The Journal of Organic Chemistry

Sodium Hypochlorite Pentahydrate as a Reagent for the Cleavage of trans-Cyclic Glycols

Masayuki Kirihara, Rie Osugi, Katsuya Saito, Kouta Adachi, Kento Yamazaki, Ryoji Matsushima, and Yoshikazu Kimura

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.9b01132 • Publication Date (Web): 22 May 2019 Downloaded from http://pubs.acs.org on June 4, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Sodium Hypochlorite Pentahydrate as a Reagent for the Cleavage of trans-Cyclic Glycols Masayuki Kirihara,^a* Rie Osugi, ^a Katsuya Saito, ^a Kouta Adachi, ^a Kento Yamazaki, ^a Ryoji Matsushima, ^a and Yoshikazu Kimura ^b ^aDepartment of Materials and Life Science, Shizuoka Institute of Science and Technology, 2200-2 Toyosawa,

Fukuroi, Shizuoka 437-8555, Japan

^bResearch and Development Department, Iharanikkei Chemical Industry Co. Ltd., Kambara, Shimizu-ku, Shizuoka 421-3203, Japan

ABSTRACT: Sodium hypochlorite pentahydrate (NaOCl·5H₂O) can be used toward the efficient glycol cleavage of *trans*-cyclic glycols, which are generally resistant to this transformation. Interestingly, the reaction of *cis*-cyclic glycols with NaOCl·5H₂O is slower than that observed for the corresponding *trans*-isomer. This *trans* selectivity is in sharp contrast to traditional oxidants used for glycol cleavage. Acyclic glycols can also react efficiently with NaOCl·5H₂O to form their corresponding carbonyl compounds in high yield.

The cleavage of bicyclic bis-tertiary glycols such as octahydronaphthalene- 4a,8a-diol (1a) is an attractive procedure for the synthesis of macrocyclic compounds.¹⁻³ For example, Paquette and co-workers have reported that 1a can be prepared as a 3:1 diastereomeric mixture upon reaction of cyclohexane-1,2-dione with allyl indium followed by metathesis using 1st generation Grubbs catalyst and hydrogenation (Scheme 1). They then performed the glycol cleavage reaction of 1a using lead tetraacetate [Pb(OAc)₄] to produce the desired ten-membered ring diketone (2a).^{2a,b}

Scheme 1. Synthesis of 2a achieved by Paquette et al.

In general, the cleavage of sterically-hindered cyclic glycols, especially *trans*-glycols, is not easy using reagents other than $Pb(OAc)_4$.⁴ However, there are serious drawbacks when using $Pb(OAc)_4$. It is highly toxic, and no less than a stoichiometric amount of reagent is required for the reaction, which produces a large amount of toxic lead diacetate over the course of the reaction. Recently, less toxic hypervalent iodine reagents, such as phenyliodine diacetate [PhI(OAc)₂],⁵ have been used as an alternative to Pb(OAc)₄ by Krische and co-workers. The method, however, are required stoichiometric amount (1.2 equiv) of the relatively expensive PhI(OAc)₂ reagent.

To avoid the use of large amounts of toxic $[Pb(OAc)_4]$ or expensive $[PhI(OAc)_2]$ reagents, we have explored the use of several alternative oxidants,⁶ and discovered that sodium hypochlorite pentahydrate crystals (NaOCl·5H₂O) is an extraordinary reagent for glycol cleavage. (**Table 1, run 6**) The reagent reacts easily with hindered *trans*-glycols (such as *trans*-1a), which are not particularly reactive using classical oxidants, to form the corresponding dicarbonyl compounds.

We initially focused on aqueous sodium hypochlorite (*aq.* NaOCl) is an inexpensive and environmentallybenign oxidant which has been previously reported to carry out glycol cleavage.⁷ However, *aq* NaOCl was useless for the oxidative cleavage of *cis-* and *trans-***1a.** (**Table 1, runs 1-4**) The reaction of these compounds with NaOCl·5H₂O was next approached, because we recently have reported that NaOCl·5H₂O is a superior reagent to conventional aq. NaOCl in the oxidation of organic compounds.⁸ For comparison, we also examined the reaction with conventional reagents including sodium periodate (NaIO₄),⁹ Pb(OAc)₄¹⁰ and PhI(OAc)₂. Our results are summarized in **Table 1**. QН

N۲

1 2

3

4
5
6
7
, o
0
9
10
11
12
12
15
14
15
16
17
10
10
19
20
21
22
22
23
24
25
26
27
28
20
29
30
31
32
33
21
24
35
36
37
38
30
40
40
41
42
43
44
45
4G
40
4/
48
49
50
51
51
52
53
54
55
56
57
57
58

59

60

Table 1. Glycol cleavage of cis-1a and trans-1a using several oxidants

oxidant solvent r.t.

0

cis	s-1a <i>trans-</i> 1a	a <i>trans-</i> 1a			
Run	Reaction Condition	Substrate	Time (h)	Yield of 2a (%)	
1	aq. 13% NaOCl ^a (3 eq.)	cis-1a	5	N.R.	
2	CH ₃ CN	<i>trans-</i> 1a	5	N.R.	
3	aq. 13% NaOCl ^a (3 eq.)	cis-1a	4	2 ^b	
4	CH_2Cl_2	<i>trans-</i> 1a	1	6 ^b	
5	NaOCl· 5H₂O (3 eq.)	cis-1a	2	76	
6	Bu ₄ NHSO ₄ (10 mol%) CH ₂ Cl ₂ / H ₂ O	<i>trans-</i> 1a	0.2	93	
7	NalO ₄ (6 eq.)	cis-1a	50	74	-
8	THF / H ₂ O	trans-1a	70	N.R.	
9	Pb(OAc) ₄ (2.2 eq.)	cis-1a	0.3	79	
10	CH ₂ Cl ₂	<i>trans-</i> 1a	117	33	
11	PhI(OAc) ₂ (6 eq.)	cis-1a	2.6	89	
12	CH ₂ Cl ₂	<i>trans-</i> 1a	52	64	

ŌΗ

^aCommercial aqueous solution (Nikkei ZiasoTM) was used. ^bMost of **1a** was recovered.

As shown in Table 1, NaOCl·5H₂O exhibited excellent results (runs 5 and 6) more than another reagent systems. Surprisingly, NaOCl 5H₂O reacted with *trans*-1a much faster than *cis*-1a to produce 2a in high yield.¹¹ This result was in sharp contrast to that observed using conventional reagents [NaIO₄, Pb(OAc)₄ and PhI(OAc)₂], which prefer *cis*-1a as the substrate in the glycol cleavage reaction. Conventional reagents cause glycol cleavage via a cyclic intermediate.¹² Therefore, glycols that retard the formation of this cyclic intermediate, (such as *trans*-1a) are not good substrates for the reaction. The unique reactivity of NaOCl 5H₂O means that the mechanism of glycol cleavage using NaOCl 5H₂O is completely different from that of conventional glycol cleavage reagents. (vide infra)

We envisage that NaOCl·5H₂O will be a superior reagent for the glycol cleavage reaction of sterically hindered trans-cyclic glycols which are difficult to react with conventional reagents. The reactions of several trans-cyclic glycols (*trans*-1a d) with NaOCl 5H₂O were examined, and the results are shown in Table 2.

The reactions using conventional reagents $[NaIO_4, Pb(OAc)_4]$ were also examined for comparison. For NaOCl·5H₂O, each *trans*-cyclic glycol reacted rapidly to form the corresponding carbonyl compound in high yield. Conversely, NaIO₄ did not show any reactivity with the *trans*-cyclic glycols studied. Although Pb(OAc)₄ reacted with *trans*-cyclic glycols to produce the desired products, the reactions proceeded slowly and provided the product in lower yield.

Table 2. Glycol cleavage of sterically hindered trans-cyclic glycols

^a NaIO₄ (6 eq.) did not react with any grycols on this table in THF-H₂O for 25 h or more.

^b While the starting material (*trans*-1c) disappeared, several unidentified by-products were produced.

^c Much of the starting material (*trans*-1d) remained unreacted.

 Subsequently, we examined the glycol cleavage of *cis*-1d (Scheme 2). *cis*-1d immediately reacted with $Pb(OAc)_4$ to produce the desired products in quantitative yield. Interestingly, NaOCl·5H₂O hardly reacted with *cis*-1d and produced only a trace amount (< 1%) of the desired glycol cleavage compound (2d). After 20.8 h, a significant amount of unreacted *cis*-1d remained in the reaction mixture, and the corresponding hydroxyl ketone (4d) was obtained as the major product (36% yield) together with several unidentified by-products.

Scheme 2. Reaction of *cis*-1d with Pb(OAc)₄ or NaOCl·5H₂O

When an equimolar mixture of *cis*-1e and *trans*-1e was treated with NaOCl \cdot 5H₂O under the same reaction conditions, the selective reaction of *trans*-1e was observed with *cis*-1e recovered in almost quantitative yield (Scheme 3). The control experiment clearly exhibits that the cleavage of *trans*-glycol is much faster than that of *cis*-glycol.

Scheme 3. Glycol cleavage of an equimolar mixture of *cis*- and *trans*-1d using NaOCl·5H₂O

Next, the reactions of several acyclic glycols (**1e-j**) using NaOCl·5H₂O were then investigated (**Table 3**). Glycol cleavage was observed in all cases and the corresponding aldehydes, carboxylic acids, and ketones were obtained in high yield. The glycol substrate containing a cyclopropyl moiety (**1j**) provided the corresponding cyclopropyl phenyl ketone (**2j**) as the sole product. Allyl phenyl ketone (**2j**') was not observed (**Table 3**, **run 6**). This result meant that radical intermediates were not produced during the glycol cleavage reaction.

Table 3. Glycol cleavage of acyclic-glycols

- ^a GC-yield using 1-chloronaphthalene as an internal standard.
- ^b GC-yield using decalin as an internal standard.
- ^c 2.0 eq. NaOCl \cdot 5H₂O was used.

^d Isolated yield.

A plausible reaction mechanism for the glycol cleavage of *trans*- and *cis*-1a using NaOCl·5H₂O is shown in Scheme 4.¹³ Hypochloric acid (HOCl) derived from NaOCl·5H₂O and Bu₄NHSO₄ may be the active species,^{8b} which reacts with one of the hydroxyl groups in the glycol substrate to form hypochlorite intermediate (A). In the case of the *trans*-isomer, the resulting hypochlorite substituent and the unreacted hydroxyl group of *trans*-A are fixed in an *anti*-periplanar configuration, and therefore, a Grob-type fragmentation occurs immediately to produce ACS Paragon Plus Environment

the desired product (2a). On the other hand, *cis*-A must be *syn*-periplanar for the glycol cleavage reaction to occur,
but this conformation is not thermodynamically favorable for *cis*-A. Therefore, *cis*-1a reacts much slower than *trans*-1a. In the case of *cis*-1d, since the *syn*-periplanar conformation of either mono-chlorinated intermediate (B,
B') are unfavored, the glycol cleavage reaction is very difficult. The secondary alcohol in *cis*-1d was oxidized to
the corresponding carbonyl group *via* intermediate B to form 4d.

Scheme 4. A plausible reaction mechanism for glycol cleavage reaction.

In order to prove hypochloric acid (HOCl) is an active species, the reaction of *trans*-1a in dichloromethane with aqueous HOCl prepared from NaOCl·5H₂O being adjusted to pH 5- 6 upon adding conc. HCl was examined. In this biphasic mixture *trans*-1a in the organic phase was slowly converted to 2a (Scheme 5). This result indicates that HOCl in the aqueous phase was gradually transferred into the organic phase and reacted with *trans*-1a to cause glycol the cleavage reaction. This result strongly suggests that HOCl is the active species.

Scheme 5. The reaction of *trans*-1a with aq. HOCl.

Although conventional aq. NaOCl has been used as an oxidant for glycol cleavage,⁷ it is not effective in cleaving highly hindered bicyclic glycol **1a**, as shown in Table 1 (**runs 1- 4**). This is because aq. NaOCl is not effective to have high pH value (>13) compared to be low pH (10 11) of NaOCl·5H₂O crystals in several oxidation reactions. ⁸ Therefore, the effect of pH on the glycol cleavage reaction was examined using **1e** as a substrate (**Table 4**). Although the reaction rate of the glycol cleavage of **1e** using conventional aq. 13% NaOCl was slow to be recovered a half of **1e** (**run 2**), the reaction of **1e** using aq. 13% NaOCl prepared from NaOCl·5H₂O and water exhibited faster (**run 1**). Furthermore, conventional aq. NaOCl adjusted using hydrochloric acid to lower the pH (**run 3**) gave results similar to those of aq. NaOCl prepared from NaOCl·5H₂O, but they were not identical.

Table 4. Effect of pH on glycol cleavage

OH Ph Ph OH 1e		aq. NaOCI (3 e Bu ₄ NHSO ₄ (10 m CH ₂ Cl ₂ / H ₂ O	q.) iol%) ₽ł	0 H +	Ph	ОЦ
		1.1. 0.5 11		2e		3e
Run	aq. NaOCI		pH of	Yield (GC%)		%)
			aq. NaOCI	2e	3e	Total
1	13% aq NaO0	NaOCI prepared from	10.4	40.2	35.4	75.6
2	Conventional 13% NaOCI aq.		13.3	50.7	1.3	52.0
3	Conventional 13% NaOCl aq. + aq.HCl		10.4	47.0	30.2	77.2

Hence, we have carefully examined the reaction of *trans*-1a with *aq*. NaOCl (pH = 10) prepared from conventional 13% *aq* NaOCl and hydrochloric acid (Scheme 6). Although the reaction went to completion immediately, recyclized compound 4a, (produced *via* an intramolecular aldol reaction of 2a) was formed. When several experiments were carried out under the same reaction conditions, the ratio of 2a to 4a varied widely. This phenomenon was a difference in the reaction of *trans*-1a with NaOCl·5H₂O which consistently produced 2a as the major product. Conventional *aq*. NaOCl is not as pure as NaOCl·5H₂O and contains some impurities (NaCl, NaOCl₃ etc.) which may affect the product ratio.

In conclusion, the glycol cleavage of *trans*-cyclic glycols using NaOCl·5H₂O proceeded much faster than their corresponding *cis*-cyclic glycols. This reactivity was in sharp contrast with that observed using the conventional glycol cleavage oxidants for which *cis*-glycols react much faster. NaOCl·5H₂O was a superior reagent for glycol cleavage of sterically hindered *trans*-glycols. Hypochloric acid (HOCl) derived from NaOCl·5H₂O was likely to be the active species.

Experimental Section

General Information: All reagents were purchased from Nacalai Tesque, Wako Pure Chemicals Industries, Kanto Kagaku, Kishida Reagents Chemical Co., Tokyo Chemical Industry or Aldrich, and used without any further purification. Melting points were measured on a Yanaco micro melting point apparatus (MP-J3) and are uncorrected. NMR spectra were recorded on a JEOL (JNM-EX400) spectrometer as solutions in CDCl₃ using TMS or the residual solvent peak as an internal standard. GC analyses were run on a Shimadzu GC-2014 instrument with flame-ionization detectors, equipped with an NB-1 (0.25 mm×60 m, df¹/40.4 mm) GC column using helium as the carrier gas. GC yields were determined using 1-chloronaphtalene (for the reaction of **1e**, **1g** and **1h**) or decalin (for the reaction of **1f**) as an internal standard.

Preparation of the starting materials (glycols): All of the starting materials (glycols) are known compounds. Several of them were prepared according to the literature (*cis*-1a,¹⁴ *trans*-1a,¹⁴ 1b,¹⁵ 1c¹⁶ and 1d¹⁷), and one was purchased as a commercial reagent [benzopinacol (1j)]. Glycols 1e,¹⁸ 1f,^{2a} 1g,¹⁹ 1h²⁰ and 1j²¹ were prepared *via* the following procedures. Most of the glycols (1e, 1f, 1g, 1h and 1j) were prepared as a mixture of diastereomers.

1,2-Diphenylethane-1,2-diol (1e).¹⁸ Sodium borohydride (1.14 g, 30.1 mmol) was added to a stirred solution of benzoin (4.25 g, 20.0 mmol) in methanol (100 mL) at 0 °C and the reaction mixture was stirred at room temperature for 80 min. Water was added and the mixture was concentrated in vacuo. The residue was partitioned with dichloromethane and water. The organic layer was separated and dried using anhydrous sodium sulfate. The dried extract was filtered and concentrated *in vacuo* to give the crude product as a white solid. Recrystallization from toluene methanol gave pure **1e**¹⁸ (3.66 g, 85%) as colorless crystals.

1,2-Di-*p*-anisilethane-1,2-diol (1f). ^{2a} Sodium borohydride (0.568 g, 15.0 mmol) was added to a stirred solution of 1,2-di-*p*-anisil-2-hydroxyethan-1-one (2.72 g, 10.0 mmol) in methanol (100 mL) at 0 °C and the resulting reaction mixture was stirred at room temperature for 50 min. Water was added and the mixture was concentrated in vacuo. The residue was partitioned with ethyl acetate and water. The organic layer was separated and dried using anhydrous sodium sulfate. The dried extract was filtered and concentrated *in vacuo* to provide the crude product as a white solid. The crude product was purified by silica gel column chromatography using hexane ethyl acetate = 2:1 (v/v) as the eluent to give $1f^{2a}$ (1.52 g, 50%) as pale yellow crystals.

1,6-Diphenylhexane-3,4-diol (1g).¹⁹ Sodium borohydride (284 mg, 7.51 mmol) was added to a stirred solution of 1,6-diphenyl-4-hydroxyhexan-4-one (1.34 g, 5.00 mmol) in methanol (10 mL) at 0 °C and the reaction mixture was stirred at room temperature for 40 min. Water was added and the mixture was concentrated in vacuo. The residue was partitioned with dichloromethane and water. The organic layer was separated and dried using anhydrous magnesium sulfate. The dried extract was filtered and concentrated *in vacuo* to provide the crude product as a white solid. The crude product was purified by silica gel column chromatography using hexane ethyl acetate = 5:1 (v/v) as the eluent to give $1g^{19}$ (798 mg, 63%) as colorless crystals.

1,2-Diphenylhexane-1,2-diol (1h). ²⁰ A hexane solution of butyllithium (1.59 M, 13.0 mL, 20.7 mmol) was added to a stirred solution of benzoin (1.00 g, 4.71 mmol) in tetrahydrofuran (10 mL) at 78 °C under a nitrogen atmosphere. The reaction mixture was stirred for 1 h under the same conditions. Saturated aqueous ammonium chloride (3 mL) was added to the reaction mixture, which was then warmed to room temperature. Water (5 mL)

was added and the resulting mixture was extracted with dichloromethane (20 mL \times 3). The combined organic layers were dried over anhydrous magnesium sulfate, filtered and concentrated *in vacuo*. The residue was purified by silica gel column chromatography using hexane ethyl acetate = 5:1 (v/v) as the eluent to give **1h**²⁰ (798 mg, 63%) as colorless crystals.

1,2-Dicyclopropyl-1,2-diphenylethane-1,2-diol (1j). ²¹ A tetrahydrofuran solution of cyclopropylmagnesium bromide (0.5 M, 22 mL, 11 mmol) was slowly added to a stirred solution of benzyl (1.05 g, 5.0 mmol) in tetrahydrofuran (60 mL) at 0°C under a nitrogen atmosphere. The reaction mixture was stirred for 4 h 10 min at room temperature. Saturated aqueous ammonium chloride (3 mL) was added to the reaction mixture, which was then extracted with ethyl acetate (20 mL×3). The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated *in vacuo*. The residue was purified by silica gel column chromatography using hexane ethyl acetate = 10:1 (v/v) as the eluent to give **1j** ²¹ (416 mg, 28%) as colorless crystals.

Standard experimental procedure for the glycol cleavage reaction using NaOCI-5H₂O: Sodium hypochlorite pentahydrate (606 mg, 3.68 mmol) was added to a stirred solution of *trans*-1a (210 mg, 1.23 mmol) and tetrabutylammonium hydrogen sulfate (42.2 mg 0.12 mmol) in dichloromethane (10 mL) and water (3 mL) at 0°C, and the resulting mixture was stirred for 0.2 h under the same conditions. Water (3 mL) was added, and the reaction mixture was extracted with dichloromethane (40 mL×2). The combined organic layers were dried over anhydrous sodium sulfate, filtered and then concentrated *in vacuo*. The residue was purified by silica gel column chromatography using hexane ethyl acetate = 10:1 (v/v) as the eluent to give 1,6-cyclodecanedione 2a (183 mg, 93%) as colorless crystals.

1,6-Cyclodecanedione (2a).^{1a} m.p.: 99 °C (lit.^{1a}: 99 100 °C). ¹H-NMR (CDCl₃): δ (ppm) 1.84 1.86 (m, 8H), 2.35 2.36 (m, 8H). ¹³C{¹H}-NMR (CDCl₃): δ (ppm) 23.4, 42.2, 214.1.

[1,1'-Biphenyl]-2,2'-diylbis(phenylmethanone) (2b).²² Following the standard procedure, 1b (182 mg, 0.50 mmol) was reacted with sodium hypochlorite pentahydrate (247 mg, 1.5 mmol) and tetrabutylammonium ACS Paragon Plus Environment

hydrogen sulfate (17.0 mg 0.05 mmol) for 0.2 h to produce **2b** (182 mg, quant.) as colorless crystals. This product was sufficiently pure and required no further purification. m.p.: 174 175 °C (lit.²²: 172 173 °C). ¹H-NMR (CDCl₃): δ (ppm) 7.15 7.35 (m, 14H), 7.61 7.64 (m, 4H). ¹³C{¹H}-NMR (CDCl₃): δ (ppm) 126.7, 127.9, 129.3, 130.0, 130.3, 131.4, 132.7, 137.3, 138.2, 140.2, 197.5.

(*15,35*)-3-Acetyl-2,2-dimethylcyclobutaneacetaldehyde (2c)²³ and (*15,35*)-3-acetyl-2,2dimethylcyclobutaneacetic acid (3c).²⁴ Following the standard procedure, 1c (85.7 mg, 0.50 mmol) was reacted with sodium hypochlorite pentahydrate (495 mg, 3.0 mmol) and tetrabutylammonium hydrogen sulfate (17.0 mg 0.05 mmol) for 0.2 h to produce a mixture of 2c and 3c. The crude mixture was dissolved in ethyl acetate (30 mL) and extracted with saturated sodium bicarbonate (10 mL). The remaining ethyl acetate solution was washed with brine (5 mL × 2), dried over anhydrous sodium sulfate and concentrated *in vacuo* to give crude product 2c. Crude 2c was purified by silica gel column chromatography using hexane ethyl acetate = 1:1 (v/v) as the eluent to give 2c (84.1 mg, 70% yield) as a pale yellow oil. The combined saturated sodium bicarbonate layers were acidified using concentrated hydrochloric acid and extracted with ethyl acetate (30 mL × 2). The combined organic layers were washed with brine (5 mL × 2), dried over anhydrous sodium sulfate, filtered and concentrated *in vacuo* to give 3c (21.5 mg, 23%) as colorless crystals. This product was sufficiently pure and required no further purification.

2c: Pale yellow oil. ¹H-NMR (CDCl₃): δ (ppm) 0.83 (s, 3H), 1.32 (s, 3H), 1.90-1.99 (m, 2H), 2.03 (s, 3H), 2.38-2.48 (m, 3H), 2.90 (m, 1H), 9.72 (m, 1H). ¹³C{¹H} -NMR (CDCl₃): δ (ppm) 17.6, 22.8, 30.1, 30.3, 35.7, 43.3, 54.1, 54.3, 201.4, 207.4.

3c: Colorless crystals. m.p.: 64 65 °C (lit.²⁴: 68 °C). ¹H-NMR (CDCl₃): δ (ppm) 0.86 (s, 3H), 1.31 (s, 3H), 1.87 1.99 (m, 2H), 2.03 (s, 3H), 2.24 2.40 (m, 3H), 2.86 (m, 1H). ¹³C{¹H} -NMR(CDCl₃): δ (ppm) 17.3, 23.0, 30.2, 30.2, 34.8, 37.7, 43.3, 54.2, 178.0, 207.7.

Reaction of trans-1d with NaOCl·5H2O: 3β-Acetoxy-5-oxo-5,6-secocholestan-6-al (2d)²⁵ and 3β-acetoxy-5-oxo-5,6- secocholestan-6-oic acid (3d).²⁶ Following the standard procedure, *trans*-1d (232 mg, 0.50 mmol) was reacted with sodium hypochlorite pentahydrate (250 mg, 1.5 mmol) and tetrabutylammonium hydrogen sulfate (17.0 mg 0.05 mmol) for 0.6 h to give a mixture of 2d and 3d. Purification by silica-gel column chromatography using hexane ethyl acetate = $5:1 \rightarrow 2:1$ (v/v) as the eluent gave 2d (159 mg, 69%) and 3d (49 mg, 20%). **2d**: Colorless oil. ¹H-NMR (CDCl₃): δ (ppm) 0.68 (s, 3H), 0.85 2.46 (m, 42H), 3.06 (dd, J = 14.0, 4.8 Hz, 1H), 5.37 (brs, 1H), 9.61 (brs, 1H). ${}^{13}C{}^{1}H$ -NMR (CDCl₃): δ (ppm) 11.5, 17.6, 18.5, 21.2, 22.5, 22.8, 23.1, 23.7, 25.1, 25.3, 27.8, 28.0, 34.3, 34.8, 35.7, 36.0, 39.4, 39.8, 42.1, 42.5, 43.2, 44.0, 52.3, 54.1, 56.1, 73.4, 170.2, 202.6, 216.1. **3d:** Colorless oil. ¹H-NMR (CDCl₃): δ (ppm) 0.69 (s, 3H), 0.85 2.46 (m, 43H), 3.19 (dd, J = 14.4, 4.4Hz, 1H), 5.39 (br s, 1H). ¹³C{¹H}-NMR (CDCl₃): δ (ppm) 11.7, 17.7, 18.6, 21.2, 22.5, 22.8, 23.0, 23.8, 24.4, 25.2, 27.9, 28.0, 34.0, 34.4, 35.6, 35.7, 36.0, 39.4, 39.7, 41.5, 42.6, 43.1, 52.3, 54.4, 55.9, 73.5, 170.3, 178.5, 216.3. Reaction of cis-1d with NaOCl·5H₂O: 3-Acetocy-5-hydroxy-10,13-dimethyl-17-octyl-6-oxohexadecahydrocyclopenta[a]phenanthrene (4d).²⁵ Following the standard procedure, cis-1d (232 mg, 0.50 mmol) was treated with sodium hypochlorite pentahydrate (250 mg, 1.5 mmol) and tetrabutylammonium hydrogen sulfate (17.0 mg 0.05 mmol) for 20 h 50 min to give a mixture of *cis*-1d and 4d and several other compounds. The yields of *cis*-1d (18%) and 4d (36%) were determined by ¹H-NMR spectroscopy using 1-chloro-4-(trifluoromethyl)benzene as an internal standard. Benzaldehyde (2e)²⁷ and benzoic acid (3e). ²⁸ Following the standard procedure, 1e (214 mg, 1.00 mmol) was

reacted with sodium hypochlorite pentahydrate (500 mg, 3.0 mmol) and tetrabutylammonium hydrogen sulfate (35.1 mg 0.10 mmol) to produce the crude product as a mixture of 2e and 3e. The yields of 2e (40%) and 3e (35%) were determined by GC.

p-Methoxybenzaldehyde (2f)²⁹ and p-methoxybenzoic acid (3f). ³⁰ Following the standard procedure, 1f (274 mg, 1.00 mmol) was reacted with sodium hypochlorite pentahydrate (500 mg, 3.0 mmol) and ACS Paragon Plus Environment

tetrabutylammonium hydrogen sulfate (35.1 mg 0.10 mmol) to produce the crude product as a mixture of 2f and 3f. The yields of 2f (68%) and 3f (7%) were determined by GC.

3-Phenylpropanal (2g)³¹ and **3-phenylpropanoic acid (3g).** ³² Following the standard procedure, **1g** (270 mg, 1.00 mmol) was reacted with sodium hypochlorite pentahydrate (500 mg, 3.0 mmol) and tetrabutylammonium hydrogen sulfate (35.1 mg 0.10 mmol) for 6 h to produce the crude product as a mixture of **2g** and **3g**. The yields of **2g** (2%) and **3g** (76%) were determined by GC.

Benzaldehyde (2e), benzoic acid (3e) and 1-phenylpentan-1-one (2h). ³³ Following the standard procedure, **1h** (270 mg, 1.00 mmol) was reacted with sodium hypochlorite pentahydrate (500 mg, 3.0 mmol) and tetrabutylammonium hydrogen sulfate (35.1 mg 0.10 mmol) to produce the crude product as a mixture of **2e**, **3e** and **2g**. The yields of **2e** (40%), **3e** (35%) and **2g** (quant.) were determined by GC.

Benzophenone (2i).³⁴ Following the standard procedure, **1i** (367.5 mg, 1.00 mmol) was reacted with sodium hypochlorite pentahydrate (500 mg, 3.0 mmol) and tetrabutylammonium hydrogen sulfate (35.1 mg 0.10 mmol) to produce crude product **2i**. Purification by silica gel column chromatography using hexane ethyl acetate = 10:1 (v/v) as the eluent gave pure **2i** (297.1 mg, 82%) as colorless crystals. m.p.: 48 °C (lit.³⁴: 47.8 49.4 °C). ¹H-NMR (CDCl₃): δ (ppm) 7.47 7.50 (m, 4H), 7.57 7.61 (m, 2H), 7.80 7.82 (m, 4H). ¹³C{¹H} -NMR (CDCl₃): δ (ppm) 128.2, 130.0, 132.4, 137.6, 196.7.

Cyclopropylphenylmethanone. (2j)³⁵ Following the standard procedure, 1j (147.5 mg, 0.50 mmol) was reacted with sodium hypochlorite pentahydrate (250 mg, 1.5 mmol) and tetrabutylammonium hydrogen sulfate (17.0 mg 0.05 mmol) to produce crude product 2j. Purification by silica gel column chromatography using hexane ethyl acetate = 15:1 (v/v) as the eluent gave pure 2j(130.1 mg, 89%) as a colorless oil. ¹H-NMR (CDCl₃): δ (ppm) 1.02 1.07 (m, 2H), 1.23 1.27 (m, 2H), 2.68 (septet, *J*=4.1 Hz, 1H), 7.48 (m, 2H), 7.56 (m, 1H), 8.02 (m, 2H). ¹³C {¹H} }-NMR (CDCl₃): δ (ppm) 11.6, 17.1, 128.0, 128.5, 132.7, 138.0, 200.6.

Standard experimental procedure for glycol cleavage using Pb(OAc)₄: Lead tetraacetate (975 mg, 2.2 mmol) was added to a stirred solution of glycol 1a (170.1 mg, 1.00 mmol) in dichloromethane (10 mL) at room ACS Paragon Plus Environment

temperature, and stirred for 117 h under the same conditions. Water (3 mL) was added, and the reaction mixture was extracted with dichloromethane (40 mL×2). The combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated *in vacuo*. The residue was purified by silica gel column chromatography using hexane ethyl acetate = 10:1 v/v as the eluent to give 1,6-cyclodecanedione **2a** (56.5 mg, 33%) as colorless crystals. This product was identical to **2a** prepared using sodium hypochlorite pentahydrate.

[1,1'-Biphenyl]-2,2'-diylbis(phenylmethanone) (2b). According to the standard procedure, 1b (199 mg, 0.55 mmol) was reacted with lead tetraacetate (536 mg, 1.20 mmol) for 3 h to produce 2b (181 mg, 92%) as colorless crystals. This product was identical to 2b prepared using sodium hypochlorite pentahydrate.

(15,35)-3-Acetyl-2,2-dimethylcyclobutaneacetaldehyde (2c) and (15,35)-3-acetyl- 2,2dimethylcyclobutaneacetic acid (3c). Following the standard procedure, 1c (85.0 mg, 0.50 mmol) was reacted with lead tetraacetate (488 mg, 1.1 mmol) for 25 h to produce 3c, accompanied by a trace amount of 2c and several byproducts. The crude mixture was dissolved in ethyl acetate (30 mL) and extracted with saturated sodium bicarbonate (10 mL). The combined saturated sodium bicarbonate layers were acidified using concentrated hydrochloric acid and extracted with ethyl acetate (30 mL × 2). The combined organic layers were washed with brine (5 mL × 2), dried over anhydrous sodium sulfate, filtered and evaporated to provide 3c (26.6 mg, 27%) as colorless crystals. This product was identical to the 3c prepared using sodium hypochlorite pentahydrate. Since the amount of 2c produced was very small and accompanied by many other by-products, it was impossible to obtain 2c in its pure form from the residual ethyl acetate solution.

Reaction with *trans*-1d: 3 β -Acetoxy-5-oxo-5,6-secocholestan-6-al (2d). Following the standard procedure, *trans*-1d (231 mg, 0.50 mmol) was reacted with lead tetraacetate (488 mg, 1.1 mmol) for 25 h to produce the crude product. Purification by silica gel column chromatography using hexane ethyl acetate = 5:1 \rightarrow 2:1 (v/v) as the eluent gave 2d (69.4 mg, 30%) as a colorless oil. This product was identical to 2d prepared using sodium hypochlorite pentahydrate.

Reaction of *cis***-1d: 3** β **-Acetoxy-5-oxo-5,6-secocholestan-6-al (2d).** Following the standard procedure, *cis***-1d** (232 mg, 0.50 mmol) was reacted with lead tetraacetate (508 mg, 1.1 mmol) in dichloromethane (5 mL) for 15 min to produce **2d**. Purification by silica-gel column chromatography using hexane ethyl acetate = 5:1 \rightarrow 2:1 (v/v) as the eluent gave **2d** (230 mg, quant.) as a colorless oil. This product was identical to **2d** prepared using sodium hypochlorite pentahydrate.

Glycol cleavage of an equimolar mixture of *cis*-1d and *trans*-1dwith NaOCI-5H₂O: Sodium hypochlorite pentahydrate (45.7 mg, 0.25 mmol) was added to a stirred solution of *cis*-1d (115.8 mg, 0.25 mmol), *trans*-1d (116.0 mg, 0.25 mmol) and tetrabutylammonium hydrogen sulfate (17.3 mg 0.25 mmol) in dichloromethane (10 mL) and water (3 mL) at 0 °C, and the resulting mixture was stirred for 40 min at room temperature. Water (3 mL) was added, and the react ion mixture was extracted with dichloromethane (40 mL × 2). The combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated *in vacuo* to produce the crude product as a mixture of *cis*-1d, *trans*-1d and 2d. The yields of *cis*-1d (95%), *trans*-1d (30%) and 2d (70%) were determined by ¹H-NMR spectroscopy using 1-chloro-4-(trifluoromethyl)benzene as an internal standard.

Glycol cleavage of *trans*-1a using aq. HOCl prepared from NaOCl·5H₂O, water and hydrochloric acid: The pH was adjusted to 5.9 by adding conc. hydrochloric acid to aq. NaOCl prepared upon dissolving NaOCl·5H₂O (248 mg, 1.5 mmol) in water (1.5 mL). The resulting aq. HOCl was added to a stirred solution of *trans*-1a (85 mg, 0.5 mmol) in dichloromethane (5 mL) at room temperature. The resulting suspension was stirred for 1.5 h under the same conditions. The reaction mixture was cooled to 0 °C, diluted with water (10 mL) and extracted with dichloromethane (20 mL \times 2). The combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated *in vacuo* to provide the crude product as a colorless solid. Analysis of the crude product by ¹H-NMR spectroscopy using 1-chloro-4-(trifluoromethyl)benzene as an internal standard indicated that the yield of **2a** was 62%.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

¹H-NMR and ¹³C{¹H}-NMR spectra of the obtained products. (PDF)

GC trace for reactions of 1e, 1f, 1g and 1h. (Table 3, runs 1 4), (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: kirihara.masayuki@sist.ac.jp.

ACKNOWLEDGMENT

This work was financially supported by JSPS KAKENHI Grant Number JP23590024.

REFERENCES

(1) (a) Balskus, E. P.; Méndez-Andino, J.; Arbit R. M.; Paquette, L A. Intercalation of Multiple Carbon Atoms between the Carbonyls of α-Diketones. *J. Org. Chem.* 2001, *66*, 6695–6704. (b) Méndez, J.; Paquette, L. A. Tandem Deployment of Indium-, Ruthenium-, and Lead-Promoted Reactions. Four-Carbon Intercalation between the Carbonyl Groups of Open-Chain and Cyclic α-Diketones. *Org. Lett.*, 2000, *2*, 1263–1265. (c) Inoue, M.; Sato T.; Hirama M. Total Synthesis of Merrilactone A. *J. Am. Chem. Soc.*, 2003, *125*, 10772–10773. (d) Inoue, M.; Lee, N.; Kasuya, S.; Sato, T.; Hirama, M.; Moriyama, M.; Fukuyama, Y. Total Synthesis and Bioactivity of an Unnatural Enantiomer of Merrilactone A: Development of an Enantioselective Desymmetrization Strategy. *J. Org. Chem.*, 2007, *72*, 3065–3075.

(2) Recently published papers on glycol-cleavage: (a) Zhou, Z.; Liu, M.; Lv, L.; Li, C. Silver(I)-Catalyzed Widely Applicable Aerobic 1,2-Diol Oxidative Cleavage. *Angew. Chem. Int. Ed.* 2018, 57, 2616–2620. (b) Miyamoto, K.; Yamashita, J.; Narita, S.; Sakai, Y.; Hirano, K;. Saito, T.; Wang, C.; Ochiai M;. Uchiyama, M. Iodoarene-catalyzed oxidative transformations using molecular oxygen. *Chem. Commun.* 2017, 53, 9781–9784. (c) Escande, V.; Lam, C. H.; Coish, P.; Anastas, P. T. Heterogeneous Sodium-Manganese Oxide Catalyzed Aerobic Oxidative Cleavage of 1,2-Diols. *Angew. Chem. Int. Ed.* 2017, *56*, 9561–9565. (d) Obara, N.; Hirasawa, S.; Tamura, M.; Nakagawa, Y.; Tomishige, K. Oxidative Cleavage of Vicinal Diols with the Combination of Platinum and Vanadium Catalysts and Molecular Oxygen. *Chem. Cat. Chem.* 2016, *8*, 1732–1738. (e) García, N.; Rubio-Presa, R.; García-García, P.; Fernández-Rodríguez, M. A.; Pedrosa, M. R.; Arnáiza, F. J.; Sanz, R. A Selective, Efficient and Environmentally Friendly Method for the Oxidative Cleavage of Glycols. *Green Chem.* 2016, *18*, 2335-2339. (f) Shibuya, M.; Shibuta, T.; Fukuda, H.; Iwabuchi, Y. Nitroxyl Radical/Phl(OAc)₂: One-Pot Oxidative Cleavage of Vicinal Diols to (Di)Carboxylic Acids. *Org. Lett.* 2012, *14*, 5010–5013.

(3) Reviews of glycol-cleavage: (a) Schmidt, A. C.; Stark, C. B. W. The Glycol Cleavage in Natural Product Synthesis: Reagent Classics and Recent Advances. *Synthesis* 2014, *46*, 3283–3308. (b) T. K. M. Shing, in *Comprehensive Organic Synthesis; Vol.* 7, ed. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, p. 703.

(4) (a) R.Criegee, in *Oxidation in Organic Chemistry*; ed. K. Wiberg, Academic Press: New York, 1965, Part A.
(b) G. M. Rubottom, in *Oxidation in Organic Chemistry*, *Vol. 5*, ed. W. S. Trahanovsky, Academic Press, New York, 1982, Part D, p. 1.

(5) (a) Nicolaou, K. C.; Adsool V. A.; Hale, C. R. H. An Expedient Procedure for the Oxidative Cleavage of Olefinic Bonds with PhI(OAc)₂, NMO, and Catalytic OsO₄. *Org. Lett.* 2010, *12*, 1552–1555. (b) Kasun, Z. A.; Geary, L. M.; Krische, M. J. Ring expansion of cyclic 1,2-diols to form medium sized rings via ruthenium catalyzed transfer hydrogenative [4+2] cycloaddition. *Chem. Commun.* 2014, *50*, 7545–7547.

(6) We developed the aerobic oxidative cleavage of bis-tertiary glycols catalyzed by oxytrichlorovanadium (VOCl₃) as an environmentally benign reaction (Kirihara, M.; Yoshida, K.; Noguchi, T.; Naito, S.; Matsumoto, N.; Ema, Y.; Torii, M.; Ishizuka, Y.; Souta, I. Effective cleavage of ditertiary glycols via vanadium(V)-catalyzed aerobic oxidation. *Tetrahedron Lett.* 2010, *51*, 3619–3622). Therefore, a VOCl₃-catalyzed aerobic oxidative cleavage of 1a was examined. Contrary to our expectation, 1a proved to be unreactive under catalytic VOCl₃-O₂ conditions. The reaction of 1a with an excess of VOCl₃ was similarly unsuccessful. Thus, we believe that highly hindered bicyclic glycols such as 1a do not react with vanadium compounds.

(7) Khurana, J. M.; Sharma, P.; Gogia, A.; Kandapal, B. M. OXIDATIVE CLEAVAGE OF 1,2-DIOLS, α-KETOLS AND 1,2-DIKETONES WITH AQUEOUS SODIUM HYPOCHLORITE. *Org. Prep. Proceed. Int.* 2007, *39*, 185–189.

(8) (a) Kirihara, M.; Okada, T.; Sugiyama, Y.; Akiyoshi, M.; Matsunaga, T.; Kimura, Y. Sodium Hypochlorite Pentahydrate Crystals (NaOCl·5H₂O): A Convenient and Environmentally Benign Oxidant for Organic Synthesis. *Org. Process Res. Dev.* 2017, *21*, 1925–1937. (b) Okada, T.; Asawa, T.; Sugiyama, Y.; Iwai, T.; Kirihara, M.; Kimura, Y. Sodium hypochlorite pentahydrate (NaOCl·5H₂O) crystals; An effective re-oxidant

for TEMPO oxidation. *Tetrahedron* **2016**, *72*, 2818. (c) Okada, T.; Asawa, T.; Sugiyama, Y.; Kirihara, M.; Iwai T.; Kimura, Y. Sodium Hypochlorite Pentahydrate (NaOCl·5H₂O) Crystals as an Extraordinary Oxidant for Primary and Secondary Alcohols. *Synlett* **2014**, *25*, 596–598. (d) Okada, T.; Matsumuro, H.; Kitagawa, S.; Iwai, T.; Yamazaki, K.; Kinoshita, Y.; Kimura, Y.; Kirihara, M. Selective Synthesis of Sulfoxides through Oxidation of Sulfides with Sodium Hypochlorite Pentahydrate Crystals. *Synlett* **2015**, *26*, 2547–2552. (e) Okada, T.; Matsumuro, H.; Iwai, T.; Kitagawa, S.; Yamazaki, K.; Akiyama, T.; Asawa, T.; Sugiyama, Y.; Kimura, Y.; Kirihara, M. An Efficient Method for the Preparation of Sulfonyl Chlorides: Reaction of Disulfides or Thiols with Sodium Hypochlorite Pentahydrate (NaOCl·5H₂O) Crystals. *Chem. Lett.* **2015**, *44*,

185 187. (f) Kitagawa, S.; Mori, H.; Odagiri, T.; Suzuki, K.; Kikkawa, Y.; Osugi, R.; Takizawa, S.; Kimura
Y.; Kirihara, M. A Concise, Catalyst-Free Synthesis of Davis' Oxaziridines using Sodium Hypochlorite. *SynOpen* 2019, *3*, 21 25.

(9) (a) Sudalai, A.; Khenkinb A.; Neumann, R. Sodium periodate mediated oxidative transformations in organic synthesis. *Org. Biomol. Chem.* 2015, *13*, 4374 4394. (b) Rezaeivalla, M. Sodium Periodate (NaIO₄)–A Versatile Reagent in Organic Synthesis. *Synlett* 2006, 3550 3551. (c) Wolfrom, M. L.; Yosizawa, Z. Synthesis of 2-Amino-2-deoxy-L-Arabinose (L-Arabinosamine). J. *Am. Chem. Soc.* 1959, *81*, 3477 3478.

 (10) Glycol cleavage of *cis*- and *trans*-1a using Pb(OAc)₄ in acetic acid has been examined by Griegee et al. They reported that *cis*-1a reacted 100 times faster than *trans*-isomer; Criegee, R.; Büchner, E.; Walther, W.
 Die Geschwindigkeit der Glykolspaltung mit BleiIV-acetat in Abhängigkeit von der Konstitution des Glykols. *Chem. Ber.* 1940, *73*, 571-575.

(11) The reaction was not complete when less than 3 equivalents of NaOCl·5H₂O was used. Since HOCl is not a stable compound, some of HOCl is decomposed before it participates in the glycol cleavage reaction.

(12) (a) Buist, G. J.; Bunton, C. A.; Miles, J. H. The Mechanism of Oxidation of α-Glycols by Periodic Acid. Part II. Propane-1:2-, 2-Methylpopune-1:2-, Butune-2:3- and 2-Methylbutane-2:3-diol. *J. Chem. Soc.* 1957, 4567 4574. (b) Buist, G. J.; Bunton, C. A.; Miles, J. H. The Mechanism of Oxidation of α-Glycols by Periodic Acid. Part III. Spectroscopic Evidence for the Formation of an Intermediate. *J. Chem. Soc.* 1957, 4575 4579.
(c) Buist, G. J.; Bunton, C. A. The Mechanism of Oxidation of α-Glycols by Periodic Acid. Part IV. The Oxidation of 2-Methylbutane-2:3-diol at pH 4.5. *J. Chem. Soc.* 1957, 4580 4584. (d) Speer, R. J.; Mahler, H. R. Phenoxyacetaldehyde. *J. Am. Chem. Soc.* 1949, *71*, 1133. (e) Pausacker, K. H. The oxidation of glycols by aryl iodosoacetates. A kinetic study. *J. Chem. Soc.* 1953, 107 109.

(13) Khurana et al proposed a similar mechanism for glycol cleavage using conventional aq. NaOCl.⁷

(14)

(15)

(16)

 Criegee, R.; Höger, E.; Huber, G.; Kruck, P.; Marktscheffel, F.; Schellenberger, H. Die Geschwindigkeit

Varea, T.; Medio, M.; Ballesteros, R.; Oniga, O.; Asensio, G. C-C Bond Cleavage in O-Centered Mono-

Hobuß, D.; Hasenjäger, J.; Driessen-Hölscher, B.; Baro, A.; Axenov, K. V.; Laschat, S.; Frey, W. Novel

and Dianions Derived from α-Dicarbonyl Compounds. Tetrahedron 1995, 36, 10093 10100.

der Glykolspaltung mit Bleitetraacetat in Abhängigkeit von Konstitution und Konfiguration des Glykols. (III.

Mitteilung). Liebigs Ann. Chem. 1956, 599, 81 124.

α-	pinene-derived mono- and bisphosphinite ligands: Synthesis and application in catalytic hydrogenation.
In	org. Chim. Acta. 2011, 374, 94 103.
(17)	Carvalho, J. F. S.; Silva, M. M. C.; SáeMelo, M. L. Efficient trans-diaxial hydroxylation of Δ^5 -steroids.
Te	etrahedron 2010 , 66, 2455 2462.
(18)	Xu, X.; Hirao, T. Vanadium-Catalyzed Pinacol Coupling Reaction in Water. J. Org. Chem. 2005, 70, 8594
8	596.
(19)	Muramatsu, Y.; Kanehira, S.; Tanigawa, M.; Miyawaki, Y.; Harada, T. Catalytic Enantioselective
A	lkylation and Arylation of Aldehydes by Using Grignard Reagents. Bull. Chem. Soc. Jpn. 2010, 83, 19 32.
(20)	Tanaka, N.; Kasai, T. Reactions of 5,6-Dilithioacenaphthene-N-N,N',N'-Tetramethyl-1,2-ethanediamine
C	omplex with α -Diketones. II. Competitive Oxophilic and Carbophilic Additions and Redox Reactions. <i>Bull</i> .
C	hem. Soc. Jpn. 1981, 54, 3026–3032.
(21)	Mandell, L.; Johnston, J. C.; Day, Jr., R.A. Controlled-potential reduction of cyclopropyl ketones. J. Org.
C	hem. 1978, 43, 1616–1618.
(22)	Zhang, C.; Rao, Y. Weak Coordination Promoted Regioselective Oxidative Coupling Reaction for 2,2'-
D	ifunctional Biaryl Synthesis in Hexafluoro-2-propanol. Org. Lett. 2015, 17, 4456 4459.
(23)	Barton, D. H. R.; Fontana, G. Radical Chemistry Based on (+)-cis-Pinononic and (+)-cis-Pinonic Acids.
Sy	with. Commun. 1996, 26, 1953–1968.
(24)	Fernández, F.; López, C.; Hergueta, A. R. Synthesis of a precursor of cyclobutane carbocyclic nucleosides
fre	om α-pinene. Tetrahedron 1995, 51, 10317 10322.

(25) Yates, P.; Stiver, S. Photochemistry of cyclic α -hydroxy ketones. III. The nature of the photoproduct	S
from 5-hydroxy-5 β -cholest-3-en-6-one and the relationship of these to the photoproducts from analogou	S
saturated 5-hydroxycholestan-6-ones. Can. J. Chem. 1988, 66, 1209 1218	
(26) Dauben, W. G.; Fonken, G. J. Reactions of B-Norcholesterol. J. Am. Chem. Soc. 1956, 78, 4736–4743.	
(27) H. W. Whitlock, in <i>The Aldrich Library of</i> ¹³ C and ¹ H FT NMR Spectra Edition 1, C. J. Pouchert and J	
Behnke eds., Aldrich Chemical Company, Inc., USA, 1993, vol. 2, p. 932B.	
(28) H. W. Whitlock, in <i>The Aldrich Library of ¹³C and ¹H FT NMR Spectra Edition 1</i> , C. J. Pouchert and J	Í.
Behnke eds., Aldrich Chemical Company, Inc., USA, 1993, vol. 2, p. 1063B.	
(29) H. W. Whitlock, in <i>The Aldrich Library of</i> ¹³ C and ¹ H FT NMR Spectra Edition 1, C. J. Pouchert and J	ſ.
Behnke eds., Aldrich Chemical Company, Inc., USA, 1993, vol. 2, p. 941A.	
(30) H. W. Whitlock, in <i>The Aldrich Library of</i> ¹³ C and ¹ H FT NMR Spectra Edition 1, C. J. Pouchert and J.	ſ.
Behnke eds., Aldrich Chemical Company, Inc., USA, 1993, vol. 2, p. 1079B.	
(31) H. W. Whitlock, in <i>The Aldrich Library of</i> ¹³ C and ¹ H FT NMR Spectra Edition 1, C. J. Pouchert and J	۱.
Behnke eds., Aldrich Chemical Company, Inc., USA, 1993, vol. 2, p. 925B.	
(32) H. W. Whitlock, in <i>The Aldrich Library of</i> ¹³ C and ¹ H FT NMR Spectra Edition 1, C. J. Pouchert and J	۱.
Behnke eds., Aldrich Chemical Company, Inc., USA, 1993, vol. 2, p. 985A.	
(33) H. W. Whitlock, in <i>The Aldrich Library of ¹³C and ¹H FT NMR Spectra Edition 1</i> , C. J. Pouchert and J	Γ.
Behnke eds., Aldrich Chemical Company, Inc., USA, 1993, vol. 2, p. 803B.	
(34) Jin, C.; Zhang, L.; Su, W. Direct Benzylic Oxidation with Sodium Hypochlorite Using a New Efficien	t
Catalytic System: TEMPO/Co(OAc) ₂ . Synlett 2011, 1435 1438.	
(35) House, H. O.; Prabhu, A. V.; Wilkins, J. M.; Lee, L. F. Reactions involving electron transfer. 9. Reaction	n
of lithium dimethylcuprate with alkyl aryl ketones. J. Org. Chem. 1976, 41, 3067 3076.	