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Abstract: A convenient and efficient method has been used for the
synthesis of ten new tetrahydroxylated pyrrolizidines 12a,b, 13a—c,
14a,b, and 15a—c starting from sugar-derived cyclic nitrones pre-
pared from D-xylose, D-arabinose, D-ribose, and L-arabinose,
through a five-step reaction sequence. Pyrrolizidine 12a is an enan-
tiomer of 7-deoxycasuarine and pyrrolizidine 12b an enantiomer of
the as yet unknown 7-deoxyuniflorine A. This method expands the
scope of nitrone cycloadditions and is flexible enough for the syn-
thesis of various stereoisomers of highly polyhydroxylated pyr-
rolizidines.

Key words: sugar-derived cyclic nitrones, cycloaddition, imino-
sugars, pyrrolizidines, stereoselective synthesis

Iminosugars are monosaccharide analogues with nitrogen
instead of oxygen in the ring. Due to the structural resem-
blance of polyhydroxylated alkaloids to carbohydrates,
they are considered as sugar mimics and many of them ex-
hibit promising glycosidase' and glycosyltransferase?® ac-
tivity, making them potential drug candidates against viral
infections, cancer, and diabetes.* Among naturally occur-
ing iminosugars, the rapidly expanding class of polyhy-
droxylated pyrrolizidines* has attracted significant
attention because of the selective inhibitory activity asso-
ciated with several of these alkaloids.! For example, in the
polyhydroxylated pyrrolizidine class alexine (1) has been
shown to exhibit antiviral and anti-HIV activity,’ hya-
cinthacine A, (2) was found to be a selective inhibitor of
amyloglucosidase® (Aspergilus niger), and 7-deoxyca-
suarine (3, Figure 1) showed specific and competitive in-
hibition activity against amyloglucosidase (Rhizopus
mould).**

HO'.,HOH

+OH +OH HO"

OH
hyacinthacine A, (2)

OH

alexine (1) 7-deoxycasuarine (3)

Figure 1 Selected polyhydroxylated pyrrolizidines
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Nitrones have become important building blocks in or-
ganic synthesis.” During recent years we have developed
protocols for the preparation of optically active nitrone
templates for asymmetric 1,3-dipolar cycloadditions.?
Enantiomerically pure polyfunctional cyclic nitrones,
which have been widely used in the synthesis of various
natural and biologically active nitrogen-containing com-
pounds, are especially valuable in the synthesis of pyr-
rolizidines.*

Since the biological activity varies with the position and
stereochemistry of the hydroxy groups on the pyrrolizi-
dine skeleton,'* and as only a few syntheses of 3-(hy-
droxymethyl)-pyrrolizidine-1,2,6-triol ~ skeletons have
been reported to date,®’ we have focused our attention
upon developing a simple and efficient route for the syn-
thesis of these biologically important polyhydroxylated
alkaloids. In this communication we wish to describe a
synthetic strategy based on 1,3-dipolar cycloaddition of
chiral sugar-derived cyclic nitrones 4-7 (Figure 2), re-
cently described by Yu and coworkers,” with methyl acry-
late followed by subsequent N-O bond cleavage
accompanied with spontaneous cyclization into the pyr-
rolizidine skeleton.
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Figure 2 Sugar-derived nitrones

The retrosynthetic analysis is shown in Scheme 1, where
1,3-dipolar cycloaddition of chiral nitrones 4-7 derived
from corresponding sugars with methyl acrylate provides
fused isoxazolidine 8, which can be converted into a cor-
responding hydroxymethyl derivative 9. Following acti-
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vation with mesyl chloride gives mesylate 10, subsequent
N-O bond cleavage allows the synthesis of pyrrolizidine
skeleta 12—15 after cyclization.

The proposed synthetic plan, which in principle allows
access to all stereoisomers of 3-hydroxymethyl-
2,3,5,6,7,7a-hexyhydro-1H-pyrrolizine-1,2,6-triol (12—
15), if realized, could be quite general and flexible since a
variety of analogues of 7-deoxycasuarine (3) might be ac-
cessible by diversifying the starting carbohydrate-derived
nitrones.
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Scheme 1 Retrosynthetic analysis

Sugar-derived cyclic nitrones 4-7 were synthesized from
the corresponding aldoses following an efficient and prac-
tical procedure described by Yu et al.” We have modified
this procedure using O-tert-butyldiphenyl-
silylhydroxylamine'® instead of NH,OMe and TBAT"! for
the cyclization, and this provided nitrone 4 with an in-
creased yield of 74%. This improved procedure was suc-
cessfully extended to the synthesis of nitrones 5-7.

The nitrone 4 was then treated with methyl acrylate in
THF at room temperature for 24 hours to give a mixture
of anti-stereoisomers 8a and 8b in a ratio of 80:20 and
combined yield of 88%. The crude esters 8a and 8b
(Scheme 2) were used directly in the reduction with
DIBAL in THF at 0 °C to room temperature without fur-
ther purification. After quenching with aqueous Rochelle
salt and extraction (EtOAc), the hydroxymethylderivates
9a and 9b were separated by MPLC on silica gel (EtOAc—
hexanes = 33:66) to give diastereomerically pure anti-
trans-isoxazolidine 9a as the major isomer and anti-cis-
isomer 9b as the minor isoxazolidine in a combined yield
of 92%. The major isomer 9a was subsequently treated
with mesyl chloride and Et;N in CH,Cl, to furnish mesy-
late 10a in 86% yield. Exposing 10a to Zn in aqueous ace-

tic acid for N-O bond cleavage led to the formation of
pyrrolizidine 11a in 93% yield after neutralization with a
saturated solution of K,COj;, extraction (EtOAc) and puri-
fication on silica gel (EtOAc). Deprotection of the benzyl
groups was achieved with H, on Pd/C (10 mol%) in
MeOH and HCI at 50 °C overnight, to furnish the desired
polyhydroxylated pyrrolizidine 12a in 99% yield
(Scheme 2). The synthesis of 12a has thus been achieved
in five steps with an overall yield of 51% from nitrone 4.

Following the same four-step reaction sequence, the mi-
nor pyrroloisoxazolidine 8b was analogously transformed
into pyrrolizidine 12b, an enantiomer of the as yet un-
known 7-deoxyuniflorine A (Scheme 2). The latter two
pyrrolizidines 12a and 12b are epimeric at C-6, and pyr-
rolizidine 12a {[a]p> —14.2 (¢ 0.4, MeOH)} is the enan-
tiomer of 7-deoxycasuarine, a more selective inhibitor*
than casuarine, alexine, or australine. 7-Deoxycasuarine
(3) has been synthesized by Behr'? {[a]p** +10.9 (¢ 0.11,
H,0)}, Goti*** {[a]p* +19.8 (¢ 0.26, H,0)} and Carmo-
na, Vogel, and co-workers* {[a]p> +23 (c 0.3, MeOH)}
by a strategy employing a nitrone prepared from commer-
cially available tribenzyl D-arabinose.

The relative configurations of the new compounds were
assigned on the basis of NOESY experiments of 9a, 10a,
11b, and 12b (Figure 3). The observed interactions H-4b/
H-5 and H-4a/H-3 of hydroxymethyl derivate 9a indicate
a trans relation between H-3 and H-5. The anti configura-
tion between H-3 and H-6 was established by means of a
negative mutual interaction between these protons. The
H-3/H-6 anti configuration was also assigned through H-
3/H-4a and H-6/H4b interactions of mesylate 10a. The
anti-cis configuration of the minor cycloadduct 8b was as-
signed by correlation with pyrrolizidine 11b, whose rela-
tive C6/C8 trans configuration was determined on the
basis of H-7p/H-6, H-7a/H-7a interactions. The C1/C7a
anti configuration could be seen from H-73/H-1, H-7a/H-
7a, and H-1/H-3 interactions in addition to negative H-1/
H-7a interaction. NOE studies of the final pyrrolizidine
12b proved the trans configuration by H-6/H-7f3, H-7a/H-
7a, and C1/C7a interactions and the anti configuration
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Figure 3 NOE experiments

Synlett 2011, No. 12, 1668—1672 © Thieme Stuttgart - New York

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.



1670 G. Podolan et al.

LETTER

N* methyl acrylate
_—
THF, r.t., 88%

H _OBn H an

MeoocmOBn + Meoocm—

BnO OBn ~08Bn “~0Bn
4 8a 8b
DIBAL DIBAL
THF, 10 °C to r.t. THF, —10°C to r.t.
92% 92%
P y o
HOchmOBn + HOHzcm
\OBn \OBn
9a 9b
MsCl, EtzN MsClI, EtzN
CHaCl,, 0 °C, 86% CH.Cly, 0 °C, 88%
H :_OBn H 505n
= _ 20 AcOH, H0 H o~
HO OBn MsOHzC MsOH;C—= OBn
N 60 °C, 93% o~ N~—~/
:\OBn \OBI"I :\OBn
11a 10a 10b
H,, Pd/C (10 mol%) Zn, AcOH, H,0
MeOH, HCI, 50 °C 60 °C, 80%
Dowex 50WX8, 97%
y - OH H :QBn
- s A Ha, Pd/C (10 mol%) ; o
HO» OH <————————— HO"» Bn
HO'—CO—OH N MeOH, HCI, 50 °C N
N~ Dowex 50WX8, 96%
> 126 ~OH 11b " OBn

Scheme 2

was confirmed by H-70/H-7a, H-73/H-1, H-7a/H-2 inter-
actions as well as by a negative H-1/H-7a interaction.
Subsequent X-ray analysis'*~'¢ of the benzylated pyrroliz-
idine 11b confirmed the configuration of the new stereo-
genic centers at C1, C2, C3, C6, and C7a (Figure 4).

Subsequently, following the same five-step reaction se-
quence, the pyrroloisoxazolidines 8 prepared from chiral

c14 C13,

_s—4-

c12

Figure 4 The molecular structure of 11b, with the numbering
scheme!® of the asymmetric unit. Displacement ellipsoids are drawn
at the 50% probability level.
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cyclic nitrones 5-7 derived from corresponding sugars (D-
arabinose, D-ribose, and L-arabinose; Figure 2) with me-
thyl acrylate were analogously transformed into the novel
tetrahydroxylated pyrrolizidines 13a—c, 14a,b, and 15a—c
(Figure 5).!"
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Figure 5 Novel non-natural tetratetrahydroxylated pyrrolizidines
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In conclusion, a convenient and efficient method has been
developed for the synthesis of a series of new tetrahydrox-
ylated pyrrolizidines 12a,b, 13a—c, 14a,b, and 15a—c
starting from sugar-derived cyclic nitrones prepared from
D-xylose, D-arabinose, D-ribose, and L-arabinose, through
a five-step reaction sequence. Pyrrolizidine 12a is an
enantiomer of 7-deoxycasuarine and pyrrolizidine 12b, an
enantiomer of the as yet unknown 7-deoxyuniflorine A.
This method expands the scope of nitrone cycloadditions
and is flexible for the synthesis of various stereoisomers
of highly polyhydroxylated pyrrolizidines.
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Typical Experimental Procedure for Cycloaddition

The nitrone (5.39 mmol) was dissolved in THF (50 mL) and
methyl acrylate was added (21.56 mmol). The mixture was
stirred for 48 h at r.t. The mixture was then concentrated
under reduced pressure, and the residue was purified by
MPLC (EtOAc—hexanes = 33:66).

Representative Data for Products

Compound 9a: [a]p? +41.6 (CHCl,, ¢ 3.04). 'H NMR (600
MHz, CDCl,): 6 =7.35-7.23 (m, 15 H, OCH,Ph), 4.60-4.48
(m, 6 H, OCH,Ph), 4.29 (m, 1 H, H-5), 4.04 (dd, 1 H, H-7,
J=3.9,5.6 Hz), 3.96 (dd, 1 H, H-6, J = 3.9 Hz), 3.75 (m, 2
H, H-3, H-10b), 3.66 (dd, 1 H, H-9b, J = 4.7, 10.0 Hz), 3.60
(dd, 1 H, H-9a, J = 5.6, 10.0 Hz), 3.55 (dd, 1 H, H-10a,
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J=4.5,12.3 Hz), 3.33 (dd, 1 H, H-8, /= 5.6, 10.8 Hz), 2.32
(ddd, 1 H, H-4b,J =7.3,8.8, 15.8 Hz), 2.16 (ddd, 1 H, H-4a,
J=5.6,7.3, 12.6 Hz). °C NMR (75 MHz, CDCl,): § =
138.2-127.5 (OCH,Ph), 87.1 (C-6), 83.8 (C-7), 77.2 (C-5),
73.3,72.3, 71.7 (OCH,Ph), 69.7 (C-9), 69.6 (C-8), 68.5 (C-
3), 63.1 (C-10), 35.4 (C-4). IR: 3238, 3032, 2921, 2852,
1496, 1454, 1357, 1143, 1093, 1078, 1025, 738, 695 cm™'.
TOF MS (ESI): m/z caled for C,0H;,NOs [MH*]: 476.2437;
found: 476.2433.

Compound 10a: [0],* +40.0 (CHCl,, ¢ 0.71); mp 93-95 °C.
'"H NMR (300 MHz, CDCly): § = 7.377.23 (m, 15 H,
OCH,Ph), 4.56-4.50 (m, 6 H, OCH,Ph), 4.43 (m, 1 H, H-5),
4.24 (m, 2 H, H-10a, H-10b), 4.03 (dd, 1 H,H-7,J=3.8,5.8
Hz), 3.96 (dd, 1 H, H-6, J = 3.8 Hz), 3.75 (ddd, 1 H, H-3,
J=3.8,5.4,89Hz),3.65 (dd, 1 H, H-9b, J =5.0, 9.8 Hz),
3.57 (dd, 1 H, H-9a, J =5.8, 9.8 Hz), 3.35 (dd, 1 H, H-8,
J=15.8,10.9 Hz), 3.00 (s, 3 H, OMs), 2.25 (m, 2 H, H-4a,
H-4b). *C NMR (75 MHz, CDCly) & = 138.1-127.5
(OCH,Ph), 86.9 (C-6), 83.9 (C-7), 74.3 (C-5),73.2,72.1,
71.8 (OCH,Ph), 70.0 (C-8), 69.7 (C-9), 69.3 (C-10), 68.2 (C-
3), 37.5 (OMs), 35.6 (C-4). IR: 3027, 2880, 1497, 1454,
1336, 1178, 1101, 1074, 990, 964, 908, 819, 734, 694, 526
cm™'. TOF MS (ESI): m/z caled for C3H;NO;S [MH*]:
554.2212; found: 554.2040.

Compound 11a: [a]p* —10.3 (CHCL,, ¢ 2.10). '"H NMR (300
MHz, CDCl,): 6 =7.40-7.24 (m, 15 H, OCH,Ph), 4.75-4.55
(m, 6 H, OCH,Ph), 4.36 (m, 1 H, H-6), 4.19 (dd, 1 H, H-1,
J=6.3Hz),3.98(dd, 1 H,H-2,/=6.3,7.6 Hz), 3.63 (dd, 1
H, H-4b,J=4.3,9.4 Hz), 3.55 (dd, 1 H, H-4a, J=6.6,9.4
Hz), 3.50 (m, 2 H, H-3, H-8), 3.10 (dd, 1 H, H-5b, J = 3.9,
11.1 Hz), 2.95 (dd, 1 H, H-5a, J = 4.0, 11.1 Hz), 2.17 (ddd,
1 H, H-7, J = 5.5, 8.3, 13.5 Hz), 1.90 (m, 1 H, H-70). °C
NMR (75 MHz, CDCl5): 8 = 140.8-129.0 (OCH,Ph), 90.9
(C-1), 87.1 (C-2), 74.9 (C-6), 74.7 (C-4), 74.5,73.8,73.4
(OCH,Ph), 70.4 (C-3), 68.4 (C-Ta), 64.1 (C-5), 41.9 (C-7).
IR: 3383, 3030, 2858, 1496, 1453, 1363, 1100, 1067, 1027,
908, 733, 695, 607 cm™'. TOF MS (ESI): m/z calcd. for
C,H;,NO, [MH*]: 460.2488; found: 460.2181.

Compound 12a: [a],* —14.2 (MeOH, ¢ 0.26). "H NMR (300
MHz, CD;0D): § =4.55 (m, 1 H, H-6), 4.22 (dd, 1 H, H-1,
J=7.9Hz), 3.87 (m, 3 H, H-2, H-4a, H-4b), 3.71 (m, 1 H,
H-7a), 3.48 (m, 1 H, H-3), 3.35 (m, 2 H, H-5a, H-5b), 2.21
(m, 2 H,H-7a, H-7B). ®*C NMR (75 MHz, CD;0D): 6 =81.4
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(C-1),76.6 (C-2), 73.5 (C-6), 73.1 (C-3), 69.5 (C-7a), 62.6
(C-5), 60.6 (C-4), 38.4 (C-7). IR: 3269, 2931, 1634, 1435,
1377,1335, 1097, 1041, 988, 927, 860, 607, 511 cm™'. TOF
MS (ESI): m/z caled for C,0H;,NO, [MH*]: 190.1079;
found: 190.1042.

Compound 13a: [0],% +20.4 (MeOH, ¢ 0.83). 'H NMR (300
MHz, CD;0D): & =4.36 (m, 1 H, H-6), 4.20 (d, 1 H, H-2,
J=2.6Hz),4.08 (m, 1 H, H-7a),3.95(d, 1 H,H-1,/=3.8
Hz), 3.85(dd, 1 H, H-4b,J=6.4, 11.1 Hz), 3.75 (dd, 1 H, H-
4a,J=6.7,11.1 Hz), 3.30 (m, 1 H, H-3), 3.20 (dd, 1 H, H-
5b,J=4.1,11.7Hz), 2.87 (dd, 1 H,H-5a,J = 3.5, 11.7 Hz),
2.07 (m, 2 H, H-7a, H-7B). '3C NMR (75 MHz, CD,0D):
§=79.6 (C-2), 77.0 (C-1), 73.9 (C-6), 72.0 (C-3), 68.9 (C-
7a),62.4(C-5),61.4 (C-4),32.9 (C-7).1IR: 3238, 2925, 2871,
1645, 1435,1034, 1251, 1029, 908, 674, 608,512 cm™'. TOF
MS (ESI): m/z caled for C,0H;,NO, [MH*]: 190.1079;
found: 190.1005.

Compound 14a: [0],> +5.7 (MeOH, ¢ 1.16). '"H NMR (300
MHz, CD;0D): §=4.51 (m, 1 H, H-6),4.21 (dd, | H,J =3.6
Hz, H-2), 3.91 (m, 2 H, H-4a, H-1), 3.75 (m, 2 H, H-4b, H-
7a),3.05 (m, 2 H, H-3,H-52),2.95(dd, 1 H,J=4.4,11.4 Hz,
H-5b), 2.07 (ddd, 1 H, J=4.4,7.3, 12.4 Hz, H-7B), 1.98
(ddd, 1 H,J =4.4,7.3,12.4 Hz, H-7a). 3*C NMR (75 MHz,
CD;0D): 8 =79.2 (C-1), 75.4 (C-2), 73.3 (C-6), 72.5 (C-3),
68.8 (C-7a), 63.2 (C-5), 61.5 (C-4), 39.1 (C-7). IR: 3329,
3209, 2974, 2910, 2876, 2738, 2475, 2399, 1460, 1323,
1226, 1140, 1098, 1057, 1031, 965, 716, 407 cm™'. TOF MS
(ESI): m/z caled for C,0H;,NO, [MH*]: 190.1079; found:
190.1070.

Compound 15a: [a]* —15.8 (MeOH, ¢ 1.00). 'H NMR (600
MHz, CD;0D): 6 =4.55 (m, 1 H, H-6),4.29 (dt, 1 H,J = 3.9,
8.4 Hz, H-7a),4.22 (m, 1 H,H-2),3.96 (d, 1 H, J=3.9 Hz,
H-1),3.85(dd, 1 H, J=5.8, 11.2 Hz, H-4a), 3.80 (dd, 1 H,
J=38.1,11.2 Hz, H-4b), 3.27 (dd, 1 H, J=2.7, 11.5 Hz, H-
5a),3.23(ddd, 1 H,J=3.4,5.8, 8.1 Hz, H-3),2.91 (dd, 1 H,
J=4.2,11.5Hz,H-5b),2.33(ddd, 1 H,J =5.1,7.3, 12.3 Hz,
H-70), 1.77 (ddd, 1 H, J = 3.4, 8.4, 12.3 Hz, H-7B). 1*C
NMR (150 MHz, CD,0D): = 80.2 (C-2), 75.7 (C-1), 74.7
(C-6), 72.5 (C-3), 69.9 (C-8), 63.6 (C-5), 60.5 (C-4), 32.6
(C-7).1R: 3261, 2927, 2866, 2709, 1417, 1309, 1282, 1231,
1036, 972, 916, 901, 773, 719, 592, 538 cm™!. TOF MS
(ESI): m/z calcd for C,,H;,NO, [MH*]: 190.1079; found:
190.1132.
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