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Abstract

A naturally occurring nucleoside disulfide, 9-(50-deoxy-50-thio-b-D-xylofuranosyl)adenine disulfide, was first synthesized from

D-xylose over 7 steps in 20% overall yield. The key step involved Vorbrüggen glycosylation of silylated N6-benzoyladenine with

xylose diacetate moiety.

# 2012 Qiang Xiao. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
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9-(50-Deoxy-50-thio-b-D-xylofuranosyl)adenine disulfide 1 was first isolated from an Australian marine sponge,

Trachycladus laevispirulifer, by Capon and coworkers in 2010 [1]. This compound is also the third natural xylo-

nucleoside identified, while the other two are 9-(50-deoxy-50-thiomethyl-b-D-xylofuranosyl)adenine 2 [2] and 4-

amino-7-(50-deoxy-b-D-xylofuranosyl)-5-iodopyrrolo[2,3-d]pyrimidine 3 [3]. Though nucleoside disulfide 1 exhibits

little cytotoxic effects against human breast and cervical cancer cell lines in biological assays, its chemical ecology

role in enhancing survival of the producing organism remains undetermined [4]. Due to its unique chemical structure

and our consistent interest in marine nucleosides [5], the first total synthesis of nucleoside disulfide 1 is reported in the

present paper, Fig. 1.

From a synthetic point of view, the target molecule 1 could be synthesized from either adenosine or D-xylose. In our

approach, D-xylose was employed as starting material, which is ideal for diversity-oriented synthesis of nucleoside

disulfides containing different nucleobases for biological studies, Scheme 1.

To this end, crystalline 1,2-O-isopropylidene-a-D-xylofuranose 2 was prepared in 73% yield by acid-catalyzed

acetylation of D-xylose, followed by partial hydrolysis with aqueous sodium carbonate in one pot with a

modification of the reported method [6]. Then 5-OH was selectively converted into tosylate with triethylamine as

base to afford 3 in 92% yield [7]. Protection of 3-OH as benzoate gave 4 in 91% yield. Substitution of the tosylate

with thioacetate in anhydrous DMF at 80 8C afforded 5 in 97% yield [8]. The 1,2-O-isopropylidene group was

removed in acetic acid/acetic anhydride with catalytic amount of sulfuric acid to give nucleoside acceptor 6 in

88% yield [9].
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Fig. 1. Naturally occurring xylo-nucleosides.
In the key step of our synthetic route, Vorbrüggen glycosylation [10] was ultilized to attach adenine to xylose moiety.

When CH3CN/BSA/TMSOTf were used as solvent/silylating reagent/catalyst respectively, N3-, N7-, and N9-

glycosylated products were obtained in a 2:2:3 ratio (determined by HPLC). Due to the fact that 1,2-dichloroethane favors

the formation of d-complex of the persilyated purine 7 with TMSOTf [11], when it was used as the solvent instead of

CH3CN, desired nucleoside 8 was obtained in 87% yield [12]. Removal of all protecting groups with ammonia and in situ

oxidation with air afforded the target nucleoside disulfide 1 in 88% yield. All spectra data are in accordance with those of

the reported [13].

In conclusion, we developed the first efficient route for the synthesis of 9-(50-deoxy-50-thio-b-D-xylofuranosy-

l)adenine disulfide 1 from D-xylose. The D-xylose diacetates 6 were proved to be a valuable building block for

preparation of related nucleoside disulfides. Our progress in synthesis of other nucleoside disulfides and investigation

of their biological reactivity will be reported in due course.
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Scheme 1. Reagents and conditions: (a) Acetone, H2SO4, Na2CO3, r.t., 3 h, 73.1%; (b) TsCl, Py, r.t., 4 h, 92.1%; (c) BzCl, Py, r.t., 5 h, 97%; (d)

potassium thioacetate, DMF, 80 8C, 3 h, 97.5%; (e) AcOH, Ac2O, H2SO4, 24 h, 88%; (f) N6-benzoyladenine (7), BSA, TMSOTf, dichloroethane,

0 8C to 80 8C, 2 h, 87%; (g) aqueous ammonium hydroxide, methanolic ammonia, air, overnight, 88%.
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