Synthese, Charakterisierung und Kristallstrukturen von Tetraiodoferraten(III)

Markus Armbruster, Heinz W. Rotter und Gerhard Thiele*

Freiburg i. Br., Institut für Anorganische und Analytische Chemie und Materialforschungs-Zentrum der Universität

Bei der Redaktion eingegangen am 28. August 1995.

Professor Wolfgang Jeitschko zum 60. Geburtstag gewidmet

Inhaltsübersicht. Die extrem luft- und feuchtigkeitsempfindlichen Tetraiodoferrate MFeI₄ mit M = K, Rb und Cs entstehen bei Umsetzung von Fe, MI und I₂ bei 300 °C in geschlossenen Quarzampullen. Die wesentlich stabileren Alkylammoniumtetraiodoferrate NR₄FeI₄ mit R = H, C₂H₅, n-C₃H₇, n-C₄H₉ und n-C₅H₁₁ sind durch Umsetzung von Eisenpulver mit NR₄I und Iod in Nitromethan zu erhalten. Die Ramanspektren und UV/Vis-Spektren der schwarzen Verbindungen zeigen, daß in den Strukturen jeweils tetraedrische [FeI₄]⁻-Ionen vorliegen. Die Kristallstruktur des monoklinen CsFeI₄ (CsTII₄-Typ, RG P2₁/c; a = 7,281(1) Å; b = 17,960(3) Å; c = 8,248(2) Å; β = 107,35(15)°) wird aus tetraedrischen [FeI₄]⁻-Ionen und CsI₁₁-Polyedern aufgebaut. In der Kristallstruktur des orthorhombischen (n-C₅H₁₁)₄NFeI₄ (RG Pnna; a = 20,143(4) Å; b = 12,683(3) Å; c = 12,577(3) Å) sind tetraedrische [(n-C₅H₁₁)₄N]⁺-Ionen und [FeI₄]⁻-Ionen enthalten.

Preparation, Characterization, and Crystal Structures of Tetraiodoferrates(III)

Abstract. The extremely air and moisture sensitive tetraiodoferrates MFeI₄ with M = K, Rb and Cs have been synthesized by reaction of Fe, MI and I₂ at 300 °C in closed quartz ampoules. The essentially more stable alkylammonium tetraiodoferrates NR₄FeI₄ with R = H, C_2H_5 , $n-C_3H_7$, $n-C_4H_9$ and $n-C_5H_{11}$ can be obtained by reaction of Fe, NR₄I and I₂ in nitromethane. The Raman and UV/Vis-spectra of the black compounds show the existence of tetrahedral [FeI₄]⁻ ions in the structures. The crystal structure of the monoclinic CsFeI₄ (CsTII₄ type, spgr P2₁/c; a = 7.281(1) Å; b = 17.960(3) Å; c = 8.248(2) Å; β = 107.35(15)°) is built up by tetrahedral [FeI₄]⁻ ions and CsI₁₁ polyhedra. The crystal structure of the orthorhombic (n-C₅H₁₁)₄NFeI₄ (spgr Pnna; a = 20.143(4) Å; b = 12.683(3) Å; c = 12.577(3) Å) contains tetrahedral [(n-C₅H₁₁)₄N]⁺ ions and [FeI₄]⁻ ions, respectively.

Keywords: Tetraiodoferrate(III); Crystal Structure; Raman Spectra

Einleitung

Halogenoferrate(III) von Alkalimetallen sollten ähnlich wie andere Halogenometallate von redoxaktiven 3d-Übergangsmetallen gemischte Elektronen-/Ionenleiter sein und als Materialien für den Aufbau von Sensoren und von Batteriesystemen in Betracht kommen [1]. Nachdem Chloroferrate(III) seit längerer Zeit bekannt und charakterisiert sind, konnten wir kürzlich auch Tetrabromoferrate(III) MFeBr₄ der Alkalimetalle M = Li-Cs erhalten, indem wir Fe-Pulver und Alkalibromide mit Brom unter erhöhtem Brom-Druck umsetzten [2]. Entsprechende Versuche zur Darstellung von Tetraiodoferraten(III) durch Umsetzung von Fe-Pulver bei erhöhtem Iod-Druck in Gegenwart von Alkalijodiden MI führten im Falle M = K, Rb, Cs zu neuen, schwarzen Verbindungen, die aber im Falle von M = K, Rb bereits bei Druckentlastung teilweise unter Iodabspaltung zu Iodoferraten(II) MFeI₃ (M = K, Rb) abgebaut werden. Im Falle von CsFeI₄ gelang die Züchtung von Einkristallen, so daß eine vollständige Charakterisierung durch eine Röntgenstrukturanalyse möglich wurde. Bei den Reaktionsprodukten mit KI und RbI deuteten die charakteristischen Banden des tetraedrischen FeI₄-Anions darauf hin, daß Tetraiodoferrate(III) gebildet werden, jedoch konnten bisher keine Einkristalle erhalten werden. Bei Umsetzungen mit LiI und NaI wurden lediglich Gemische der Alkaliiodide mit FeI₂ erhalten.

Die Existenz von Tetraiodoferraten(III) war bisher auf Alkylammoniumsalze NR₄FeI₄ (R = Et, n-Bu) beschränkt, die durch Umsetzung von Fe(CO)₅ oder Fe-Metall mit I₂ und NR₄I in THF erhalten wurden. Eine Strukturanalyse wurde für NEt₄FeI₄ publiziert [3-5]. Wir synthetisierten diese und weitere Iodoferrate(III) mit Alkylammoniumkationen, um verläßliche Vergleichsdaten zur Raman- und UV/Vis-spektroskopischen Charakterisierung zu erhalten. Eine Röntgenstrukturanalyse wurde mit Einkristallen von (n-C₅H₁₁)₄NFeI₄ durchgeführt.

Experimentelles

Synthese von Alkaliiodoferraten MFeL. Zur Synthese von Iodoferraten MFeI₄ (M = K, Rb, Cs) wurden als Edukte sorgsam getrocknete Proben von (5 mmol) Fe-Pulver und (5 mmol) Alkaliiodid mit einem Überschuß (ca. 25 mmol) von doppelt sublimiertem Iod in eine Quarzampulle (Volumen ca. 4 ml) eingeschmolzen. Die Ampulle wurde im Autoklaven vier Tage lang auf 300 °C erhitzt (Dampfdruck über flüssigem Iod bei 300 °C ca. 9,7 bar) und dann langsam (ca. 10 K pro Stunde) auf Raumtemperatur abgekühlt. Es entstanden metallisch glänzende schwarze Substanzen, die bereits mit Spuren von Wasser oder bei Kontakt mit polaren Lösungsmitteln unter Zersetzung reagierten. Weil die Verbindungen auch in unpolaren Lösungsmitteln teilweise unter Iodabgabe zersetzt werden, war die Züchtung von Einkristallen aus Lösung nicht möglich. CsFeI4 konnte aber aus einer Iodschmelze bei 200 °C (Dampfdruck von Iod bei 200 °C ca. 1,5 bar) in einer Ampulle umkristallisiert werden, wobei schwarze, sehr luft- und feuchtigkeitsempfindliche Nadeln zu erhalten waren. Alle Präparationen wurden in einer Glovebox unter Argon ausgeführt.

Synthese von Verbindungen NR₄Fel₄. Die Synthese der Tetraalkylammoniumtetraiodoferrate(III) erfolgte aus Eisenpulver, Iod und NR₄I (R=H, C₂H₅, n-C₃H₇, n-C₄H₉ und n-C₅H₁₁) in Nitromethan. Hierzu wurden 112 mg Eisen (2 mmol), 360 mg Iod (3 mmol) und 2 mmol NR₄I unter vorsichtigem Erwärmen (Explosionsempfindlichkeit des Lösungsmittels) in 100 ml Nitromethan gelöst. Dann wurde die schwarze Lösung bei 70°C zwei Stunden lang gerührt und anschließend langsam abgekühlt. Anschließend wurde die Lösung langsam eingeengt (mehrtägige Verdampfungskristallisation), wobei schwarze luftund druckempfindliche Nadeln auskristallisierten. In Pulverform sind die Verbindungen auch durch direkte Reaktion der Edukte in einer Quarzampulle bei 200 °C (ca. 24 h lang) zu erhalten. Die Verbindung (n-C₅H₁₁)₄NFeI₄ ist erheblich weniger luftempfindlich als die anderen Iodoferrate(III) mit kleineren Kationen. Sie ist in unpolaren Lösungsmitteln weitaus stabiler in bezug auf die Abgabe von Iod und zersetzt sich erst bei erheblich höheren Temperaturen, so daß sie zur spektroskopischen Charakterisierung der Tetraiodoferrate(III) besonders geeignet ist.

Thermische Analyse von CsFeI₄. Zur Analyse wurde der thermische Abbau vom CsFeI₄ im Argon-Strom thermographimetrisch registriert (Simultan-Thermoanalyzer Netzsch STA 429, Referenz Al₂O₃, Heizrate 5°/min) Die Verbindung gibt ab ca. 70 °C Iod ab und verliert in zwei Stufen (bis 132 °C 4,4%; bis 177 °C 13,6%) 18% ihres Gewichts, was dem Abbau von CsFeI₄ zu CsFeI₃ entspricht. Beim weiteren Erhitzen sublimiert FeI₂ ab, bei ca. 320 °C war noch CsI zurückgeblieben.

Pulverdaten. Die Röntgen-Pulverdiagramme wurden mit dem Pulverdiffraktometer (CuK α -Strahlung, Graphitmonochromator) der Fa. Stoe (StadiII/PL) mit ortsempfindlichem Zähler (PSD) aufgenommen. Das Diagramm von CsFeI₄ konnte auf der Basis der bekannten Kristallstruktur indiziert werden. Die Ähnlichkeit der Pulverdiagramme von RbFeI₄ und CsFeI₄ legten bereits nahe, daß die beiden Substanzen isotyp kristallisieren, während KFeI₄ ein nicht vergleichbares Pulverdiagramm aufweist. Nachdem keine Einkristalle von RbFeI₄ zu erhalten waren, wurde das Pulverdiagramm auf der Basis der Struktur der Cs-Verbindung indiziert. Die so erhaltenen Gitterkonstanten a = 7,281(1) Å, b = 17,960(3) Å, c = 8,2478(25) Å und $\beta = 107,35(15)^{\circ}$ stützen die Annahme, daß auch RbFeI₄ den monoklinen CsTII₄-Typ ausbildet, insbesondere ist das Zellvolumen mit 1031,2(2) Å³ erwartungsgemäß kleiner als das der Cs-Verbindung mit 1045,3(4) Å³.

Pulverdaten: d-Werte; (h k l; rel. Intensitäten, $I_{max} = 100$)

CsFeI₄: 6,49; (1 1 0; 2,8); 4,58; (0 4 4; 7,9); 4,41; (1 1 1; 3,4); 3,97; (-1 3 1; 10,1); 3,82; (1 4 0; 24,9); 3,64; (-1 2 2; 34,5); 3,470; (2 0 0; 42,7); 3,409; (2 1 0; 28,4); 3,330; (-1 3 2; 53,6); 3,245; (1 5 0; 100,0); 3,173; (2 2 0; 12,3); 3,058; (0 6 0; 10,8); 3,031; (-2 1 2; 12,7); 3,003; (1 1 2; 20,1); 2,938; (-2 2 2; 17,1); 2,913; (1 2 2; 17,3); 2,865; (1 5 1; 6,2); 2,798; (1 6 0; 6,8); 2,556; (-2 5 2; 3,7); 2,424; (-1 6 2; 5,4); 2,188; (-1 7 2; 12,2); 2,164; (-3 3 2; 9,0); 2,072; (-1 0 4; 21,6), 2,053; (3 4 0; 10,0); 1,844; (-2 8 2; 12,3); 1,835; (2 6 2; 14,6)

RbFeL₄: 6,49; (1 1 0; 10,1); 5,91; (0 2 1; 11,1); 5,49; (1 2 0; 5,6); 4,54; (1 3 0; 9,1); 3,96; (-1 0 2; 6,0); 3,86; (-1 1 2; 15,6); 3,77; (1 4 0; 28,1); 3,62; (-1 2 2; 41,4); 3,61; (0 2 2; 26,3); 3,480; (2 0 0; 60,5); 3,417; (2 1 0; 44,3); 3,302; (-1 3 2; 38,7); 3,292; (0 3 2; 36,8); 3,245; (2 2 0; 15,1); 3,191; (1 5 0; 100,0); 3,102; (-2 0 2; 8,8); 3,057; (-2 1 2; 12,5); 3,021; (1 1 2; 10,5); 2,966; (0 4 2; 10,6); 2,932; (-2 2 2; 21,4); 2,751; (-2 3 2; 13,2); 2,664; (-1 5 2; 13,2); 2,622; (-1 2 3; 8,2); 2,163; (3 3 0; 18,3); 2,152; (-2 6 2; 18,3) 2,133; (-3 4 1; 9,4); 2,107; (1 3 3; 9,1); 2,060; (-3 4 2; 41,8); 1,952; (-2 3 3; 17,8); 1,934; (0 9 1; 6,4); 1,834; (3 6 0; 8,6); 1,819; (-2 8 2; 10,3); 1,811; (1 8 2; 7,2); 1,7971; (0 10 0; 12,7); 1,7920; (3 5 1; 7,0); 1,7820; (-3 0 4; 7,8)

Raman- und UV/Vis-Spektren. Die Ramanspektren der Iodoferrate wurden mit einem Doppelmonochromator-Spektrometer U 1000 der Fa. Jobin Yvon (Erregerlinie 647,1 nm, Krypton-Laser der Fa. Spectra Physics, Leistung 270 mW, Spaltbreite 800 μ), bei einer Temperatur von 10 K (-263 °C) aufgenommen. Die FT-Raman-Spektren wurden mit einem FT-Raman-Modul RFA106 in Verbindung mit einem FT-IR-Gerät IFS66V der Fa. Bruker aufgenommen. Als Primärlichtquelle diente die 1064 nm-Linie eines Neodym dotierten YAG-Lasers der Fa. Adlas. Die schwarzen Substanzen wurden dazu mit Na₂SO₄ oder NaI verdünnt.

Die UV/Vis-Spektren wurden mit einem Spektralphotometer Cary 1/E der Fa. Varian aufgenommen. Damit waren Messungen im Bereich von 200 – 900 nm möglich. Es konnten Spektren in Transmission und Reflexion an festen Proben und Lösungen aufgenommen werden. Für die Aufnahme von Feststoff-Spektren stand eine Ulbricht-Kugel zur Verfügung.

Röntgenstrukturanalysen. Für die Strukturanalysen von CsFeI₄ und $(n-C_sH_{11})_a$ NFeI₄ wurden die Reflexintensitäten im Bereich bis $\theta = 25^{\circ}$ unter Verwendung von Mo-K α -Strahlung am Vierkreisdiffraktometer (CADIV, Fa. Nonius, Delft) gemessen und nach den üblichen Korrekturen zu einem Satz unabhängiger Daten gemittelt. Die Strukturmodelle wurden mit direkten Methoden erhalten (Programm SHELXS-86) und die Ortskoordinaten sowie die anisotropen Temperaturfaktoren verfeinert (Programm SHELXL-93). Die Daten zu den Strukturbestimmungen sind in der Tabelle 1 zusammengestellt. Weitere Angaben zu den Strukturanalysen, insbesondere anisotrope Temperaturfaktoren sowie die berechneten Koordinaten der Wasserstoffatome von $(n-C_sH_{11})_A$ NFeI₄ können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Informationen mbH, D-76344 Eggenstein-Leopoldshafen, un-

			_
Summenformel	CsFeI ₄	$C_{20}H_{44}FeI_4$	
Relative Molmasse	696,36	862,01	
Kristallsystem	monoklin	orthorhombisch	
Raumgruppe	$P2_{1}/c$ (Nr. 14)	Pnna (Nr. 52)	
Zellabmessungen	a = 7,2370(10) Å	a = 20,143(4) Å	
	b = 18,269(4) Å	b = 12,683(3) Å	
	c = 8,266(2) Å	c = 12,577(3) Å	
	$\beta = 106,96(3)^{\circ}$		
Zellvolumen	1045,3(4) Å ³	3213,1(13) Å ³	
Zahl der Formeleinheiten	$\mathbf{Z} = 4$	Z = 4	
F(000)	1172	1636	
Dichte, ber.	$ ho = 4,425 \ { m g \ cm^{-3}}$	$\rho = 1,782 \mathrm{g}\mathrm{cm}^{-3}$	
Meßtemperatur	20 °C	20 °C	
Röntgenstrahlung	Mo-Kα, 0,71069 Å	Mo-Kα, 0,71069 Å	
Meßbereich θ ,	$2-25, \pm h, k, 1$	0-20; -h, -k, -1	
Scantyp	ω -2 θ	ω -2 $ heta$	
Scanbreite	1,48 \pm 0,92 tan θ	$0,57 \pm 0,69 \tan \theta$	
Kontrollreflexe	-30 - 2, -3 - 42	0 6 -2, -6 0 -2	
Intensitätsänderung	< 1 %	< 1 %	
Meßwerte	2584	3173	
unabhängige Reflexe	1830	1505	
davon mit $F > 2\sigma(I)$	738	736	
Kristallform	Nadel	Nadel	
Kristallabmessungen	$0,7 \times 0,1 \times 0,1 \text{ mm}$	$0,5 \times 0,1 \times 0,1 \text{ mm}$	
Absorptionskorrektur	Flächenmethode	empirisch (<i>Y</i> -Scan)	
Schwächungskoeffizient	$16,47 \text{ mm}^{-1}$	4,318 mm ⁻¹	
Transmissionsfaktoren	0,23450 > t > 0,03219	0,329 > t > 0,233	
Restelektronendichte	$+1,90 \text{ e/Å}^3; -3,279 \text{ e/Å}^3$	$+0,66 \text{ e/Å}^3; -0,62 \text{ e/Å}^3$	
Extinktionskoeffizient	0,0011(3)	_	
Wichtungsfunktion	a = 0,0968	a = 0,121	
(SHELXL 93)	b = 140,5406	b = 8,3900	
Zahl der Parameter	56	63	
R1 (beobachtete Reflexe)	9,02%	6,66%	
wR2(F ²) (alle Reflexe)	21,51%	27,19%	

 Tabelle 1
 Kristalldaten und Angaben zu den Strukturanalysen

ter Angabe der Hinterlegungsnummer (CSD-402070 für CsFeI₄ bzw. CSD-404924 für $(n-C_5H_{11})_4NFeI_4$, der Autorennamen und des Zeitschriftenzitats, angefordert werden.

Die Qualität der aus der Iodschmelze zu erhaltenden CsFeI₄-Kristalle war durchweg schlecht. Zusätzlich konnte an der Oberfläche anhaftendes Iod nur mechanisch entfernt werden, so daß trotz einer Absorptionskorrektur mit der Flächenmethode eine weitere Verfälschung der Reflexintensitäten nicht völlig zu vermeiden war, die sich auch in den relativ schlechten R-Werten äußert. Weil die Strukturdaten von (n-C₅H₁₁)₄NFeI₄ lediglich als Grundlage für die Auswertungen der Raman- und UV/Vis-spektroskopischen Untersuchungen benötigt wurden und nur die Abstände und Winkel der Fel₄-Tetraeder von Interesse waren, konnten die bei einer Raumtemperaturmessung zu erwartenden Verfälschungen durch Librationen der Alkylgruppen in Kauf genommen werden. Die Ortskoordinaten der Eisen-, Iod- und Stickstoffatome wurden anisotrop verfeinert. Die Lagen der C-Atome waren dann problemlos aus der Differenzenfourieranalyse zu ermitteln. Sie wurden nur isotrop verfeinert, wobei zusätzlich die Abstände auf 1,54 Å fixiert wurden. Die Wasserstofflagen wurden berechnet und bei der Verfeinerung an die C-Atom-Lagen gekoppelt.

Tabelle 2 Atomkoordinaten und gemittelte Temperaturfaktoren für $CsFeI_4$

Atom	X	у	Z	Ueq
Cs1	0,1817(7)	0,6348(3)	0,2961(8)	65(2)
Fe1	0,1908(10)	0,3727(4)	0,2971(11)	34(2)
I1	-0,1747(6)	0,3501(3)	0,2025(8)	57(1)
I2	0,2733(5)	0,4453(2)	0,5694(5)	42(1)
13	0,2777(5)	0,4463(2)	0,0701(5)	41(1)
I4	0,3656(5)	0,2520(3)	0,3457(5)	51(2)

Kristallstruktur von CsFel₄

Die Ortsparameter der Kristallstruktur und wichtige Abstände und Winkel sind in den Tabellen 2 und 3 zusammengestellt. CsFeI₄ kristallisiert isotyp zum monoklinen CsTII₄ [6, 7] in der Raumgruppe P2₁/c. Alle Atome bele-

Fel ₄ -Tetraede	r		
Fe1—I1	2,563(8)	I1—Fe1—I2	108,1(3)
Fe1—I2	2,529(9)	I1-Fe1-I3	108,5(3)
Fe1—I3	2,532(9)	I1—Fe1—I4	109,5(3)
Fe1—I4	2,516(8)	I2—Fe1—I3	109,6(3)
		I2—Fe1—I4	109,9(3)
		I3-Fe1-I4	111,3(3)
kürzeste Abs	stände innerhalb o	ler CsI ₁₁ -Polyeder	
Cs1—I1	3,935(6);	4,116(12);	
Cs1-I2	4,047(6);	4,044(7);	4,081(7)
Cs1—I3	4,072(7);	4,067(7)	

Tabelle 3 Abstände (in Å) und Winkel (°) für CsFeI₄

gen in der vier Formeleinheiten enthaltenden Elementarzelle (s. Abb. 1) allgemeine Lagen. Die Eisen-Iod-Bindungsabstände in den diskreten, nur leicht verzerrten FeI₄-Tetraedern liegen im Bereich zwischen 2,52 Å und 2,56 Å. Es sind die für Eisen(III)-Iod Bindungen typischen Werte, die auch bei dem bereits bekannten Tetraiodoferrat(III) NEt₄FeI₄ gefunden wurden [4]. Die beobachteten Verzerrungen der FeI₄-Tetraeder lassen sich durch die unterschiedliche Beteiligung der I-Tetraederspitzen an der Koordination der Cs-Kationen erklären. Jedes Cs ist von 11 Iod-Atomen im Abstand von 3,93 Å bis 4,44 Å umgeben, wobei fünf Tetraeder mit einer Kante

Abb. 1 Ansicht auf die ba-Ebene der CsFeI₄-Struktur (CsTlI₄-Typ)

Abb. 2 Die Polyederverknüpfung in der Struktur von $CsFeI_4$

und ein Tetraeder mit einer Spitze zum CsI_{11} -Polyeder beitragen (s. Abb. 2). Die Anordnung der I-Atome in dem Polyeder entspricht weitgehend der Geometrie eines Kuboktaeders, bei dem eine Kante durch eine Ecke ersetzt wird. Die Kristallstruktur des monoklinen CsFeI₄ mit der Raumgruppe P2₁/c gehört wie die von CsTII₄ [6, 7] im weiteren Sinne zur Familie des orthorhombischen Baryt (BaSO₄)-Typs und ist besonders eng verwandt mit der Struktur des orthorhombischen CsTIBr₄ (RG P2₁2₁2₁) [7]. Diese Verwandtschaftsverhältnisse sind auch durch direkte Gruppe-Untergruppe-Beziehungen der Raumgruppen belegbar.

Kristallstruktur von (n-C₅H₁₁)₄NFeI₄

Die Ortskoordinaten sowie wichtige Abstände und Winkel sind in den Tabellen 4 und 5 zusammengestellt. Bei der orthorhombisch kristallisierenden Verbindung belegen die Zentren der tetraedrischen Kationen [(n- $C_5H_{11})_4N$]⁺ und Anionen [FeI₄]⁻ die spezielle Lage 4d der Raumgruppe Pnna was Positionen auf den 2-Achsen parallel zur a-Achse entspricht. Die FeI₄-Gruppen sind nahezu ideale Tetraeder mit Fe—I-Abständen von 2,527 Å bzw. 2,529 Å. Auch für die Geometrie der [(n- $C_5H_{11})_4N$]-Gruppen wurden nahezu die idealen Werte berechnet, obwohl die Fehler der Abstände und Winkel, durch die Messung bei Raumtemperatur mit großen Standardabweichungen behaftet sind.

Tabelle 4 Atomkoordinaten und Temperaturfaktoren für $(n-C_5H_{11})_4NFeI_4$

Atom	x	у	Z	Ueq
I1	0,1636(1)	0,0997(1)	0,1857(2)	161(1)
I2	0,0224(1)	0,3202(2)	0,0979(2)	229(2)
Fe	0,0916(2)	0,2500	0,2500	122(2)
N1	0,4292(13)	0,2500	0,2500	136(9)
C1	0,6133(17)	0,6776(27)	-0,1769(29)	236(15)
C2	0,6580(17)	0,7339(28)	-0,1077(27)	232(15)
C3	0,6984(19)	0,6612(34)	-0,0410(32)	257(17)
C5	0,7858(25)	0,6616(41)	0,0935(38)	340(26)
C4	0,7368(29)	0,7277(46)	0,0350(48)	426(35)
C6	0,4668(30)	0,1764(49)	0,1862(45)	258(17)
C7	0,5237(29)	0,1252(48)	0,2349(44)	228(14)
C8	0,5547(23)	0,4506(38)	0,3504(37)	309(21)
С9	0,6059(31)	0,4934(48)	0,2752(45)	430(36)
C10	0,6453(28)	0,5253(48)	0,3701(48)	384(30)

Tabelle 5 Abstände (in Å) und Winkel (°) für $(n-C_5H_{11})_4NFeI_4$

FeI₄-Tetra Fe—I1 Fe—I2	eder 2,527(3) 2,529(3)	I1—Fe—I1 I1—Fe—I2	110,0(2) 107,03(8)	I1—Fe—I2 I2—Fe—I2	109,83(7) 110,1(2)
Tetraeder N—C1 N—C6	um N 1,56(3) 1,445(14)	C6—N—C6 C6—N—C1	117(2) 110,0(14)	C6—N—C1 C1—N—C1	103,6(13) 113(3)

Abb. 3 Die Elementarzelle von $(n-C_5H_{11})_4NFeI_4$

Die sperrigen $[(n-C_3H_{11})_4N]$ -Gruppen und die FeI₄-Tetraeder sind derart gepackt, daß eine verhältnismäßig hohe Raumerfüllung resultiert (Ansicht der Elementarzelle in Abb. 3). Betrachtet man die Zentren der Baugruppen, so bilden diese in der ac-Ebene nahezu regelmäßige Sechsecke aus, die alternierend mit Anionen und Kationen besetzt sind, ähnlich wie beim graphitähnlichen Bornitrit. Die Stapelung dieser Schichten ist derart, daß einmal die Sechsecke übereinanderliegen und daß zum anderen längs der b-Achse Kationen und Anionen alternieren, so daß sich für beide Gruppen jeweils 5fache Koordinationen in Form von trigonalen Bipyramiden ergeben.

Raman- und UV/Vis-Spektren

Von Tetraiodoferraten(III) wurde bisher nur das Resonanz-Ramanspektrum von $(C_2H_5)_4$ NFeI₄ publiziert [8]. Desweiteren ist vom Fel₄²⁻ Ion aus IR-Spektren die Lage der v_3 -Bande bekannt [9]. Von den vorliegenden Verbindungen MFeI₄ (M=K, NH₄, Rb, Cs und N(n-C₅H₁₁)₄ konnten Ramanspektren mit ähnlichen Bandenlagen erhalten werden, so daß in allen Fällen tetraedrisch koordiniertes Fe(III) vorliegen sollte. Die in Tabelle 6 aufgeführten Spektren sind gut mit den bei vergleichbaren Systemen wie GaGaI₄ [10] oder TiI₄ und GeI₄ [11] erhaltenen Schwingungslagen für die tetraedrische Baugruppe in Einklang zu bringen, so daß die dort vorgenommenen Zuordnungen auf die untersuchten Verbindungen übertragen wurden. In allen Spektren zeigt sich für die v_3 -Mode eine mehr oder weniger starke Aufspaltung, die auf die reduzierte Lagesymmetrie (C1 in CsFeI4) des Fel₄-Ions zurückgeführt werden kann. Daneben tritt eine Bande bei ca. 112 cm^{-1} auf, die bei Anregung mit $\lambda = 647 \,\mathrm{nm}$ dominierend ist, jedoch im FT-Raman-Spektrum (Anregungswellenlänge $\lambda = 1064$ nm) nur noch ein Bruchteil der Intensität der v_1 -Bande aufweist und in ihrer Intensität mit der Empfindlichkeit der Proben korreliert ist. Auf Grund dieses Verhaltens und der Bandenlage, wurde sie dem I_3^- -Ion [12] als einem Zersetzungsprodukt der Iodoferrate zugeordnet.

UV/Vis-Spektren der Iodoferrate(III) wurden sowohl in festem Zustand als auch in Lösung aufgenommen (s. Abb. 4). Die Spektren sind gekennzeichnet durch zwei

Substanz	Meßmethode	$v_3(\mathbf{F}_2)$	$v_1(\mathbf{A}_1)$	$\nu_4(\mathbf{F}_2)$	$\nu_2(\mathbf{E})$	$2v_1(\mathbf{A}_1)$	
$(n-C_5H_{11})_4$ NFeI ₄	FT-Raman	234 sw 253 sw	143 sst	75 sw		284 sw	
CsFeI ₄	FT-Raman	235 sw 252 sw	142 sst	73 sw	60 sw		
CsFeI ₄	Raman		141 sst	73 sw	60 sw		
RbFeI₄	FT-Raman	233 sw 242 sw	140 sst	70 sw			
RbFeI₄	Raman		141 sst				
KFeI₄	FT-Raman	234 sw 245 sw	140 sst	70 sw		276 sw	
NH4FeI4	FT-Raman	239 sw 250 sw	141 sst	69 sw			

Tabelle 6 Die Ramanspektren der Iodoferrate(III) (Angaben in Wellenzahlen [cm⁻¹])

sst = sehr stark, sw = schwach, die dem I_3^{-1} -Ion zugeordnete Bande bei 112 cm⁻¹ wurde nicht aufgeführt

Abb. 4 Vergleich der UV/Vis-Spektren von $(n-C_{5}H_{11})_{4}$ FeI₄ (oben) und CsFeI₄ in Dichlormethan

Tabelle 7 UV/Vis-Spektren der Tetraiodoferrate(III). Die Angaben erfolgen in Wellenzahlen $[cm^{-1}]$

CsFeI₄ in Lösung*	fest	(n-C₄H₁1)₄FeI₄ in Lösung*	Übergang
33670		33670	${}^{6}A_{1} \rightarrow {}^{4}A_{2}(F)$
27360	27170	27320	${}^{6}A_{1} \rightarrow {}^{4}T_{1}(P)$
	21880	21410	$^{6}A_{1} \rightarrow {}^{4}E(D)$
	18760	18420	${}^{6}A_{1} \rightarrow {}^{4}T_{2}(D)$
	16810	16920	${}^{6}A_{1} \rightarrow {}^{4}A_{1}(G)$
14705	14390	14390	${}^{6}A_{1} \rightarrow {}^{4}T_{2}(G)$

* Lösungsmittel Dichlormethan

kurzwellige Banden hoher Extinktion im Bereich zwischen 35300 bis 27000 cm⁻¹, sowie mehrerer schwacher Banden zwischen 22200 und 14300 cm⁻¹. Die Iodabspaltung in unpolaren Lösungsmitteln äußert sich im Auftreten einer breiten Bande bei 19880 cm⁻¹, die dem molekularen Iod zugeordnet wurde. Die Zuordnung der Banden nach *Jørgensen* [13] ist in Tabelle 7 angegeben.

Wir danken dem Graduiertenkolleg "Ungepaarte Elektronen in Chemie, Physik und Biologie" und dem Fonds der Chemischen Industrie für die wertvolle Unterstützung mit Personal und Sachmitteln.

Literatur

- [1] A. R. West, Ber. Bunsenges. Phys. Chem. 93 (1989) 1235
- [2] G. Thiele, D. Honert, H. Rotter, Z. anorg. allg. Chem. 616 (1992) 195
- [3] J. L. Ryan, Inorg. Chem. 8 (1969) 2058
- [4] S. Pohl, W. Saak, Z. anorg. allg. Chem. 523 (1985) 25
- [5] W. Saak, S. Pohl, Z. anorg. allg. Chem. 552 (1987) 186
- [6] G. Thiele, H. W. Rotter, K. Zimmermann, Z. Naturforsch. 21b (1986) 269
- [7] K. Zimmermann, Dissertation, Universität Freiburg 1986
- [8] W. Saak, S. Pohl, Z. Naturforsch. 39b (1984) 1236
- [9] A. Sabatini, L. Sacconi, J. Amer. Chem. Soc. 86 (1964) 17
- [10] L. A. Woodward, G. H. Singer, J. Chem. Soc. (1958) 716
- [11] W. Kiefer, H. Schrötter, Z. Naturforsch. 25b (1970) 1374
- [12] M. R. Mohammad, W. F. Sherman, J. Mol. Struct. 115 (1984) 27
- [13] C. K. Jørgensen, Absorption Spectra and Chemical Bonding in Complexes, Pergamon Press, London 1962

Anschr. d. Verf.:

Prof. Dr. G. Thiele, Dr. H. W. Rotter,

Dipl.-Chem. M. Armbruster

Institut für Anorganische und Analytische Chemie

der Universität

Albertstr. 21

D-79104 Freiburg i. Br.