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Abstract: Pantothenate synthetase (PS) is one of the potential new
antimicrobial targets that may also be useful for the treatment of the
nonreplicating persistent forms of Mycobacterium tuberculosis. In this
Letter we present a series of 5-tert-butyl-N-pyrazol-4-yl-4,5,6,7-
tetrahydrobenzo[d]isoxazole-3-carboxamide derivatives as novel potent
Mycobacterium tuberculosis PS inhibitors, their in silico molecular
design, synthesis, and inhibitory activity.

One-third of the world’s human population is thought to be
infected with Mycobacterium tuberculosis (Mtb), and there are
8 million new cases of tuberculosis (TB) each year.1 Strains of
Mtb resistant to existing drugs are found in nearly every country
and a percentage of these are resistant to multiple drugs, making
effective treatment extremely expensive and in many cases
impossible. One of the hallmarks of Mtb is persistence where
sub-population of the bacteria is not actively growing and overall
metabolic activity is down-regulated, often termed nonreplicat-
ing persistence (NRP). Most currently available drugs are not
effective against NRP-Mtb, thus requiring a minimum of 6
months of therapy to prevent relapse. Long-term chemotherapy
inevitably increases the risk of drug resistance. Therefore, the
discovery and development of drugs effective against NRP-Mtb
are considered the highest priority among TB drug discovery
efforts.

Ample clinical evidence and animal model data have shed
light on the mechanism(s) of persistent infection.2–4 After the
Mtb genome was completed in 1998,5 subsequent functional
genomics and proteomics studies further assisted our under-
standing of this critical growth phase and have collectively
identified over 200 potential targets6–10 involved in alternative
biosynthesis pathways during NRP.

Pantothenate synthetase (PSa) catalyzes amide bond formation
of pantothenate from D-pantoate and �-alanine accompanied by

hydrolysis of Mg-ATP into AMP and Mg-PPi.11 Pantothenate
is a key precursor of coenzyme A and acyl carrier protein,
essential for many intracellular processes including fatty acid
metabolism, cell signaling, and synthesis of polyketides and
nonribosomal peptides. A PanC gene knockout (KO) of PS in
Mtb results in a highly attenuated phenotype in immunocom-
promised SCID mice and in immunocompetent BALB/c mice,12

whereas the ∆lysA ∆panCD KO mutant exhibits substantially
reduced replication and persistence.13 The PS pathway is not
present in humans. Taken together, these data suggest that PS
is an appropriate target for developing new therapeutics to treat
TB. Whether they will also be useful for the treatment of the
NRP form of TB would require availability of a diverse set of
PS inhibitors to avoid ambiguities associated with KO experi-
ments. Several recent publications14–16 explored PS as a potential
antimicrobial target. Herein, the discovery of novel druglike
potent inhibitors of PS is described.

Our efforts have started with two screening leads 1a,b. (Figure
1) obtained from an HTS screening of the NIH Molecular
Libraries Small Molecule Repository of 10 009 compounds
performed by the National Institutes of Health (NIH) Molecular
Libraries Screening Centers Network (MLSCN).17

A substructure search in the screened database of 10 009
compounds for scaffold 2 resulted in eight analogues 2a-f
(Figure 1). A comparison of the active compounds 1a,b and
inactive compounds 2a-f indicated that the presence of a tert-
butyl group and absence of substituents in positions 3 and 5 of
the pyrazole ring are essential for PS inhibitory activity of these
ligands.

Crystal structures are available for the apo protein (PDB:
2A88)18 and a number of complexes with the natural substrate
and reaction intermediates.19 To gain additional insights for
further modifications of the active compounds 1a,b, their R and
S enantiomers were docked to the binding site of PS using FRED
docking program20 (Figure 2).

It was found that depending on the number of water molecules
kept in the binding site during docking FRED found two major
poses (Figure 2), which are similar to those found for the
reaction intermediates19 and nafronyl.21 In pose A (Figure 2A,B)
the tetrahydrobenzoisoxazole ring of (R)-1a occupies the
position of the adenine ring of the reaction intermediate, whereas
in pose B (Figure 2C) the molecule is rotated 180° and the
tetrahydrobenzoisoxazole ring mimics the position of the pantoyl
portion of the reaction intermediate cocrystallized with PS in
PDB 1N2H.
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Figure 1. Structures of active compounds 1a and 1b and their inactive
analogues 2a-f.
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In both poses the tert-butyl group is buried in the hydrophobic
pockets formed by five hydrophobic residues: Met195, Val187,
Pro185, Val184, Leu50 in pose A and Met40, Val139, Val143, Pro38,
Leu50 in pose B. The similarity of the FRED scores does not
allow us to prioritize at a definitive level one of the binding
poses over the other. The binding of the tert-butyl group in
hydrophobic pockets of the binding site is consistent with its
importance for inhibitory activity of the ligands. For 1b only
one binding pose, corresponding to the pose A of 1a, was found.
The binding poses of the S-isomers of 1a and 1b (not shown)
were found to be similar to those of R-isomers.

To evaluate whether the area of the binding site occupied by
the phenyl ring of 1a,b can accommodate larger and more polar

substituents and to generate a preliminary SAR, new analogues
shown in Figure 3 were designed, synthesized, and tested for
PS inhibitory activity.

The synthesis of 3a-g is outlined in Scheme 1 and the
Supporting Information. The reaction23 of ketone 4 with diethyl
oxalate in the presence of sodium ethoxide gave ester 5.
Cyclization24 of 5 with hydroxylamine, hydrolysis of the
resulting isoxazole 6, and coupling of acid 7 with 4-aminopy-
razole25 in the presence of EDC and HOBt yielded pyrazole 8.
The resulting pyrazole 8 was further alkylated by various
substituted benzylhalides 9a-g to give final products 3a-g.
The reaction of 8 with 2,4,6-trichlorobenzoyl chloride yielded
3l. Alkaline hydrolysis of ester 3f gave acid 3h that was
converted to ester 3i with (BOC)2O in tBuOH and DMAP.
Coupling of acid 3h with benzylamine and 2-phenethylamine
in the presence of EDC and HOBt yielded 3j and 3k,
respectively. The treatment of 4-methoxy-�-nitrostyrene and
Et3SiH in dry CH2Cl2 with TiCl4 gave arylacetohydroximoyl
chloride.26 It was further converted to the nitrile oxide that was
subjected to [3 + 2] cycloaddition with cyanoacetaminde.27 The
resulting 5-amino isoxazole (not shown) was coupled with acid
7 in the presence of EDC and HOBt, leading to 3m.

Compounds 1a,b, 3a-m, 7, and 8 were tested for inhibition
of PS (Table 1). The assays16,18 were conducted by the

Figure 2. Protein–ligand interaction between (R)-1a and PS (PDB:
2A88):22 (green) hydrophobic, (light-purple) polar, (blue ring) basic,
(red ring) acidic. The tetrahydrobenzoisoxazole ring of 1a occupies
the position of the adenine ring (A, B) or the position of the pantoyl
portion (C) of the reaction intermediate cocrystallized with PS in PDB
1N2H.19

Figure 3. Structures of active compounds 3a-m.

Scheme 1a

a Reagents and conditions: (a) NaOEt, EtOH, 4 h, reflux, 52%; (b)
NH2OH ·HCl, EtOH, 1 h, reflux, 78%; (c) 2 N NaOH, MeOH, 1 h, 89%,
0 °C to room temp; (d) EDC, HOBT, DIPEA, CH2Cl2, 6 h, 62%; (e) NaH,
DMF, 0 °C to room temp; (f) 2,4,6-trichlorobenzoyl chloride, NaH, THF,
0 °C, 1 h, 61%.
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Tuberculosis Antimicrobial Acquisition and Coordinating Facil-
ity (TAACF) through a research and development contract with
the U.S. National Institute of Allergy and Infectious Diseases
(NIAID) of the NIH using Rv3602c, EC 6.3.2.1 (PanC).

The new analogues in series 3 exhibited activity ranging from
IC50 of 90 nM to 7.13 µM with the majority of ligands exhibiting
activity better than 250 nM. The increase in potency of the
ligands in series 3 compared to that of intermediates 7 and 8
suggests that the scaffolds of 7 and 8 alone are too small to
exhibit noticeable inhibition and additional substituents in the
pyrazole ring are required to improve activity. The best
activities, IC50 e 100 nM, are achieved for unsubstituted 3a
and naphthalene-substituted ligand 3e. Comparison of 3a with
the other compounds in this series suggests that (i) hydrophobic
substituents on the benzene ring lead to a slightly increased
potency, e.g., 3e (R ) naphthyl) and 1b (R ) 4-FC6H4) vs 3i
(R ) 4-(CO2

tBu)C6H4) and 3 h (R ) 4-(CO2H)C6H4), (ii)
differences in potency resulting from variation of the substitution
pattern on the phenyl ring are not larger than 5-fold. It is unclear
why a small R substituent in 1b (R ) 4-FC6H4) and a large
one in 3k (R ) 4-(CONH(CH2)2Ph)C6H4) result in practically
identical potencies even if their docking poses are very different,
reflecting the fact that 3k (as 3j) is too large to fit into the
binding site without parts of the compound protruding from the
protein. The fact that 3k and 3j exhibit excellent potency
suggests that induced fit effects may play an important role in
accommodating these compounds in the PS binding site.

Unlike modifications in the phenyl that were relatively
insensitive to the size and polarity of the substituents, additional
polar moiety in the linker connecting the pyrazole ring with
the phenyl ring of 3l or in the pyrazole ring of 3m led to a
680-fold decrease in activity of 3m compared to the activity of
3e and marginal inhibition of PS by 3l. The docking of both
ligands shows that the newly introduced moieties in 3l and 3m
are located in the gorge region of the binding site responsible
for accommodation of the phosphate group and sugar ring of
the reaction intermediate. This may indicate that this area is
very sensitive to the nonmatching interactions possibly intro-
duced in 3l and 3m or that the extra moieties have changed the
spatial arrangement of the key pharmacophore elements of the

ligands. It seems that polar and nonpolar moieties in the pyrazole
ring result in a decrease in activity as ligand 2c, which is
identical to ligand 1a with the exception of the two extra methyl
groups in the pyrazole ring, showed no inhibition of PS in the
MLSCN/NIH screening program.

The MICs of 3a-m, 7, and 8 in LORA28 and MABA29 MIC
were found to be larger than 128 µM. The percent of inhibition
at 128 µM in LORA and MABA assays is given in Table 1.
The inhibition ranges from 0% to 84% in the MABA assay
and 62% in the LORA assay and at this high concentration can
be affected by the off-target toxicity of the compounds and their
metabolites. Several possible reasons for the lack of antimicro-
bial activity can be suggested, e.g., poor bacterial wall perme-
ability, metabolic stability, or efflux of the inhibitors.

These studies identified tert-butyl and pyrazole portions of
the PS inhibitors as the two areas containing the key pharma-
cophore elements. On the other hand, the substituents in the
aryl moiety of the pyrazole portion are well tolerated, suggesting
that this part of the scaffold is an auxophore, and thus, it may
be used to fine-tune ADMET profiles of these compounds. More
drastic modifications of the scaffold would be required to
determine the binding pose of the inhibitors and address weak
MIC, and such efforts are currently under way. These findings
are an important step in the development of PS inhibitors and
validation of PS as a therapeutic antimicrobial target and
potential target for NRP-TB.
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