

Available online at www.sciencedirect.com

CARBOHYDRATE RESEARCH

Carbohydrate Research 338 (2003) 549-555

Note

www.elsevier.com/locate/carres

Synthesis of 2,3,4,5-tetra-*O*-methyl-D-glucono-1,6-lactone as a monomer for the preparation of copolyesters

Inmaculada Molina Pinilla, Manuel Bueno Martínez, Juan A. Galbis*

Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia Química Orgánica y Farmacéutica, Universidad de Sevilla, 41071 Sevilla, Spain

Received 13 November 2002; accepted 13 December 2002

Abstract

2,3,4,5-Tetra-O-methyl-D-glucono-1,6-lactone has been prepared as a crystalline compound in acceptable yield by two different routes. An initial assay of copolymerization with L-lactide by ring-opening polymerization was carried out. The incorporation of the carbohydrate monomer into the polymer chain was about 2%. © 2003 Elsevier Science Ltd. All rights reserved.

Keywords: D-Gluconic acid, protected; D-Glucono-1,6-lactone, protected; L-Lactide; Ring-opening polymerization; Copolyesters

1. Introduction

We have previously described several carbohydratebased-monomers which have been used for the synthesis of various polyamides¹ and poly(ester amide)s² derived from sugars such as L-arabinose, D-xylose or D-glucose. In this paper we prepared, by two different routes, the 2,3,4,5-tetra-O-methyl-D-glucono-1,6-lactone (11), which can be used as a monomer in the preparation of copolyesters.

Ring-opening polymerization (ROP) of lactones, using different types of catalyst, has been used for the preparation of aliphatic polyesters,³ a type of degradable polymers most widely used in the biomedical field,⁴ as drug delivery systems, biodegradable sutures, resorbable prostheses, etc. Homopolymerization and copolymerization of ε -caprolactone,⁵ some functionalized ε -caprolactone,⁶ and other cyclic ester⁷—functionalized or not—are well known. However, as substitution of the lactone ring increases, homopolymerization of the monomer becomes more difficult. In our hands, attempts at homopolymerization of the tetra-substituted ε -caprolactone **11** failed, but its copolymerization with L-lactide seemed promising. A preliminary copolymerization experiment is reported in this paper.

2. Results and discussion

First, the synthesis of 10 was achieved (Scheme 1) by protection of the primary alcohol group of methyl α -D-glucopyranoside as its triphenylmethyl derivative 2 followed by treatment with methyl iodide-potassium hydroxide in dimethyl sulfoxide to give the tetra-Omethyl derivative 3. Removal of the 6-O-triphenylmethyl group in 3 by acid hydrolysis led to 4 which was then treated with sodium hydride and benzyl bromide in THF, giving 5 in good yield (about 70% from 3). Acid hydrolysis of 5 followed by oxidation⁸ with acetic anhydride and dimethyl sulfoxide gave 6-O-benzyl-2,3,4-tri-O-methyl-D-glucono-1,5-lactone (7). Opening of the lactone ring in 7 and methylation of HO-5 was performed with methyl iodide and potassium hydroxide in THF to give 6-O-benzyl-2,3,4,5-tetra-O-methyl-Dgluconic acid (8, 75%), the methyl ester of which 9 can be isolated from the reaction mixture (see Section 3) or converted into 8 by hydrolysis. Removal of the 6-Obenzyl group was achieved by acid hydrolysis or by hydrogenation with Pd-10% C in ethyl acetate to give 10 in about 90% yield.

Compound 10 was also prepared by a different route (Scheme 2) starting with D-glucose diethylmercaptal

^{*} Corresponding author. Tel.: + 34-954556736; fax: + 34-954556737

E-mail address: jgalbis@us.es (J.A. Galbis).

Scheme 1.

(12).⁹ Thus, protection of the primary hydroxyl group as the triphenylmethyl derivative 13, followed by methylation of the secondary hydroxyl groups by treatment with methyl iodide and sodium hydride in dry DMF, gave 14 in good yield. Removal of the diethylmercaptal protecting group¹⁰ and oxidation¹¹ of the resulting aldehyde led to 6-O-triphenylmethyl-2,3,4,5-tetra-O-methyl-D-gluconic acid (16), which was easily transformed into 10 by deprotection of the triphenylmethyl group under acid conditions. This route is shorter, and enabled us to obtain the ω-hydroxyacid 10 in a higher yield. We could not obtain elemental analyses within the accepted limits for some of these oily and highly hygroscopic compounds. However, the obtained analyses could be adjusted by addition to the formulae of small proportions of water. These compounds were characterized by NMR and HRMS.

Both routes include a final lactonization step of the ω -hydroxyacid into the 1,6-D-gluconolactone 11. There

are various methods to achieve this purpose, such as those of Corey,¹² Mukaiyamam,¹³ Masamune,¹⁴ or Mitsunobu.¹⁵ In our case, **10** was converted to the corresponding 1,6-lactone by treatment¹⁶ of the ω -hydroxyacid with DCC and DMAP in the presence of 4-(dimethylamino)pyridine hydrochloride. By this procedure, **11** was obtained in good yield as a crystalline compound whose analytical and spectroscopic data were in agreement with the assigned structure.

Copolymerization of L-lactide 17 with hydrophilic cyclic monomers offers the possibility of modulating the crystallinity of the copolymer and thereby controlling its degradability. We have carried out a preliminary experiment of copolymerization by bulk ROP of a mixture of L-lactide and 11, in a ratio of 5:1, using tin (II) 2-ethylhexanoate (SnOct₂) as initiator (Scheme 3). From the copolymerization reaction mixture, we obtained two copolymers containing different amounts of the carbohydrate monomer, as was determined by

Scheme 3.

Table 1 Some physical characteristics of copolymers **18a** and **18b**

Copolymer	Yield (%)	Sugar ^a monomer (%)	$M_{ m w}{}^{ m b}$	$M_{\rm n}^{\ \rm b}$	$M_{ m w}/M_{ m n}$ ^b	$T_{\rm g}$ ^c (°C)	Tm ° (°C)	$\Delta H^{ m c} ({ m J g}^{-1})$
18a	12	1.3	23,700	20,100	1.2	57.4	155.3 149.8	33.1
18b	29	2.2	18,500	14,900	1.2	55.9	144.4 136.0	12.5

^a Determined by ¹H NMR.

^b Determined by GPC, using THF as solvent.

^c Measured by DSC, second heating.

NMR studies. The first fraction (copolymer 18a) was insoluble in acetone and had the higher molecular weight and the lower content in sugar monomer (Table 1). The second fraction (copolymer 18b) was soluble in acetone. Both copolymers had similar infrared and ¹H NMR spectra. IR spectra contained the typical ester absorption band at 1753 cm⁻¹. In the ¹H NMR spectra, the characteristic signals of the lactic monomer were detected at 5.14 (CH, quartet) and 1.55 (CH₃, doublet). Besides these signals, those corresponding to the carbohydrate monomer appeared between 4.5 and 3.3 ppm (see Section 3 for a more detailed assignment). Thermal properties of the two copolymers were similar, as determined by differential scanning calorimetry (DSC). In both cases, thermograms corresponding to the second heating run displayed an exothermic crystallization peak at 117 °C and two close endothermic melting peaks. Copolymer 18b showed lower Tg and Tm values than 18a (Table 1), which can be related with its higher carbohydrate monomer content. Gel permeation chromatography (GPC) of the copolymers displayed unimodal chromatograms. The results of the GPC study are also presented in Table 1.

3. Experimental

3.1. General methods

Thin layer chromatography (TLC) was performed on Silica Gel 60 F254 (E. Merck) with detection by UV light or charring with H_2SO_4 . Flash column chromatography was performed using E. Merck Silica Gel 60 (230–400 mesh). IR spectra (films or KBr discs) were recorded with a JASCO FT/IR-410 spectrometer. ¹H and ¹³C NMR spectra were recorded with a Bruker AMX-500 or a Bruker 200 AC-P spectrometers. Chemical shifts are reported as parts per million downfield from Me₄Si. Two-dimensional ¹H-¹H homonuclear and ¹³C-¹H heteronuclear shift correlation spectra were recorded with COSY, HETCOR pulse sequences. The assignments showing an asterisk may be reversed. Elemental analyses were determined in the Microanalysis Laboratories at the Universidad Complutense (Madrid) and in the CSIC, Isla de la Cartuja (Sevilla). Optical rotations were measured at 20 ± 5 °C with a Bellingham and Standley Inc., P20 polarimeter. FABMS analyses were performed on a double-focusing Kratos MS 80RFA mass spectrometer equipped with the standard FAB source. Argon was used as the bombarding gas. Spectra were obtained using nitrobenzene-NaI as a matrix. Melting points were determined by DSC using a Perkin-Elmer DSC series 6, calibrated with indium. Samples of about 2-3 mg were heated at a rate of 10 °C min⁻¹ and cooled to room temperature (rt). The peak temperatures were taken as melting points. GPC was performed at rt with a Waters apparatus equipped with a Waters 410 differential refractometer and a 60 cm PL gel 5 µm MIXED-C column, using THF as solvent. The flow rate was 1 mL min⁻¹. Calibration was based on polystyrene standards.

3.2. Methyl 2,3,4-tri-*O*-methyl-6-*O*-triphenylmethyl-α-D-glucopyranoside (3)

To a solution of **2** (10 g, 223 mmol) in dry Me_2SO (40 mL) was added KOH (15.4 g, 0.274 mmol) and IMe

(6.0 mL, 91.5 mmol). The reaction mixture was stirred at rt for 4 h, poured into an ice-water mixture and extracted with CH₂Cl₂ (4 × 30 mL). The organic phase was concentrated under diminished pressure to a residue that was dissolved in EtOH to give **3** as a solid (8 g, 73%): mp 104–106 °C; $[\alpha]_D$ + 84° (*c* 0.9, CHCl₃); IR (KBr): *v* 3061, 3032, 1597 cm⁻¹ (Arom.); NMR data (CDCl₃): ¹H δ 7.55–7.20 (m, 15H, Arom.), 4.90 (d, 1H, $J_{1,2}$ 3.5 Hz, H-1), 3.66–3.05 (m, 6H, H-2,3,4,5,6a,6b), 3.61, 3.55, 3.44, 3.27 (4s, 12H, OMe); ¹³C δ 143.99, 128.71, 127.67, 126.88 (Arom.), 97.26 (C-1), 86.19 (CPh₃), 83.67, 81.84, 79.92, 70.04 (C-2,3,4,5), 62.37 (C-6), 60.89, 60.31, 58.96, 54.88 (OMe). Anal. Calcd for C₂₉H₃₄O₆: C, 72.78; H, 7.16. Found: C, 72.79; H, 7.02.

3.3. Methyl 2,3,4-tri-O-methyl- α -D-glucopyranoside (4)

A solution of 3 (10 g, 21 mmol) in AcOH-water (4:1, 80 mL) was heated at 70 °C for 2 h. After this time, the solid precipitate was filtered out, and the filtrate concentrated under diminished pressure to give an oil that was chromatographed on a silica gel column (eluent 1:0-40:1 CH₂Cl₂-MeOH) to give 4 as an oil (4.34 g, 88%); $[\alpha]_{\rm D}$ + 162° (c 1.4, CHCl₃); IR: v 3480 cm⁻¹ (OH); NMR data (CDCl₃): ¹H δ 4.75 (d, 1H, J_{1,2} 3.5 Hz, H-1), 3.76 (dd, 1H, J_{5,6a} 2.7, J_{6a,6b} 11.8 Hz, H-6a), 3.67 (dd, 1H, J_{5.6b} 4.2 Hz, H-6b), 3.52-3.43 (m, 2H, H-3*,5), 3.12 (dd, 1H, J_{2.3} 9.5 Hz, H-2), 3.11 (t, 1H, J_{3.4} 9.5 Hz, H-4*), 3.57, 3.51, 3.47, 3.35 (4s, 12H, OMe), 2.22 (bs, 1H, OH); ${}^{13}C \delta 97.40$ (C-1), 83.29 (C-3*), 81.73 (C-2), 79.48 (C-4*), 70.56 (C-5), 61.70 (C-6), 60.71, 60.40, 58.89, 55.01 (OMe). Anal. Calcd for C₁₀H₂₀O₆: C, 50.83; H, 8.53. Found: C, 50.85; H, 8.53.

3.4. Methyl 6-*O*-benzyl-2,3,4-tri-*O*-methyl- α -D-glucopy-ranoside (5)

To a solution of 4 (1 g, 4.23 mmol) in dry THF (40 mL) was added NaH (oil suspension 60%, 0.22 g, 5 mmol) at 0 °C. After stirring at rt for 30 min, the mixture was cooled to 0 °C and benzyl bromide (0.6 mL) was added. The reaction mixture was allowed to warm to rt and the stirring was kept until the reaction finished (TLC 20:1 CH₂Cl₂–MeOH). At this point, the mixture was again cooled to 0 °C and EtOH (10 mL) was added. After stirring at rt for 30 min, the reaction mixture was diluted with EtOAc (40 mL) and washed with brine. The organic phase was dried (MgSO₄) and concentrated to dryness giving an oil that was chromatographed on a silica gel column (eluent 2:1-1:1 C₆H₁₄-EtOAc) to give **5** as an oil (1.2 g, 86%); $[\alpha]_{D}$ + 124° (*c* 1.6, CHCl₃); IR: v 3030 cm⁻¹ (Arom.); NMR data (CDCl₃): ¹H δ 7.40-7.20 (m, 5H, Arom.), 4.83 (d, 1H, J_{1,2} 3.0 Hz, H-1), 4.65 (d, 1H, J 12.1 Hz, CH₂Ph), 4.53 (d, 1H, J 12.1 Hz, CH₂Ph), 3.80-3.40 (m, 4H, H-3,5,6a,6b), 3.30–3.20 (m, 2H, H-2,4), 3.61, 3.50, 3.47, 3.40 (4s, 12H, OMe); 13 C δ 137.48, 127.65, 127.04, 126.94 (Arom.), 96.83 (C-1), 83.0, 81.10, 78.72, 69.43 (C-2,3,4,5), 72.74 (CH₂Ph), 67.97 (C-6), 60.11, 59.69, 58.20, 54.39 (OMe). Anal. Calcd for C₁₇H₂₆O₆: C, 62.56; H, 8.03. Found: C, 62.59; H, 8.10.

3.5. 6-O-Benzyl-2,3,4-tri-O-methyl-D-glucopyranose (6)

A solution of 5 (2 g, 6.13 mmol) in a mixture of AcOH (50.73 mL) and 4 N H₂SO₄ (28.44 mL) was heated at 80 °C for 1 day. After this time, the acids were neutralized with NaHCO₃ and the solution extracted with CH_2Cl_2 (6 × 40 mL). The organic phase was concentrated and the residue chromatographed on a silica gel column (eluent 2:1–1:1 C_6H_{14} –EtOAc) to give 6 (mixture of anomers) as an oil (1.8 g, 94%); IR: v 3414 (OH), 3088, 3030 cm⁻¹ (Arom.); NMR data (CDCl₃): ¹H δ 7.35–7.15 (m, 5H, Arom.), 5.28 (d, 1H, $J_{1,2}$ 3.5 Hz, H-1α), 4.61 (d, 1H, J 12.2 Hz, CH₂Phα), 4.59 (d, 1H, J 12.1 Hz, CH₂Phβ), 4.54 (d, 1H, J_{1,2} 7.7 Hz, H-1β), 4.49 (d, 1H, J 12.2 Hz, CH₂Phα), 4.50 (d, 1H, J 12.1 Hz, $CH_2Ph\beta$, 4.00–2.90 (m, 6H, H-2,3,4,5,6), 3.60, 3.47, 3.45 (3s, 9H, 3 OMeß), 3.59, 3.58, 3.44 (3s, 9H, OMea); ${}^{13}C$ δ 137.69, 128.14, 127.66, 127.46 (Arom.), 96.80 (C-1β), 90.21 (C-1α), 86.24, 84.44, 79.46, 74.13, (C-2,3,4,5β), 82.99, 81.72, 79.46, 69.60 (C-2,3,4,5α), 73.18 (CH₂Phα,β), 68.84 (C-6β), 68.58 (C-6α), 60.63, 60.54, 60.27, 60.17, 58.53 (OMe α , β). HRMS: m/z294.146154 (calcd for $[M - H_2O]^+$: 294.146724).

3.6. 6-*O*-Benzyl-2,3,4-tri-*O*-methyl-D-glucono-1,5-lactone (7)

Acetic anhydride (7.9 mL) was added to a solution of 6 (1.2 g, 3.84 mmol) in dry Me₂SO (11.8 mL). After standing at rt for 24 h, the reaction mixture was poured into ice-water (40 mL), the oil formed was separated and the aqueous phase extracted with CH_2Cl_2 (4 × 50 mL). The oil and the organic phase were combined, concentrated under diminished pressure and finally, Me₂SO was evaporated under high vacuum. The residue was chromatographed on a silica gel column (eluent 4:1 C_6H_{14} -EtOAc) to give 7 as an oil (1.0 g, 84%); $[\alpha]_{\rm D}$ + 42° (c 1.1, CHCl₃); IR: v 1757 cm⁻¹ (ester); NMR data (CDCl₃): ¹H δ 7.40–7.25 (m, 5H, Arom.), 4.62 (d, 1H, J 12.1 Hz, CH₂Ph), 4.55 (d, 1H, J 12.1 Hz, CH₂Ph), 4.40 (m, 1H, H-5), 3.82 (d, 1H, J_{2.3} 5.9 Hz, H-2), 3.74 (dd, 1H, J_{5.6} 1.8, J_{6.6'} 11.0 Hz, H-6), 3.70 (dd, 1H, J_{5,6'} 3.2 Hz, H-6'), 3.60-3.50 (m, 2H, H-3,4), 3.56, 3.52, 3.46 (3s, 12H, OMe); $^{13}C \delta$ 168.91 (CO), 137.67, 128.34, 127.72, 127.67 (Arom.), 82.51 (C-3), 79.51 (C-2), 77.85, 77.82 (C-4,5), 73.55 (CH₂Ph), 68.53 (C-6), 59.33, 58.98, 58.77 (OMe). HRMS: m/z 310.142849 (calcd for [M]⁺: 310.141639).

3.7. 6-*O*-Benzyl-2,3,4,5-tetra-*O*-methyl-D-gluconic acid (8)

Freshly crushed KOH (1.96 g, 35.09 mmol) and MeI (1.4 mL, 21.83 mmol) were added to a solution of 7 (2.0 g, 6.4 mmol) in dry THF (8.0 mL). After stirring, protected from the light, at rt for 24 h, the reaction mixture was poured into water (20 mL) and the stirring was kept for 5 h more. The aqueous solution was washed with CH_2Cl_2 (4 × 20 mL), acidified (pH 4–5, HCl), and extracted with CH_2Cl_2 (4 × 20 mL). The organic phases were combined and concentrated under diminished pressure to give 8 as an oil (0.6 g, 75%); $[\alpha]_{D}$ $+1^{\circ}$ (c 1.3, CHCl₃); IR: v 3430–2600 (COOH), 1744 cm⁻¹ (CO); NMR data (CDCl₃): ¹H δ 9.18 (bs, 1H, COOH), 7.40–7.15 (m, 5H, Arom.), 4.58 (d, 1H, J 12.1 Hz, CH₂Ph), 4.55 (d, 1H, J 12.1 Hz, CH₂Ph), 3.98 (d, 1H, J_{2,3} 5.0 Hz, H-2), 3.78 (t, 1H, H-3), 3.77 (dd, 1H, J_{5.6a} 3.9 Hz, H-6a), 3.66 (dd, 1H, J_{3.4} 4.7 Hz, J_{4.5} 6.5 Hz, H-4), 3.56 (dd, 1H, J_{5.6b} 4.1, J_{6a.6b} 10.6 Hz, H-6b), 3.43-3.39 (m, 1H, H-5), 3.53, 3.49, 3.42, 3.41 (4s, 12H, OMe); ${}^{13}C$ δ 173.39 (C-1), 137.98, 128.31, 127.73, 127.60 (Arom.), 81.59 (C-3), 80.00 (C-5), 79.27 (C-2*), 79.17 (C-4*), 73.37 (CH₂Ph), 67.59 (C-6), 60.72, 60.60, 59.28, 57.36 (OMe). Mass spectrum: m/z 294.146845 $[M - H_2O - CH_2O]^+$: (calcd for 294.146724): 235.118279 (calcd for [M – OCH₂Ph]⁺: 235.118164).

The methyl ester **9** could be isolated as an oil (30%) from the reaction mixture, by pouring it into water, and immediate extraction of the resulting solution with CH₂Cl₂. NMR data (CDCl₃): ¹H δ 7.20–7.10 (m, 5H, Arom.), 4.30 (s, 2H, CH₂Ph), 3.78 (d, 1H, $J_{2,3}$ 4.7 Hz, H-2), 3.65–3.07 (m, 5H, H-3,4,5,6), 3.53, 3.28, 3.24, 3.21, 3.20 (5s, 15H, OMe); ¹³C δ 169.92 (C-1), 137.31, 127.37, 126.74, 126.63 (Arom.), 81.17, 79.68, 79.47, 79.10 (C-2,3,4,5), 72.40 (CH₂Ph), 67.30 (C-6), 59.74, 59.62, 57.82, 56.62, 50.79 (OMe). HRMS: m/z 356.184486 (calcd for [M]+: 356.183504); 249.134113 (calcd for [M – OCH₂Ph]⁺: 249.133814).

3.8. 6-*O*-Triphenylmethyl-D-glucose diethyl dithioacetal (13)

To a solution of D-glucose diethyl dithioacetal (**12**, 2.25 g, 7.85 mmol) in dry DMF (10 mL) were added Et₃N (1.96 mL, 14 mmol) and 4-DMAP (cat.). After 10 min, chlorotriphenylmethane (2.4 g, 8.6 mmol) was added and the reaction mixture was stirred at rt overnight. The reaction mixture was quenched by adding ice-water, and the aqueous phase was extracted with CH₂Cl₂ (3×25 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated under diminished pressure. The residue was chromatographed on a silica gel column (eluent 2:1 C₆H₁₄-EtOAc) to give **21** as a solid (3.5 g, 95%): mp 65–66 °C; [α]_D + 25° (*c* 1.2, CHCl₃); IR: ν 3441 (OH), 3057, 3031, 1597 cm⁻¹

(Arom.); NMR data (CDCl₃): ¹H δ 7.60–7.20 (m, 15H, Arom.), 4.27 (bs, 1H, H-3), 4.06 (d, 1H, $J_{1,2}$ 8.6 Hz, H-1), 3.89 (m, 1H, H-5), 3.80 (dd, 1H, $J_{4,5}$ 7.0, $J_{3,4}$ 1.4 Hz, H-4), 3.65 (dd, 1H, $J_{2,3}$ 1.9 Hz, H-2), 3.36 (m, 2H, H-6a,6b), 2.68 (m, 4H, SCH₂CH₃), 1.27 (t, 6H, SCH₂CH₃); ¹³C δ 143.70, 128.60, 127.89, 127.12 (Arom.), 86.97 (CPh₃), 75.09 (C-2), 74.11 (C-4), 70.99 (C-5), 68.26 (C-3), 64.71 (C-6), 55.26 (C-1), 25.87, 23.71 (SCH₂CH₃), 14.58, 14.41 (SCH₂CH₃). Anal. Calcd for C₂₈H₃₆O₅S₂: C, 65.09; H, 7.02. Found: C, 65.31; H, 6.74.

3.9. 2,3,4,5-Tetra-*O*-methyl-6-*O*-triphenylmethyl-D-glucose diethyl dithioacetal (14)

To NaH (60% oil suspension, 0.32 g, 8.08 mmol) washed with C₆H₁₄, was added dropwise, under stirring, a solution of 13 (1.0 g, 1.9 mmol) in anhyd DMF (25 mL). The stirring was continued for 1 h at rt, and then cooled at 0 °C. Methyl iodide (1.1 mL, 17.67 mmol) was added, and the reaction mixture stirred at 0 °C until the reaction was almost completed (about 2 h, TLC eluent 2:1 C_6H_{14} -EtOAc). The reaction was quenched by adding an excess of MeOH at 0 °C, diluted with water (50 mL) and extracted with CH2Cl2 $(3 \times 30 \text{ mL})$. The combined organic extract was washed with water (30 mL), dried (MgSO₄), and evaporated under diminished pressure. The residue was chromatographed on a silica gel column (eluent 6:1 C_6H_{14} -EtOAc) to give 14 as an oil (0.8 g, 80%); $[\alpha]_{D} - 7^{\circ}$ (c 1.2, CHCl₃); IR: v 3058, 3023, 1597 cm⁻¹ (Arom.); NMR data (CDCl₃): ¹H δ 7.50–7.15 (m, 15H, Arom.), 3.93 (d, 1H, J_{1.2} 1.6 Hz, H-1), 3.79 (dd, 1H, J_{2.3} 7.0, J_{3.4} 3.1 Hz, H-3), 3.69 (dd, 1H, H-2), 3.61, 3.52, 3.46, 3.22 (s, 3H, OMe), 3.53 (dd, 1H, J_{4.5} 3.6 Hz, H-4), 3.47 (m, 1H, H-6), 3.45-3.35 (m, 1H, H-5), 3.08 (dd, 1H, J_{5.6'} 4.1, J_{6.6'} 10.2 Hz, H-6'), 2.90–2.55 (m, 4H, SCH₂CH₃), 1.30, 1.26 (t, 6H, SCH₂CH₃); 13 C δ 143.99, 128.72, 127.70, 126.90 (Arom.), 86.38 (CPh₃), 85.84 (C-2), 82.71 (C-3), 80.77 (C-5), 79.66 (C-4), 61.57 (C-6), 61.51, 61.10, 60.20, 58.08 (4 OMe), 53.17 (C-1), 25.44, 25.07 (SCH_2CH_3) , 14.54 (SCH_2CH_3) . Anal. Calcd for C₃₃H₄₄O₅S₂: C, 67.81; H, 7.53; S, 10.97. Found: C, 67.92; H, 7.75; S, 10.91.

3.10. 2,3,4,5-Tetra-*O*-methyl-6-*O*-triphenylmethyl-D-glucose (15)

To a solution of 14 (2.35 g, 4 mmol) and CaCO₃ (7.21 g, 72.1 mmol) in THF (150 mL) and water (35 mL) was added dropwise a 2 M aq soln of Hg(ClO₄)₂ (4.06 mL, 8.1 mmol). After 5 h of stirring at rt, the reaction mixture was diluted with ether (60 mL) and filtered through a plug of neutral alumina. The filtrate was washed with water (100 mL) and extracted with EtOAc (3 × 90 mL). The combined organic extract was dried,

filtered and evaporated. Flash chromatography (eluent 6:1–2:1 C₆H₁₄–EtOAc) gave **15** as an oil (1.7 g, 89%); $[\alpha]_{D} - 24^{\circ}$ (*c* 1.2, CHCl₃); IR: *v* 3058, 3024, 1597 (Arom.), 1730 cm⁻¹ (CO); NMR data (CDCl₃): ¹H δ 9.67 (s, 1H, H-1), 7.55–7.15 (m, 15H, Arom.), 3.91 (dd, 1H, $J_{2,3}$ 5.7, $J_{3,4}$ 2.1 Hz, H-3), 3.82 (d, 1H, H-2), 3.60–3.35 (m, 3H, H-4,5,6), 3.53, 3.52, 3.45, 2.96 (s, 12H, OMe), 3.03 (dd, 1H, $J_{5,6'}$ 3.7, $J_{6,6'}$ 10.3 Hz, H-6'); ¹³C δ 199.46 (C-1), 143.83, 128.71, 127.71, 126.94 (Arom.), 86.51 (CPh₃), 82.29, 81.46, 79.51, 77.89 (C-2,3,4,5), 61.40 (C-6), 59.50, 59.43, 59.24, 58.16 (OMe). Anal. Calcd for C₂₉H₃₄O₆: C, 72.78; H, 7.16. Found: C, 72.54; H, 6.83.

3.11. 2,3,4,5-Tetra-*O*-methyl-6-*O*-triphenylmethyl-D-gluconic acid (16)

A mixture of 15 (0.524 g, 1.09 mmol) and pyridinium dichromate (3 equiv 1.236 g, 3.28 mmol) in dry DMF (2 mg mL⁻¹ DMF, 1.04 mL) was stirred at rt for 20 h. After this time, the reaction mixture was diluted with water (7 mL), extracted with ether (3×25 mL), and the combined organic extract dried (MgSO₄). Removal of the solvent under diminished pressure gave 16 as a syrup (0.42 g, 77%); $[\alpha]_D - 2^\circ$ (*c* 1.2, CHCl₃); IR: *v* 3500–2500 (acid), 3058, 3030, 1597 (Arom.), 1753 cm⁻¹ (CO); NMR data (CDCl₃): ¹H δ 7.60–7.10 (m, 15H, Arom.), 3.99 (d, 1H, J_{2.3} 4.6 Hz, H-2), 3.83 (t, 1H, J_{3,4} 4.6 Hz, H-3), 3.73 (dd, 1H, J_{4.5} 6.9 Hz, H-4), 3.52, 3.48, 3.43, 3.23 (s, 12H, OMe), 3.60-3.50 (m, 1H, H-6a), 3.39 (m, 1H, H-5), 3.14 (dd, 1H, $J_{56'}$ 3.9, $J_{66'}$ 10.3 Hz, H-6b); ${}^{13}C \delta$ 173.38 (C-1), 143.86, 128.69, 127.69, 126.92 (Arom.), 86.63 (CPh₃), 81.51 (C-3), 80.61 (C-5), 79.27 (C-2), 79.13 (C-4), 61.63 (C-6), 60.61, 60.45, 59.28, 58.01 (OMe). HRMS: m/z 517.222041 (calcd for $[M + Na]^+$: 517.220224).

3.12. 2,3,4,5-Tetra-O-methyl-D-gluconic acid (10)

3.12.1. From 16. A solution of **16** (0.417 g, 0.843 mmol) in a mixture of AcOH–water (4/1, 2.5 mL) was stirred at 70 °C for 7 h. The reaction mixture was diluted with water (3 mL) and the resulting yellow precipitate filtered out. The resulting solution was concentrated under diminished pressure affording **10** (0.19 g, 90%).

3.12.2. From 8. A solution of **8** (1.47 g, 4.29 mmol) in dry EtOAc (30 mL) was hydrogenated (35 psi) at rt in the presence of 10% Pd–C (30 wt.%, 0.441 g). The suspension was stirred for 24 h at rt, filtered and the filtrate evaporated under diminished pressure to give an oil which was dissolved in water (5 mL). The aqueous solution was washed once with CH₂Cl₂ (0.5 mL), and concentrated again to give the title compound as a colorless oil (0.89 g, 82%); $[\alpha]_D + 25^\circ$ (*c* 1.2, CHCl₃); IR: ν 1734 cm⁻¹ (CO); NMR data (CDCl₃): ¹H δ 3.96

(d, 1H, $J_{2,3}$ 5.3 Hz, H-2), 3.89 (dd, 1H, $J_{5,6a}$ 3.3, $J_{6a,6b}$ 12.1 Hz, H-6a), 3.69 (dd, 1H, $J_{5,6b}$ 3.3 Hz, H-6b), 3.68 (m, 1H, H-3), 3.58 (dd, 1H, $J_{3,4}$ 4.3, $J_{4,5}$ 6.3 Hz, H-4), 3.53, 3.48, 3.47, 3.41 (s, 12H, OMe), 3.34 (ddd, 1H, H-5); ¹³C δ 173.28 (C-1), 81.64 (C-3), 80.91 (C-5), 79.97 (C-2), 79.93 (C-4), 59.37 (C-6), 60.72, 60.70, 59.10, 57.12 (OMe). HRMS: m/z 253.129554 (calcd for [M]⁺: 253.128728).

3.13. 2,3,4,5-Tetra-O-methyl-D-glucono-1,6-lactone (11)

To a mixture of dicyclohexylcarbodiimide (0.327 g, 1.58 mmol), 4-(dimethylamino)pyridine (0.290 g, 2.38 mmol), and 4-(dimethylamino)pyridine hydrochloride¹⁷ (0.250 g, 1.58 mmol) in EtOH-free CHCl₃ (20.0 mL)was added dropwise, under Ar atmosphere, a solution of 10 (0.2 g, 0.793 mmol) in EtOH-free CHCl₃ (5.0 mL). After the addition was complete, the reaction mixture was stirred for 24 h at rt. Methanol (0.95 mL) and AcOH (0.18 mL, 4.0 equiv) were added to the reaction flask and the stirring was continued for 30 min. The reaction mixture was concentrated to 5 mL, diluted with ether (25 mL), filtered, and concentrated to dryness. The residue was taken up in a minimal amount of ether and purified by flash column chromatography (eluent ether) to give 11 as a crystalline compound (0.148 g, 80%): mp 62–63 °C; $[\alpha]_{\rm D}$ – 12° (c 1.2, CHCl₃); IR: v 1750 cm⁻¹ (CO); NMR data (CDCl₃): ¹H δ 4.61 (dd, 1H, $J_{5.6}$ 4.4, $J_{6.6}$ 13.5 Hz, H-6), 4.20 (dd, 1H, J_{5,6'} 2.4 Hz, H-6'), 4.05 (d, 1H, J_{2,3} 5.2 Hz, H-2), 3.69 (m, 2H, H-3,4), 3.60 (ddd, 1H, J₄₅ 3.3 Hz, H-5), 3.50, 3.48, 3.45, 3.40 (s, 12H, OMe); 13 C δ 169.25 (C-1), 82.71 (C-2), 80.24 (C-3*), 79.62 (C-4*), 76.57 (C-5), 65.00 (C-6), 59.58, 59.29, 58.75, 57.16 (OMe). Anal. Calcd for C₁₀H₁₈O₆: C, 51.27; H, 7.74. Found: C, 51.51; H, 7.77.

3.14. Copolymerization of 11 with L-lactide

An homogeneous mixture of L-lactide (17, 154 mg, 1.07 mmol) and 2,3,4,5-tetra-O-methyl-D-glucono-1,6-lactone (11, 100 mg, 0.43 mmol) was introduced into a round-bottomed flask with 1.5% Sn(Oct)₂ as initiator. After degassing, the flask was sealed under vacuum and allowed to rotate continuously at 110 °C for 15 days. The resulting crude polymer was treated with C_3H_6O and the insoluble solid was filtered and washed several times with more C_3H_6O giving copolymer 18a (12%). The filtrate was concentrated to dryness, redissolved in the minimum amount of C₃H₆O and precipitated in EtOH. The process of dissolution/precipitation was repeated twice. Finally, the copolymer was filtrated and washed with EtOH ($5 \times 2 \text{ mL}$) to obtain copolymer **18b** (29%). IR: v 1753 cm⁻¹ (CO); NMR data (CDCl₃): ¹H δ 5.14 (q, 1H, J 7.1 Hz, CH), 4.48 (dd, 1H, J_{5.6} 2.6, J_{6.6} 12.0 Hz, H-6), 4.17 (dd, 1H, J_{5.6'} 5.8 Hz, H-6'), 4.07 (d, 1H, $J_{2,3}$ 5.0 Hz, H-2), 3.65 (bt, 1H, $J_{3,4}$ 4.9 Hz, H-3), 3.55 (bt, 1H, $J_{4,5}$ 5.1 Hz, H-4), 3.52–3.46 (m, 1H, H-5), 3.50, 3.42, 3.40, 3.37 (s, 12H, OMe), 1.56 (d, 3H, CH₃). Some other physical characteristics of these copolymers are collected in Table 1.

Acknowledgements

We thank the C.I.C.Y.T. (Comisión Interministerial de Ciencia y Tecnología) of Spain for financial support (Grants MAT99-0578-C02-01 and MAT2002-04600-C02-01).

References

- (a) Bueno, M.; Galbis, J. A.; García-Martín, M. G.; de Paz, M. V.; Zamora, F.; Muñoz-Guerra, S. J. Polym. Sci., Part A: Polym. Chem. 1995, 33, 299;
 (b) Bueno, M.; Zamora, F.; Molina, I.; Orgueira, H. A.; Varela, O.; Galbis, J. A. J. Polym. Sci., Part A: Polym. Chem. 1997, 35, 3645;
 (c) Zamora, F.; Bueno, M.; Molina, I.; Iribarren, J. I.; Muñoz-Guerra, S.; Galbis, J. A. Macromolecules 2000, 33, 2030;
 (d) García Martín, M. G.; Ruiz Pérez, R.; Benito Hernández, E.; Galbis, J. A. Carbohydr. Res. 2001, 333, 95;
 (e) Mancera, M.; Roffé, I.; Rivas, M.; Silva, C.; Galbis, J. A. Carbohydr. Res. 2002, 337, 607.
- 2. (a) Molina, I.; Bueno, M.; Galbis, J. A. *Macromolecules* 1995, 28, 3766;
 (b) Molina, I.; Bueno, M.; Zamora, F.; Galbis, J. A. J. *Polym. Sci., Part A: Polym. Chem.* 1998, 36, 67;
 (c) Molina, I.; Bueno, M.; Zamora, F.; Galbis, J. A. *Macromolecules* 2002, 35, 2977.
- 3. (a) Webster, O. W. Science 1991, 251, 887;
 (b) Aida, T. Prog. Polym. Sci. 1994, 19, 469.
- (a) Vert, M.; Feijen, J.; Albertsson, A.-C.; Scott, G.; Chiellini, E. In *Biodegradable Polymers and Plastics*; Royal Society, 1992;
 - (b) Chiellini, E.; Solaro, R. Adv. Mater. 1996, 8, 305;
 - (c) Ni, Q.; Yu, L. J. Am. Chem. Soc. 1998, 120, 1645.

- 5. (a) Kricheldorf, H. R.; Jonté, J. M.; Berl, M. *Makromol. Chem., Suppl.* **1985**, *12*, 25;
 (b) Nomura, N.; Taira, A.; Tomioka, T.; Okada, M. *Macromolecules* **2000**, *33*, 1497.
- 6. (a) Detrembleur, C.; Mazza, M.; Halleux, O.; Lecomte, Ph.; Mecerreyes, D.; Hedrick, J. L.; Jérôme, R. *Macromolecules* 2000, 33, 14;
 (b) Lecomte, Ph.; D'aloia, V.; Mazza, M.; Halleux, O.; Gautier, S.; Detrembleur, C.; Jérôme, R. *Polym. Preprints* 2000, 41, 1534;
 (c) Detrembleur, C.; Mazza, M.; Lou, X.; Halleux, O.; Lecomte, Ph.; Mecerreyes, D.; Hedrick, J. L.; Jérôme, R. *Macromolecules* 2000, 33, 7751.
- 7. (a) Hiki, S.; Taniguchi, I.; Miyamoto, M.; Kimura, Y. *Macromolecules* 2002, *35*, 2423;
 (b) Edlund, U.; Albertsson, A.-C. J. Bioact. Compat. *Polym.* 2000, *15* (3), 214.
- Kuzuhara, H.; Fletcher, H. G., Jr. J. Org. Chem. 1967, 32, 2531.
- 9. Wolfrom, M. L.; Thompson, A. Methods Carbohydr. Chem. 1963, 2, 427.
- Berkowitz, D.; Bose, M.; Pfannenstiel, T. J.; Doukov, T. J. Org. Chem. 2000, 65, 4498.
- 11. Corey, E. J.; Schmidt, G. Tetrahedron Lett. 1979, 20, 399.
- (a) Corey, E. J.; Nicolaou, K. C. J. Am. Chem. Soc. 1974, 96, 5614;
 (b) Corey, E.J.; Nicolaou, K.C.; Melvin, L.S., Jr. J. Am. Chem. Soc. 1975, 97, 653 and 654;
 (c) Corey, E. J.; Brunelle, D. J. Tetrahedron Lett. 1976, 3409.
- 13. (a) Mukaiyama, T.; Usui, M.; Saigo, K. Chem. Lett. 1976, 49;
 (b) Mukaiyama, T. Angew. Chem., Int. Ed. Engl. 1979,

(b) Mukaryania, 1. Angew. Chem., Int. Ed. Engl. 1979, 18, 707.

- 14. (a) Masamune, S.; Kamata, S.; Schilling, W. J. Am. Chem. Soc. 1975, 97, 3315;
 (b) Masamune, S.; Hayase, Y.; Schilling, W.; Chan, W. K.; Bates, G. S. J. Am. Chem. Soc. 1977, 99, 6756;
 (c) Masamune, S. Aldrichim. Acta 1978, 11, 23.
 15. (a) Kurihara, T.; Nakajima, Y.; Mitsunobu, O. Tetra-
- (a) Kumara, 1., Nakajina, 1., Mitsuhobu, O. Tetrahedron Lett. 1976, 2455;
 (b) Mitsunobu, O. Synthesis 1981, 1;
 (c) Tsutsui, H.; Mitsunobu, O. Tetrahedron Lett. 1984, 2163.
- 16. Boden, E. P.; Keck, G. E. J. Org. Chem. 1985, 50, 2394.