5 ml) and 
 H2O (5 ml). Later on, the products were extracted with  Et2O 
and purified on a silica gel column  (Et2O/n–hexane: 4:1).

2.4  General Procedure for Oxidation of Alcohols 
with tert‑BuOOH Catalyzed by  Runp–nSTDP

Runp–nSTDP (40 mg, 0.84 mol %) were stirred in 5 mL of 
acetonitrile taken in a round bottomed flask equipped with 
a condenser and a stirring bar. The substrate (0.5 mmol), 
oxidant (1 mmol) was added to the stirring solution, and 
then the mixture was refluxed at 80 °C under atmospheric 
pressure of air. The reaction progress was monitored by GC. 
After completion of the reaction, the nanocatalyst was sepa-
rated from the reaction mixture by simple centrifugation, 
washed with the adequate amount of acetonitrile (5 ml) and 
 H2O (5 ml). Later on, the products were extracted with  Et2O 
and purified on a silica gel column.

3  Results and Discussion

3.1  Synthesis and Characterization of Ru 
Nanoparticles Immobilized on Nano–Silica 
Thiol–Based Dendritic Polymer

Very fine metal particles have found numerous applications 
in catalysis. When very fine particles are desired, stabilizing 
agents must be used to prevent growth of primary particles 
by agglomeration. This stabilization can be provided by 
polymers or by surfactants such as thiols and amines with 
long alkyl chains. Supporting of metal nanoparticles with 
alkanethiol and more generally by an appropriate surfactant 
allowed in several cases the formation of self-assembled 
arrays [58]. Therefore, we decided to use a thiol‒contain-
ing dendritic material for supporting and stabilizing of Ru 
nanoparticles.

After preparation and characterization of nSTDP [51], 
the ruthenium nanoparticles were immobilized onto this 
dendritic polymer by reduction of ruthenium(III) chloride 
with sodium borohydride at room temperature (Scheme 2).

Ruthenium nanoparticles immobilized on nano-silica 
thiol–based dendritic polymer  (Runp–nSTDP) was char-
acterized by different analytical techniques.

The DR UV–vis spectrum of nSTDP and  Runp–nSTDP 
are depicted in Fig. S1. The dendrimer shows one peak at 
203 nm while nano ruthenium catalyst shows three peaks 
at 214, 262 and 397 nm. On the other hand, the solution 
of  RuCl3 has a peak at 494 nm. These observations imply 
that the  Ru3+ has completely reduced to  Ru0 [59].

The FT–IR spectroscopy was also used to characterize 
the nSTDP and  Runp–nSTDP (Fig. 1). The FT‒IR spec-
trum of the nSTDP showed a broad O–H stretching band 
at 3200–3400 cm−1 and a strong Si–O–Si stretching band 
about 1000–1100 cm−1. Also, the characteristic bands for 
C–Haliph appear at 1450 and 2950 cm−1. The appearance of 
bands at 1690–1710 cm−1 (C═O) is a good indication for 
the presence of carbonyl groups on the nano-silica [51]. 
All these bands are also observed for  Runp–nSTDP. The 
vibration of S–H bonds was not observed in the FT–IR 
spectra both materials. Therefore, it is difficult to judge 
about the presence of thiol or thiolate groups and due to 
the presence of Ru nanoparticles in the catalyst texture, we 
preferred to anchor the Ru nanoparticles to thiol groups.

Further characterization of  Runp–nSTDP was performed 
by thermogravimetric analysis (Fig. S2). The weight loss 
of nSTPD and catalyst as a function of temperature in the 
range of 30 to 900 °C showed that organic weight loss of 
nSTPD and the  Runp–nSTDP were 74 and 70%, respec-
tively. This indicates that the amount of organic material 
decreased upon attachment of nano ruthenium to nSTPD.

The size and surface morphology of nSTDP and 
 Runp–nSTDP were studied by FE–SEM analysis (Fig. S3 
A and B). As clear in both images, the particles are spheri-
cal and their sizes are in the range of 40–70 nm.

The energy dispersive X-ray (EDX) results obtained 
from SEM analysis for the nSTDP and clearly show the 
presence of constituent elements (Si, O, C and S) in the 
dendrimer texture (Fig. S3 C). Upon reaction of nSTDP 
with Ru nanoparticles, the peak correspond to Ru appears 
in EDX spectrum (Fig. S3 D).

Also, the elemental mapping of  Runp–nSTDP shows the 
uniform and homogenous dispersion of C, Si, O, S and Ru 
elements in the catalyst texture (Fig. S4).

Further characterization of  Runp–nSTDP catalyst was 
performed by TEM analysis (Fig. 2). The TEM images of 
 Runp–nSTDP showed well-defined spherical Ru particles 
(dark spots) dispersed in nSTDP. The size of Ru nano-
particles was about 2.0 ± 0.5 nm (Fig. 3), indicating that 



 S. Haghshenas Kashani et al.

1 3

Scheme 2  Preparation path for 
catalyst
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ruthenium nanoparticles did not aggregate upon complexa-
tion with nSTDP.

The ICP analysis was used to determine the ruthe-
nium content of catalyst which showed a value of about 
0.21 mmol Ru/g (1.265 × 1020 atom/g) of heterogeneous 
catalyst. From the TEM size distributions, one can obtain 
the average core diameter (D) of the nanoparticles. The 
total number of atoms per a Ru nanoparticle (NRu) can 
then be calculated using Eq. (1), in which d is the density 
of ruthenium (72 atoms  nm− 3) [44].

In this work, the average core diameter (D) is about 
2 nm. Therefore, the value of NRu is 3 × 102 atoms in a 
hypothetical nanoparticle. By considering of the results 
of ICP analysis, the number of Ru nanoclusters is about 
4.22 × 1017 per gram of catalyst.

In the XPS elemental survey scans of the surface of 
 Runp–nSTDP the peaks corresponding to carbon and 
ruthenium are detected (Fig. 4). The RuNPs showed a Ru 
 3d5/2 peak at 280.8 eV which was attributed to metallic 
Ru [58]. The calibration was performed with the C1s peak 
(E = 284.5 eV).

Figure 5 shows the BE for Ru  3p3/2 at 461.6 eV and Ru 
 3p1/2 at 484.2 eV, which corresponds to the photoemission 
from metallic Ru [60].

N2 adsorption–desorption isotherm analysis (Fig. 6) 
provided information on the specific surface area and 
porosity of the prepared samples. The specific surface 
area values, the average pore diameter (according to BET 
method) and total pore volume were listed in Table 1. 
According to the BET isotherm, the active surface area of 
nSTDP and  Runp–nSTDP was estimated to be 14.43 and 
9.12 m2/g, respectively (Table 1). The very less amount 
adsorbed/desorbed  N2 and the absence of hysteresis 

(1)N
Ru

= d

(

�

6

)

D
3

Fig. 1  FT–IR spectrum of: (A) nSTDP (dendrimer) and (B)  Runp–
nSTDP (nano catalyst)

Fig. 2  TEM images of  Runp–nSTDP catalyst

Fig. 3  Particle size distribution results for  Runp–nSTDP catalyst

Fig. 4  XPS spectrum of  Runp–nSTDP catalyst
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suggests that the pores of nSTDP and  Runp–nSTDP have 
been completely blocked [61].

3.2  Alkene Epoxidation with tert‑BuOOH Catalysed 
by  Runp–nSTDP

After preparation and characterization of the Ru nanocata-
lyst, its catalytic activity was investigated in the epoxida-
tion of olefins with tert-BuOOH. To obtain the optimized 
reaction conditions, the ability of different oxidants such as, 
 NaIO4, tert-BuOOH and  H2O2 was examined in the epoxi-
dation of cyclooctene at 80 °C, and tert-BuOOH gave the 
best epoxide yield (Table 2, entries 1–3). Also, different 
amount of the catalyst were used in the model reaction, 

and the higher conversion was observed with 40  mg 
(0.84 mol%) of heterogeneous catalyst. Note that in the 
absence of catalyst only 5% of the corresponding epoxide 
was detected. Also, when nSTDP (without Ru nanoparti-
cles) was used as catalyst, the result was as same as the 
reaction in the absence of catalyst (entries 7–11).

Different solvents, such as chloroform, ethanol, acetone, 
acetonitrile and methanol were examined for the oxidation 
of cyclooctene by tert-BuOOH. Among the studied solvents, 
acetonitrile was found to be the best one (entries 3, 12–15). 
The effect of reaction temperature was also investigated and 
the 80 °C was the optimum reaction temperature (entries 
3–6).

Under the optimized reaction conditions, different alkenes 
were oxidized with tert-BuOOH and in the presence of the 
 Runp–nSTDP catalyst (Table 3).

Our experimental results showed that the  Runp–nSTDP/
TBHP catalytic system is able to epoxydize several alkenes 
to their corresponding epoxides in good to excellent yield 
(Table 3). Cyclooctene and Cyclohexene were converted 
to their corresponding epoxides in high yields and 100% 
selectivity (entries 1 and 2). Styrene was epoxidized in 80% 
yield. The by product in this system was benzaldehyde (5%) 
produced via ring opening reaction of the corresponding 
epoxide. Epoxidation of linear alkenes such as 1-heptene, 
1-octene and 1–dodecene was also carried out and the corre-
sponding epoxides obtained in good yields and high epoxide 
selectivity (entries 4–6). The location of the double bond 
is also known to have an influence on the rate of epoxida-
tion. On the basis of inductive effects of alkyl groups on the 
double bond, a higher intrinsic activity is expected for an 
internal double bond. However, the differences in reactivities 
between the internal alkenes and the terminal alkenes tested 
is lower than would be expected purely on the basis of elec-
tronic effects, It is therefore assumed that steric factors also 
play a role. Also it is expected that more highly substituted 
C=C double bonds are more reactive [62].

Comparison of the catalytic activity of  Runp–nSTDP with 
some of previously reported ruthenium based catalysts in the 
epoxidation of cyclooctene showed that  Runp–nSTDP/tert-
BuOOH catalytic system is more efficient than the others in 
terms of catalytic activities (higher TOFs values), reaction 
times or reusability (Table 4). This higher catalytic activity 
can be attributed to the dispersion of ruthenium nanoparti-
cles on the nanosilica tiolated dendrimer which isolate the 
catalytic active.

The plausible mechanism is shown in Scheme 3. First, 
the Ru nanoparticles are oxidized upon reaction with tert-
BuOOH (This confirmed by the XPS analysis of the recov-
ered catalyst). This ruthenium oxide species produced the 
tert-BuOO• radicals (This also approved by addition of 
2,6-di-tert-buthylphenol as radical scavenger which stopped 
the reaction). Reaction of these radicals with alkene gives 

Fig. 5  XPS spectrum of  Runp–nSTDP catalyst

Fig. 6  N2 adsorption–desorption isotherms of nSTDP and  Runp–
nSTDP

Table 1  BET results for nSTDP and  Runp–nSTDPa

a Calculated by the BET method

Entry Material Specific 
surface area 
 (m2/g)

Pore 
volume 
 (cm3/g)

Average 
pore radius 
(nm)

1 nSTDP 14.43 0.050 13.8
2 Runp–nSTDP 9.12 0.035 10.24
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the intermediate I which in the next step produces the epox-
ide and releases the catalyst for the next catalytic cycle.

3.3  Oxidation of Alcohols with tert‑BuOOH 
Catalysed by  Runp–nSTDP

The high catalytic activity of  Runp–nSTDP/tert-BuOOH 
catalytic system in the epoxidation of alkenes encouraged 
us to investigate its catalytic activity in the oxidation of 
alcohols. In this manner, benzyl alcohol was used as 

model substrate and the reaction conditions such as kind 
of oxidant (Table 5, entries 1–3), amounts of catalysts 
(entries 7– 11), kind of solvent (entries 3, 12–15) and also 
the reaction temperature (entries 3–6) were optimized in 
this reaction (Table 5).

As can be seen from the results in Table 5, the optimized 
reaction conditions are substrate, oxidant and catalyst in a 
molar ratio of 10,000, 20,000 and 168, respectively in reflux-
ing acetonitrile.

Table 3  Epoxidation of alkenes with tert-BuOOH catalyzed by  Runp—nSTDP

Reaction conditions: alkene (0.5 mmol), tert-BuOOH (1 mmol), catalyst (40 mg, 0.84 mol%),  CH3CN (5 ml)
a GC yield based on starting alkene
b Yield in the parenthesis refers to isolated yield
c The by–product is benzaldehyde (5%)

O

Runp-nSTDP

CH3CN/tert-BuOOH/ 80 oC

Entry Alkene Conversion (%)a,b Epoxide selectiv-
ity (%)

Time (h) TON TOF  (h−1)

1 93 (91) 100 4 55.36 13.84

2 90 (87) 100 4 53.57 13.39

3 80 (76) 94c 4 47.62 11.90

4 78 (75) 100 4.5 46.43 10.32

5 60 (56) 100 4.5 35.71 7.93
6 64 (61) 100 4.5 38.10 8.47

Table 4  Comparison of the catalytic activity of  Runp–nSTDP with some of previously reported systems in the epoxidation of cyclooctene

Row Catalyst 
amount 
(mmol)

Cyclooc-
tene 
(mmol)

Oxidant Time (h) TOF  (h−1) Yield (%) after 4th run References

Ru Salophen@Zeolite 0.01 0.5 NaIO4 5 10.25 32 [63]
[Ru(salophen)–PSI] 0.025 0.5 NaIO4 4 4.70 86 [64]
[Ru(salophen)–SiIm] 0.026 0.5 NaIO4 3 6.33 82 [65]
[Ru(salophen)–Amine–PS] 0.067 1 NaIO4 5 2.44–2.95 79 [66]
Achiral molybdenum(VI) dioxo 

complex supported on MCM–41
0.0087 8 tert-BuOOH 24 1.07 25 (3rd run) [67]

Chiral molybdenum(VI) dioxo com-
plex supported on MCM–41

0.0087 8 tert-BuOOH 24 1.14 22 (3rd run) [63]

Ru–thiolated nano silica dendrimer 0.0084 0.5 tert-BuOOH 4 13.8 81 This work
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Under the optimized reaction conditions, differ-
ent benzylic alcohols were subjected to oxidation with 
 Runp–nSTDP/tert-BuOOH catalytic system and the corre-
sponding aldehydes were produced in high yields (Table 6). 
It is noteworthy that the nature of substituent on the phe-
nyl ring has no obvious effect on the yield of the product. 
1-Hexanol and cyclohexanol as linear and cyclic alcohols 
were successfully oxidized to their corresponding carbonyl 
compounds.

The proposed mechanism for oxidation of alcohols is as 
shown in Scheme 4. Since the oxidation of alcohols is an 

oxidation‒reduction reaction, first, the Ru nanoparticles are 
oxidized to Ru oxide species with tert-BuOOH. Then, the 
alcohol is attached to the Ru oxide species via an addition 
step to produce the intermediate I which in turn releases 
 H2O and give the intermediate II. This intermediate is con-
verted to final product and releases the  Ru0 catalyst for the 
next catalytic cycle.

3.4  Catalyst Reusability

The main advantage of a heterogeneous catalyst is its recy-
clability and reusability. These parameters are of great 
importance from economic, environmental and industrial 
points of view. Therefore, the reusability of the  Runp–nSTDP 
was checked in the epoxidation of cyclooctene and also 
oxidation of benzyl alcohol with tert-BuOOH under the 
optimized reaction conditions. After each catalytic cycle, 
the catalyst was easily separated from the reaction mixture 
by centrifugation and used in the next run after washing 
with ethanol,  H2O and acetonitrile, and drying in an oven at 
60 °C. The results, which are shown in Fig. 7, showed that 
the catalyst could be reused several times in both catalytic 
reactions without significant loss of its initial activity. The 
ruthenium content of the catalyst after fourth run was meas-
ured by ICP which showed a value of about 0.20 mmol/g 
(about 95% of the initial Ru content) for the catalyst used 
in the oxidation of benzyl alcohol and 0.198 mmol/g (about 
94% of the initial Ru content) for the catalyst used in the 
epoxidation of cyclooctene. The filtrates after each run were 
used for determination of the amount of Ru leaching. The 

t-BuOO + H

t-BuOH

t-BuOOHO

[Nano-Ru]
t-BuOOH

OO
t-Bu

I

H

Scheme 3  Proposed mechanism for alkene epoxidation

Table 5  Optimization of 
conditions in the oxidation of 
benzyl alcohol catalyzed by 
 Runp–nSTDP

Reaction conditions: benzyl alcohol (0.5 mmol), tert-BuOOH (1 mmol), catalyst, solvent (5 ml)
a GC yield based on the starting benzyl alcohol

Entry Catalyst (mmol Ru) Oxidant Solvent Yield (%)a T (°C)

1 0.0084 NaIO4 CH3CN /H2O 50 80
2 0.0084 H2O2 CH3CN 65 80
3 0.0084 tert-BuOOH CH3CN 90 80
4 0.0084 tert-BuOOH CH3CN 48 RT
5 0.0084 tert-BuOOH CH3CN 59 40
6 0.0084 tert-BuOOH CH3CN 71 60
7 0 tert-BuOOH CH3CN 6 80
8 nSTDP tert-BuOOH CH3CN 7 80
9 0.0063 tert-BuOOH CH3CN 60 80
10 0.0105 tert-BuOOH CH3CN 90 80
11 0.0126 tert-BuOOH CH3CN 90 80
12 0.0084 tert-BuOOH CHCl3 48 80
13 0.0084 tert-BuOOH EtOH 80 80
14 0.0084 tert-BuOOH Acetone 75 80
15 0.0084 tert-BuOOH MeOH 81 80
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results, which are summarized in Table 7, showed that after 
second run, no Ru was leached in both catalytic reactions.

The hot filtration test was also carried out in the oxidation 
of benzyl alcohol. In this manner, the hot reaction mixture 
was centrifuged at about 50% conversion to remove the solid 
particles. The filtrates were stirred under the same condi-
tions obtained in the presence of catalyst. The results showed 
that the reaction was completely stopped (Fig. 8).

The possibility of the presence of induction period in the 
oxidation of benzyl alcohol was investigated. The reaction 
profiles (Fig. 8) showed no obvious induction period in this 
reaction.

The nature of recovered catalyst was studied by XPS 
spectroscopy (Fig. 9). Ru(IV) oxides have a typical Ru 3d 
binding energy at 282.2 eV [68, 69]. The peak at 286.1 eV 
might be attributed to ruthenium oxide [70]. The signals 
beyond C1s peak at 285 eV are attributable to the Ru  3d3/2 
of higher oxidation species [58, 71]. TEM of reused cata-
lyst is shown in Fig. 10. As can be seen the catalyst do not 
aggregate.

Table 6  Result of alcohol oxidation with tert-BuOOH catalyzed by  Runp–nSTDP

Reaction conditions: alcohol (0.5 mmol), tert-BuOOH (1 mmol), catalyst (40 mg, 0.84 mol%),  CH3CN (5 ml)
a GC yield based on starting alcohol
b The yields in the parenthesis refer to isolated product

Runp-nSTDP (0.84 mol%)

CH3CN/tert-BuOOH, 80 oC, 3 h
Alcohol Carbonyl compound

Entry Alcohol Yield (%)a,b TON TOF  (h−1)

1 C6H5CH2OH 90 (87) 53.57 17.85
2 4-CH3C6H4CH2OH 92 (90) 54.76 18.25
3 4-ClC6H4CH2OH 91 (88) 54.17 18.05
4 4-FC6H4CH2OH 82 (80) 48.80 16.27
5 4-BrC6H4CH2OH 84 (81) 50.00 16.67
6 4-NO2C6H4CH2OH 88 (86) 52.38 17.46
7 3-CH3OC6H4CH2OH 89 (86) 52.98 17.66
8 2-NO2C6H4CH2OH 89 (85) 52.98 17.66
9 2,4-Cl2C6H3CH2OH 84 (81) 50.01 16.67
10 1-Hexanol 60 (55) 35.71 11.90
9 Cyclohexanol 68 (64) 40.48 13.49

t-BuOH

t-BuOOH[Nano-Ru]

Ru

OH

O CHR

H

Ru O CHR

H2O

RCHO

I

II

Scheme  4  The proposed mechanism for oxidation of alcohols with 
tert-BuOOH

Fig. 7  The results of nano Ru catalyst recovery in the Blue square 
oxidation of benzyl alcohol and orange square epoxidation of 
cyclooctene with tert-BuOOH
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4  Conclusion

In summary, we present a new heterogeneous catalytic 
system containing ruthenium nanoparticles immobilized 
on nano-SiO2 functionalized with thiolated dendrimer, 
and investigated its catalytic activity in alkene epoxida-
tion reaction and oxidation of benzyl alcohol derivatives. 
Our experimental results showed that the proposed catalyst 
is able to oxidize several alkenes to their corresponding 
epoxides in good to excellent yield. Also, in the oxida-
tion of benzyl alcohols, the corresponding aldehydes 
were produced in good to excellent yields. Moreover, this 
catalyst can be well-dispersed in the reaction medium, 

conveniently separated from the reaction mixture, and 
reused several times without significant loss of their 
activity.

Acknowledgements The authors are grateful to the Research Council 
of the University of Isfahan for financial support of this work.

Table 7  Leaching of the  Runp–
nSTDP catalyst in the recycling 
of epoxidation reaction of 
cyclooctene in 4 h and oxidation 
reaction of benzyl alcohol after 
3 h

Reaction conditions: alk-
ene (0.5  mmol), tert-BuOOH 
(1 mmol),  Runp-nSTDP (40 mg, 
0.84 mol %),  CH3CN (5 mL) at 
80 °C
b Reaction conditions: alco-
hol (0.5  mmol), tert-BuOOH 
(1 mmol),  Runp–nSTDP (40 mg, 
0.84  mol %),  CH3CN (5  ml) at 
80 °C
c Determined by ICP analysis

Ru leached (%)c

Run Epoxidation 
reaction

Oxida-
tion 
reac-
tion

1 3 3
2 3 3
3 0 0
4 0 0

Fig. 8  The results of (A) time-yield and (B) hot filtration of benzyl 
alcohol oxidation

Fig. 9  XPS spectrum of reused  Runp–nSTDP catalyst

Fig. 10  TEM of reused  Runp–nSTDP catalyst
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