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Abstract: The synthesis of the spirotetronate unit of versipelostatin
A, a down-regulator of molecular chaperone GRP78, was achieved
in ten steps starting from pulegone, via the Johnson–Claisen rear-
rangement. A model study of the coupling reaction with the octalin
unit was also performed.
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In 2002, Shin-ya and co-workers isolated versipelostatin
A (1; Figure 1) from the culture broth of Streptomyces
versipellis and identified it as a down-regulator of grp78
gene expression.1 In the endoplasmic reticulum (ER) of
solid tumor cells, the expression of the GRP78 protein en-
hances the ER stress response, which plays a role in the re-
sistance to chemotherapy and hypoglycaemic stress.2

Thus, a specific down-regulator of GRP78 would hold
promise as an alternative to cancer chemotherapy.3 The
structure of versipelostatin A, including its stereochemis-
try, was determined to be that of 1 by analysis of its spec-
troscopic data and on the basis of synthetic studies of the
sugar moieties.4,5 Versipelostatin A consists of a trisac-
charide attached to a seventeen-membered macrocycle
fused to spirotetronate and octalin units. Our interest in
the unique structure and biological activity of ver-
sipelostatin A led us to pursue its synthesis. Herein, we re-
port the efficient synthesis of the spirotetronate unit of
versipelostatin A. To date, several synthetic studies of
spirotetronate-related compounds,6,7 such as tetronolide,8–

11 quartromicin,12,13 and spirohexenolide,14 have been re-
ported, and some of these synthetic approaches are cur-
rently used for the total synthesis of natural products.

Our synthetic plan for 1 is illustrated in Scheme 1. The
synthetic features include anion-mediated coupling reac-
tions of fragments B, C, and D, macrocyclization by ring-
closing metathesis (RCM) between C-10 and C-11, fol-
lowed by formation of the octalin system by an intramo-
lecular Diels–Alder reaction of A. The spirotetronate
fragment B was envisioned to be prepared from allylic al-
cohol E via a [3,3]-sigmatropic rearrangement. Com-
pound E, in turn, was thought to be accessible from
spirolactone F, which could be synthesized from (S)-pule-

gone by introduction of the tetronate ring and oxidative
cleavage of the double bond.

We synthesized the enantiomeric spirotetronate unit ent-
B, with the aim of establishing a synthetic route towards
versipelostatin A. Although the stereochemistry of the
natural spirotetronate unit is 27R, which corresponds to
9R in the intermediate B, we selected the more economi-
cal (R)-pulegone as the starting material for our model
study.

The initial stage of the synthesis is shown in Scheme 2.
Alkylation of lithiated methyl propiolate with (R)-pule-
gone afforded the adduct 3 stereoselectively via axial at-
tack.15 The sequential 1,4-addition of the methoxide ion
followed by spirolactone formation13 gave the desired
tetronate derivative 4. The yield of 4 was 69% for the two
steps based on (R)-pulegone; elimination of the methyl
propiolate group under basic conditions caused regenera-
tion of (R)-pulegone (16%).15 Tetronate derivative 4 was
converted into ketone 5 by ozonolysis of the isopropy-
lidene moiety. The a,b-dehydrogenation of ketone 5
proved to be somewhat challenging. Saegusa oxidation, 2-
iodoxybenzoic acid (IBX) oxidation, phenylsulfanylation,
or phenylselenenylation and oxidation were all attempted,
but in each case either no or very little of the desired enone
was obtained. However, dehydrogenation following
Mukaiyama’s protocol [LHMDS, PhS(Cl)=N(t-Bu)]16 af-
forded enone 6 in satisfactory yield. The 1,2-addition of
methylmagnesium bromide to 7-en-6-one 6 gave the cor-
responding allylic alcohol as a single isomer.17 Subse-
quent oxidation and allylic rearrangement was achieved
simultaneously using pyridinium chlorochromate (PCC)
and silica gel to give 6-en-8-one 8. This enone was further
treated with methylmagnesium bromide to give two dia-
stereomeric adducts, 9 and 10, in an approximately 2:1 ra-

Figure 1 Structure of versipelostatin A (1)
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tio. Nucleophilic attack from the opposite side of the C-9
methyl group gave the major adduct 9, which was the de-
sired product. Unfortunately, the use of methyllithium as
a nucleophile accelerated an axial attack and decreased
the formation of 9 (9/10 = 1:3).

Scheme 2 Synthesis of allylic alcohol 9

The stereochemistries of the adducts were confirmed by
NOE experiments (vide infra). After chromatographic
separation of the two diastereomers, the required com-
pound 9 was subjected to [3,3]-sigmatropic rearrange-
ment to install a C2 unit at the C-6 position. Attempted
vinyl ether formation, oxy-Michael addition to vinyl sul-
fone and acetylation followed by Ireland–Claisen
rearrangement18 were all unsuccessful. Refluxing in tri-
ethyl orthoacetate with propionic acid as a catalyst only
resulted in the formation of the undesired exo-selective
dehydration product 12. In contrast, using 2-nitrophenol

instead of propionic acid afforded the desired Johnson–
Claisen rearrangement product 11 (36%), accompanied
by 12 (36%) and unreacted 9 (23%) within 16 hours. The
yield of 11 was not improved by extending the reaction
time. Microwave irradiation accelerated both the rear-
rangement and the elimination (11: 33%, 12: 36%, 9: 36%
in 15 min). The best result was obtained when the reaction
was carried out in a sealed tube at a high temperature
(Scheme 3).19–22

Scheme 3 Synthesis of 11 by Johnson–Claisen rearrangement

The synthesis of key intermediate 14 (ent-B) is shown in
Scheme 4. The synthesized ester 11 was treated with
LiAlH4, followed by protection of the hydroxy group as a
TBS ether to give 14, the stereochemistry of which was
confirmed by NOE experiments (Figure 2) and by the
similarity of the 1H NMR spectra of the synthesized com-
pound 14 to the reported spectra of related spirotetr-
onates.11,23,24 Following the stereoselective construction
of the spirotetoronate unit, we subsequently addressed the
coupling reaction using synthesized 14 and benzaldehyde
as a model compound for the acylated octalin unit.

Using established protocols,9,14 spirotetronate 14 was
lithiated with t-BuLi, followed by treatment with benzal-
dehyde to afford a product predicted to be 15.25

Scheme 1 Synthetic route to versipelostatin A (1) and its spirotetronate unit
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Figure 2 NOE study of compound 14

Me

H

HMe

H O

MeO O

H2C

OTBS

Me

NOEs

14

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.

 



LETTER Synthetic Study of Versipelostatin A 399

© Thieme Stuttgart · New York Synlett 2012, 23, 397–400

In summary, we have achieved an efficient stereoselective
synthesis of the enantiomeric spirotetronate unit 14 of ver-
sipelostatin A (1). The overall yield was 8.9% in ten steps
starting from commercially available (R)-pulegone. This
synthetic method is thought to be applicable to other
spirotetronate-based natural products. In addition, we per-
formed a model study of the coupling reaction of the
spirotetronate unit and the acylated octalin unit using ben-
zaldehyde as an electrophile. Our continuing research to-
wards the synthesis of versipelostatin A, including the
synthesis of other coupling partners and studies on cy-
clizations, is in progress. 

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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0.88 (s, 3.6 H, TBS), 0.89 (s, 5.4 H, TBS), 0.95 (s, 1.2 H, 6-
Me), 0.97 (s, 1.8 H, 6-Me), 1.05 (d, J = 7.3 Hz, 1.8 H, 9-
Me), 1.05 (d, J = 6.9 Hz, 1.2 H, 9-Me), 1.63–1.68 (m, 3 H, 
8-Me), 1.74–1.83 (m, 2 H, 6-CH2-), 1.88 (dd, J = 13.7, 
6.8 Hz, 0.6 H, 10-Ha), 1.94 (dd, J = 13.8, 6.9 Hz, 0.4 H, 10-
Ha), 2.05 (m, 1 H, 10-Hb), 2.38 (m, 1 H, 9-H), 3.69–3.77 (m, 
2 H, 6-CH2-CH2-), 3.88 (s, 1.8 H, 4-OMe), 3.94 (s, 1.2 H, 4-
OMe), 4.14 (d, J = 10.0 Hz, 0.6 H), 4.33 (d, J = 10.0 Hz, 
0.4 H), 5.10 (m, 1 H, 7-H), 5.96 (s, 0.6 H, OH), 5.98 (s, 0.4, 
OH), 7.25–7.43 (m, 5 H, ArH); 13C NMR (100 MHz, 
CDCl3): d = –5.3 (1.2 C), –5.3 (0.8 C), 18.2 (0.4 C), 18.2 

(0.6 C), 19.5 (0.4 C), 19.6 (0.6 C), 20.9 (1 C), 21.6 (0.6 C), 
21.6 (0.4 C), 25.9 (3 C), 32.6 (1 C), 37.7 (0.6 C), 37.9 
(0.4 C), 49.2 (1 C), 42.3 (0.4 C), 42.4 (0.6 C), 59.9 (0.4 C), 
59.9 (0.6 C), 60.3 (0.6 C), 60.4 (0.4 C), 67.2 (0.6 C), 67.7 
(0.4 C), 87.7 (0.6 C), 87.9 (0.4 C), 103.1 (0.4 C), 103.2 
(0.6 C), 125.8 (1.2 C), 125.9 (0.8 C), 127.2 (0.4 C), 127.3 
(0.6 C), 127.5 (0.6 C), 127.6 (0.4 C), 128.6 (2 C), 136.0 
(0.6 C), 136.2 (0.4 C), 142.9 (0.4 C), 143.1 (0.6 C), 173.5 
(0.4 C), 173.7 (0.6 C), 177.9 (0.4 C), 178.4 (0.6 C); MS 
(ESI-TOF): m/z [M + Na]+ calcd for C28H42N2NaO5Si: 
509.2694; found: 509.2661
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