N-Phenyl- $N^{\prime \prime}$-(2-chloroethyl)ureas (CEUs) as potential antineoplastic agents. Part 3: Role of carbonyl groups in the covalent binding to the colchicine-binding site

Emmanuel Moreau, ${ }^{\text {a,d,e, }, *} \dagger$ Sébastien Fortin, ${ }^{\text {b,c, } \dagger}$ Jacques Lacroix, ${ }^{\text {b }}$ Alexandre Patenaude, ${ }^{\text {b }}$ Jean L. C. Rousseau ${ }^{\mathrm{b}}$ and René C-Gaudreault ${ }^{\mathrm{b}, *}$
${ }^{a}$ Univ Clermont1, UFR Pharmacie, Laboratoire de Chimie Organique, Clermont-Ferrand F-63001, France
${ }^{\mathrm{b}}$ Unité des Biotechnologies et de Bioingénierie, Centre de recherche, C.H.U.Q., Hôpital Saint-François d'Assise, Université Laval, Que., Canada GlL 3L5
${ }^{\mathrm{c}}$ Faculté de Pharmacie, Université Laval, Pavillon Vandry, Québec, Que., Canada G1K 7P4
${ }^{\text {d }}$ Inserm, U484, Clermont-Ferrand F-63001, France
${ }^{\mathrm{e}}$ Centre Jean-Perrin, Clermont-Ferrand F-63001, France

Received 7 June 2007; revised 12 October 2007; accepted 23 October 2007
Available online 12 November 2007

Abstract

In the course of the development of N-phenyl- N^{\prime}-(2-chloroethyl)ureas (CEUs) as potential antineoplastic agents, we investigated the effect of carbonylated substituting chains of the aromatic ring of CEU on their covalent binding to the colchi-cine-binding site (C-BS). In this study, we found that CEU, $\mathbf{5 e}, \mathbf{5 f}, \mathbf{8 e}$, and $\mathbf{8 f}$ substituted by either a methyl ester or a methyl ketyl group at the ω-position exhibited a significant antiproliferative activity on HT-29, M21, and MCF-7 tumor cells. SDS-PAGE assays and cell cycle analysis confirmed that $\mathbf{5 e}, \mathbf{5 f}, \mathbf{8 e}$, and $\mathbf{8 f}$ covalently bind to the C-BS and arrest the cell division in $\mathrm{G}_{2} / \mathrm{M}$ phase. Surprisingly, the presence of ω-carboxyl, ω-ethyl esters or ω-amides decreased significantly both the antiproliferative activity and the specificity toward β-tubulin. © 2007 Elsevier Ltd. All rights reserved.

1. Introduction

For the past decades tubulin has been an attractive target for the development of new anticancer drugs. ${ }^{1-3}$ So far, several small-molecule antimitotics have been developed to antagonize three major binding-sites on tubulin, namely, the vinca-, the taxus-, and the colchicine-binding sites (C-BS). ${ }^{4}$ While drugs interacting with the vincaor the taxus-binding sites are involved in clinic for the treatment of several cancers, the therapeutic potential of drugs targeting the C-BS is still under evaluation. ${ }^{5-7}$ However, recent results published by Ravelli ${ }^{8}$ and

[^0]coworkers confirmed several assumptions concerning the molecular interactions occurring between colchicinoids and the C-BS that might help to the design of new antimitotics. The binding of colchicinoids into the C-BS seems to follow a bidentate mechanism where the ring A and the ring C bind to their respective subsites on tubulin through thermodynamically independent reaction. ${ }^{9}$ The three methoxyl groups on the ring A of colchicinoids act as a complex-stabilizing anchor, ${ }^{9}$ which is requisite for the molecule to penetrate and lock itself into a specific conformation, bringing the oxygen atom on ring C (or C^{\prime}) in contact with key group amino acids in the C-BS through hydrogen bonds or π-bond interactions. ${ }^{6,10}$ In the past decades, a large number of natural and synthetic small molecules have been identified as colchicine-binding site antagonists. In order to investigate a common pharmacophore for C-BS antagonists, Nguyen ${ }^{9}$ established two classes of C-BS antagonists. First a group of compounds structurally related to colchicine through the presence in their structures of a diaryl system, and a mono to a trimethoxyphenyl

Figure 1. General formula of new 1-(2-chloroethyl)-3-phenylurea derivatives.
moiety that gave rise to molecules such as ZD6126, ${ }^{9}$ combretastatin, ${ }^{11}$ phenstatin, ${ }^{12}$ chalcones, ${ }^{13}$ A-105972 and A-289099, ${ }^{14}$ AVE8062 ${ }^{15}$, and Oxi4503. ${ }^{16}$ Second, a group of structurally unrelated molecules combining miscellaneous compounds such as nocodazole, ${ }^{17}$ 2-methoxyestradiol, ${ }^{18}$ curacin $\mathrm{A},{ }^{19} \mathrm{E} 7010,{ }^{20}$ aryl 2-haloacetamides, ${ }^{21}$ and N-phenyl- N^{\prime}-(2-chloroethyl) urea (CEUs). ${ }^{22-27}$ The latter molecules have been shown to covalently bind to the C-BS and to trigger apoptosis through cytoskeleton disruption. Recently, we published a study showing that the antiproliferative activity of CEUs is significantly improved by substitution of the phenyl ring on position 3 by lower alkyl ω-hydroxylated chains (Fig. 1, 1a-f) while the drugs were still covalently binding to the C-BS. ${ }^{24,25}$

We have recently studied the role of a ω-hydroxyl terminal group on the covalent binding of CEU to β-tubulin (Fig. 1, compounds $\mathbf{2 a}-\mathbf{f}$ and $\mathbf{3 a - f}$). Moreover, we have demonstrated also that the pharmacophoric moiety N -(2-chloroethyl)urea plays an 'anchoring' action similar to the trimethoxy phenyl moiety of colchicinoids. ${ }^{26}$ To improve specific steric contacts occurring between the 2-chloroethylamino moiety of CEUs and a key amino acid (either Glu ${ }^{198}$ in β_{IV}-tubulin ${ }^{23}$ or Cys[239] in $\beta_{\mathrm{II}^{-}}$ tubulin ${ }^{22}$) nearby the C-BS, we have prepared four new series of CEU derivatives, namely, ω-carboxyl, ω esters, ω-amides and ω-ketyl derivatives (Fig. 1, compounds 4, 5, 6, 7, and 8).

These various molecular modifications were selected, notably, on the basis that they proved beneficial to the biological affinity of colchicinoids such as ALLO, KAC, MAC, TCB, TKB, and TMB ${ }^{28,29}$ (Fig. 2) and that they contain oxygen atoms susceptible to mimic
the interactions of the oxygen atom present on the ring C of colchicinoids.

2. Results and discussion

2.1. Chemistry

Four new series of lower alkyl CEU derivatives functionalized by a ω-terminal group, namely, carboxyl ($\mathbf{4 a}, \mathbf{4 b}, \mathbf{4 e}, \mathbf{4 f}$), ester ($\mathbf{5 a}, \mathbf{5 b}, \mathbf{5 e}, \mathbf{5 f}$ and 6a, 6b, 6e, 6f), amidyl (7a, 7b, 7e, 7f), and ketyl (8a, 8e, 8f), were prepared using two different synthetic pathways depicted in Scheme 1.

CEUs bearing lower alkyl chains $(\mathrm{n}<3)$ were prepared using compounds $\mathbf{9 a}, \mathbf{9 b}$, and $\mathbf{1 7 a}$ as starting material. Homologous CEU derivatives bearing alkyl chains containing 4 and 5 carbon atoms, respectively, were prepared via a Sonogashira reaction involving the palla-dium-catalyzed coupling of 1-iodo-3-nitrobenzene $\mathbf{1 8}$ to the appropriate alkyne. ${ }^{24,25}$

Ester compounds 10a, 10b, 11a, 11b, 20e, 20f, and 21e, $21 f$ were prepared from $9 \mathbf{9 a}, 9 \mathrm{~b}, \mathbf{1 9 e}$, and $\mathbf{1 9 f}$ in methanol or ethanol at reflux in presence of catalytic amounts of p-toluenesulfonic acid. Carboxamides 12a, 12b and 22e, 22f were obtained by conversion of the carboxylated compounds into their corresponding acid chlorides followed by addition of a 25% aqueous ammonium hydroxide solution in toluene. Catalytic reduction of the nitro group or/and the alkyne function using $\mathrm{Fe} /$ HCl or $\mathrm{H}_{2} / \mathrm{Pd}$ afforded derivatives 13a, 13b, 13e, 13f, $14 a, 14 b, 14 e, 14 f, 15 a, 15 b, 15 e, 15 f, 16 a, 16 b, 16 e$, $\mathbf{1 6 f}$, and $\mathbf{1 7 e}, \mathbf{1 7 f}{ }^{24}$ The latter compounds were finally reacted with 2 -chloroethylisocyanate to obtain the corresponding CEU 4a, 4b, 4e, 4f, 5a, 5b, 5e, 5f, 6a, 6b, $\mathbf{6 e}, \mathbf{6 f}, 7 \mathbf{a}, 7 \mathbf{b}, 7 \mathbf{e}, 7 \mathrm{f}$, and $\mathbf{8 a}, 8 \mathbf{8}, 8 \mathrm{8f}$.

2.2. Tumor cell growth inhibition activity

Tumor cell growth inhibition activity of newly synthesized acids (4a, 4b, 4e, 4f), methyl esters (5a, 5b, 5e, $\mathbf{5 f}$), ethyl esters ($\mathbf{6 a}, \mathbf{6 b}, \mathbf{6 e}, \mathbf{6 f}$), amides ($\mathbf{7 a}, \mathbf{7 b}, \mathbf{7 e}, \mathbf{7 f}$), and ketones ($\mathbf{8 a}, \mathbf{8 e}, \mathbf{8 f}$) was evaluated on HT-29 human colon carcinoma, M21 human skin melanoma, and MCF-7 human breast carcinoma cell lines. Cell growth inhibition was assessed according to the NCI/NIH Developmental Therapeutics Program. ${ }^{30}$

Figure 2. Molecular structures of colchicine and colchicinoids. Colchicine is a semi-planar molecule where ring A and ring C are oriented at 54° with respect to each other. ${ }^{27}$

4 a, b: R = OH
$5 \mathrm{a}, \mathrm{b}: \mathrm{R}=\mathrm{OMe}$
$6 \mathrm{a}, \mathrm{b}: \mathrm{R}=0 \mathrm{OE}$
$7 \mathrm{a}, \mathrm{b}: \mathbf{R}=\mathrm{NH}_{\mathbf{2}}$

Scheme 1. General synthesis of 1-(2-chloroethyl)-3-phenylureas. Reagents and conditions: (a) MeOH, APTS; (b) EtOH, APTS; (c) 1-SOCl2; 2$\mathrm{NH}_{4} \mathrm{OH} /$ toluene; (d) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$; (e) $\mathrm{Fe} / \mathrm{HCl}$; (f) 2-chloroethylisocyanate; (g) (j) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CuI}, \mathrm{PPh}_{3}$, alcyne/1,2-DME/water.

CEUs were tested at sequential dilutions ranging from 0.1 to $100 \mu \mathrm{M}$. The antiproliferative activities of CEU are listed in Table 1 and expressed as the concentration of drug inhibiting cell growth by $50 \%\left(\mathrm{GI}_{50}\right)$. The parent urea derivatives $\mathbf{1 f}$, $\mathbf{2 f}$, and $\mathbf{3 e}$ were also tested as references. ${ }^{25}$ Structure-activity relationship studies focused on the effect of carbonyl terminal groups present on the side chain substituting the phenyl ring of N-phenyl- N^{\prime}-(2-chloroethyl)ureas. As shown in Table 1, compounds $\mathbf{4 a}, \mathbf{4 b}, \mathbf{5 a}, \mathbf{5 b}, \mathbf{6 a}, \mathbf{6 b}$, 7a, 7b, and 8a carrying a lower alkyl chain ($\mathrm{n}<3$) were inactive. These results confirm our previous observations on ω-hydroxylated and methoxylated CEU. ${ }^{25}$ Compounds $\mathbf{4 f}, \mathbf{5 e}, \mathbf{5 f}, \mathbf{6 e}, \mathbf{6 f}, \mathbf{7 e}, 7 \mathrm{f}$, and $\mathbf{8 e}$, 8f showed GI_{50} values ranging from 0.6 to $47.5 \mu \mathrm{M}$. However, compound 4 e did not show any significant antiproliferative activity. Three interesting effects were observed: First, the presence of an alkyl chain having more than 3 carbon atoms seems to be prerequisite for significant GI_{50}. Second, the substitution of the side chain by a carboxylic group (4-7) led to a dramatic decrease of the GI_{50} when compared to compound 1f. Finally, the ketyl group gave rise to molecules as active as compound 1f. Antiproliferative activity of CEU substituted by a lower alkyl chain seems to be dependent on the nature of the ω-terminal
group. In summary, the antiproliferative activity of CEU increases according to the following order: $\mathrm{OH}>\mathrm{OCH}_{3} \approx \mathrm{CH}_{3} \approx \mathrm{COCH}_{3} \gg \mathrm{CO}_{2} \mathrm{CH}_{3}>\mathrm{CON}-$ $\mathrm{H}_{2}>\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}>\mathrm{CO}_{2} \mathrm{H}$.

2.3. $\boldsymbol{\beta}$-Tubulin alkylation

Concerning the alkylation of the β_{II}-tubulin, we chose to evaluate the most potent compounds of each series. Therefore, the potency of compounds $4 f, 5 e, 5 f, 6 e, 7 e$, and $\mathbf{8 e}, 8 f$ was assessed by SDS-PAGE followed by Western blotting as reported previously. ${ }^{22}$ The appearance of a second band exhibiting an apparent faster $\beta_{\text {II }}$-tubulin mobility indicates the presence of β_{II}-tubulin alkylated by CEU (see Table 1). ${ }^{22,31}$ Interestingly, compounds 6e and 7 e were cytotoxic without any covalent binding to the C-BS. However, the methyl ester 5e, 5f and the ketyl homologues 8e and $8 \mathbf{f}$ exhibited a significantly higher antiproliferative effect and a low affinity for C-BS. This suggests that the CEUs' inhibitory activity and affinity for β_{II}-tubulin are certainly related but cannot account as the only parameters of structure-activity relationships describing that class of compounds. In that context, small changes in the molecular structure of CEU may result in a

Table 1. GI_{50} values, electrophoretic mobility assays, and competition assays of 1-(2-chloroethyl)-3-phenylurea derivatives

Compound	$\mathrm{GI}_{50}(\mu \mathrm{M})$			Alkylated β-tubulin 24 h 48 h	Competition (48 h) with CTRL Col $(5 \mu \mathrm{M})$ Vinb $(5 \mu \mathrm{M})$
	HT-29	M21	MCF-7		
DMSO					
1f $\mathrm{R}=-\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{OH}$	0.16	0.27	0.48		
2f R $=-\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{OMe}$	0.84	0.94	1.9	$\underline{\square}$	
3e $\mathrm{R}=-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{CH}_{3}$	0.96	0.87	1.6	\bigcirc	
4a $\mathrm{R}=-\mathrm{COOH}$	68.1	67.9	82.9		
4b $\mathrm{R}=-\mathrm{CH}_{2}-\mathrm{COOH}$	>100	>100	>100		
4e $\mathrm{R}=-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{COOH}$	>100	>100	>100		
4f $\mathrm{R}=-\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{COOH}$	35.9	47.5	>100		
5a $\mathrm{R}=-\mathrm{COOMe}$	80.2	86.2	>100		
5b R $=-\mathrm{CH}_{2}-\mathrm{COOMe}$	82.7	>100	>100		
5e $\mathrm{R}=-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{COOMe}$	8.1	7.3	15.1	nem	
$\mathbf{5 f} \mathrm{R}=-\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{COOMe}$	7.2	7.1	10.2		\square - -
6a $\mathrm{R}=-\mathrm{COOEt}$	>100	96.4	>100		
6b $\mathrm{R}=-\mathrm{CH}_{2}-\mathrm{COOEt}$	>100	>100	>100		
6e $\mathrm{R}=-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{COOEt}$	8.2	11.0	8.7		
6f $\mathrm{R}=-\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{COOEt}$	19.8	17.7	22.5		
7a $\mathrm{R}=-\mathrm{CONH}_{2}$	>100	>100	>100		
7b $\mathrm{R}=-\mathrm{CH}_{2}-\mathrm{CONH}_{2}$	>100	>100	>100		
$7 \mathrm{e} \mathrm{R}=-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{CONH}_{2}$	3.6	5.7	11.2		
7f $\mathrm{R}=-\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{CONH}_{2}$	5.7	8.9	21.8		
8a $\mathrm{R}=-\mathrm{COCH}_{3}$	>100	>100	>100		
8e R $=-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{COCH}_{3}$	0.6	1.1	2.0		
$\mathbf{8 f} \mathrm{R}=-\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{COCH}_{3}$	0.9	2.1	3.9	=	

$\mathrm{GI}_{50}=$ concentration of drug inhibiting cell growth by 50%. Colchicine (Col), Vinblastine (Vinb). HT-29 = human colon carcinoma, $\mathrm{M} 21=$ human skin melanoma and MCF-7 = human breast carcinoma.
lower affinity to the $\mathrm{C}-\mathrm{BS}$ without affecting the GI_{50}, this suggesting that the antiproliferative activity may involve the alkylation and the inactivation or the activation of other important cellular proteins. To confirm our hypothesis that CEUs 5e, 5f and 8e,

8f are binding covalently to the $\mathrm{C}-\mathrm{BS}$ on β_{II}-tubulin, we have assessed the irreversible binding of those CEUs using competition assays with drugs having a high affinity to β_{II}-tubulin such as colchicine and vinblastine. Compounds $\mathbf{1 f}, \mathbf{2 f}$ and $\mathbf{3 e}$ were also

Table 2. Effect of compounds $\mathbf{1 f}, \mathbf{2 f}, \mathbf{3 e}, \mathbf{5 e}, \mathbf{5 f}, \mathbf{8 e}$, and $\mathbf{8 f}$ on tumor cell apoptosis and cell cycle progression

CEU	Drug conc ($\mu \mathrm{M}$)	Apoptotic cells (\%)	$\mathrm{G}_{0} / \mathrm{G}_{1}(\%)$	S (\%)	$\mathrm{G}_{2} / \mathrm{M}(\%)$
DMSO	0.50\%	2	50	34	14
1f $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{OH}$	1.2	12	50	11	22
	4	27	6	7	53
2f $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{OMe}$	3	14	29	14	37
	10	24	7	9	52
3e $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{CH}_{3}$	3	18	14	11	50
	10	31	6	7	49
5e R $=\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{COOCH}_{3}$	7	4	46	36	14
	21	6	40	34	20
	175	19	18	1	62
$\mathbf{5 f} \mathrm{R}=\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{COOCH}_{3}$	7	4	45	37	14
	21	5	49	31	15
	175	19	8	1	72
8e $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{COCH}_{3}$	5	11	44	13	25
	15	23	6	10	53
8f $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{COCH}_{3}$	5	21	10	18	48
	15	16	11	18	53

tested as references. ${ }^{24,25}$ Afterward, the cells were harvested and the proteins were quantified and analyzed by Western blot. As shown in Table 1, cells treated with CEUs (10-fold the GI_{50}) exhibited a second immunoreactive band of β_{II}-tubulin. The competition assay between colchicine and the CEUs showed the disappearance of the band corresponding to the CEU-tubulin complex, suggesting that compounds $5 \mathbf{e}, 5 \mathbf{f}$ and $8 \mathbf{8}, 8 \mathbf{8}$ were covalently bound into the colchicine-binding site. The competition assay between vinblastine and the selected CEUs showed no changes in the alkylation pattern. These latter results highlighted the affinity of the CEU compounds (5e, 5f, 8e, and 8f) to the C-BS.

2.4. DNA cell cycle analysis

Antimicrotubule agents such as colchicine and vinblastine are known to arrest the cell cycle progression in G_{2} / M phase through microtubule disruption. Analogous action between CEUs and these microtubuledisrupting agents on the cytoskeleton prompted us to examine the effects of compounds $\mathbf{5 e}, \mathbf{5 f}, \mathbf{8 e}$, and $8 f$ on cell cycle progression. Exponentially growing M21 cells were treated with compounds $\mathbf{1 f}, \mathbf{2 f}, \mathbf{3 e}$, all used as references, and compounds $\mathbf{5 e}, \mathbf{5 f}$ and $\mathbf{8 e}, \mathbf{8 f}$ and DMSO. Flow cytometry analysis data showed that compounds $\mathbf{5 e}, \mathbf{5 f}, \mathbf{8 e}$, and $\mathbf{8 f}$ caused a significant accumulation of cells in $\mathrm{G}_{2} / \mathrm{M}$ phase (Table 2). This suggests that compounds $\mathbf{5 e}, \mathbf{5 f}, \mathbf{8 e}$, and $8 \mathbf{f}$ may induce microtubule disruption through mechanisms of action similar to those of colchicine and vinblastine.

3. Conclusion

In summary, we report here our efforts to determine the structure-activity relationships related to the antimicrotubule activity of CEUs by varying the
ω-functionality of the substituting moiety of the aromatic ring of CEUs. In our experiments the ω-functionalities were $-\mathrm{COOH},-\mathrm{COOR},-\mathrm{CONHR}$, and $\mathrm{C}(\mathrm{O}) \mathrm{R}$, respectively. Following examination of these four series of synthetic derivatives CEUs substituted on the side chain by electron-withdrawing groups showed that methyl ester and ketyl groups give potent cell growth inhibitory CEU. However, the presence of a free carboxyl group inhibits the antiproliferative activity of the drugs presumably through the presence of a negative charge preventing the binding of alkyl side chain into a putative hydrophobic pocket. The presence of lower alkyl saturated chains bearing terminal groups such as $\mathrm{OH}, \mathrm{CH}_{3}, \mathrm{OCH}_{3}, \mathrm{COOCH}_{3}$, and COCH_{3}, and N -(2-chloroethyl) pharmacophore seems essential for both antiproliferative and antitubulin activities. Most CEU, tested showed cell growth inhibition as previously demonstrated ${ }^{24,32,33}$ through the alkylation of the C-BS leading to microtubule depolymerization and arrest of the cell cycle progression in $\mathrm{G}_{2} / \mathrm{M}$ phase. Of interest, some CEUs were cytotoxic without covalently binding to C-BS suggesting that the molecular structure of the CEU pharmacophore could be modulated to inhibit selectively the activity of other key-proteins involved in cell life and death.

4. Experimental

4.1. Biological assays and reagents

Biochemicals, drugs, and the monoclonal anti- β-tubulin antibody (clone TUB 2.1) were purchased from Sigma Chemical (St.-Louis, MO). Defined iron-supplemented bovine calf serum, high glucose DMEM with pyruvate, nitrocellulose membrane, and the ECL Western blotting detection reagent kit were provided by Hyclone (Road Logan, UT), Invitrogen, Bio-Rad (Mississauga, Canada), and GE Healthcare (Oakville, Canada), respectively. All drugs were dissolved in DMSO. The
concentration of DMSO in the culture medium was maintained under $0.5 \%(\mathrm{v} / \mathrm{v})$ to avoid the toxicity of the vehicle.
4.1.1. Cell culture and growth inhibition activity. The growth inhibition potency of CEUs was assessed using the procedure described by the National Cancer Institute for its drug screening program. ${ }^{19} 96$-well tissue culture plates were seeded with $100 \mu \mathrm{~L}$ of tumor cell lines suspended in high glucose DMEM containing $5 \%(\mathrm{v} / \mathrm{v})$ defined iron-supplemented bovine calf serum. Plates were incubated at $37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$ for 24 h . Drugs, freshly solubilized in DMSO, were diluted in fresh medium and aliquots of $100 \mu \mathrm{~L}$ containing sequential dilution were added. Final drug concentrations ranged from 100 to $0.1 \mu \mathrm{M}$. Plates were incubated for 48 h . Assays were stopped by addition of cold trichloroacetic acid to the wells (final concentration was 10%), followed by incubation for 60 min at $4{ }^{\circ} \mathrm{C}$. Plates were washed five times with tap water. Sulforhodamine B solution $(50 \mu \mathrm{~L})$ at $0.1 \%(\mathrm{w} / \mathrm{v})$ in $1 \%(\mathrm{v} / \mathrm{v})$ acetic acid was added to each well, and plates were incubated for 15 min at room temperature. After staining, unbound dye was removed by washing 5 times with 1% acetic acid. Bonded stain was solubilized with $150 \mu \mathrm{~L}$ of 20 mM Tris base, and the absorbance was read using a μ Quant Universal Microplate Spectrophotometer (Biotek, Winooski, VT) at 585 nm . The results were compared with those of a control reference plate fixed on the treatment day and the growth inhibition percentage was calculated for each drug. The experiments were performed at least twice in triplicate.
4.1.2. Electrophoretic mobility shift assay to evaluate $\boldsymbol{\beta}$ tubulin alkylation. Exponentially growing M21 cells $\left(2.2 \times 10^{5}\right)$ were plated in 12 -well plates and incubated overnight at $37^{\circ} \mathrm{C}$. The cells were treated with $5 \mu \mathrm{M}$ either of colchicine or vinblastine and a concentration of CEU equivalent to $10 \times$ the GI_{50}. The cells were incubated with the drugs for 24 and 48 h , respectively, and then harvested using a rubber policeman and centrifuged for 3 min at 8000 rpm . The pellets were washed with $500 \mu \mathrm{~L}$ of cold PBS, solubilized using Laemmli buffer. Samples (5×10^{4} cells) were analyzed by 10% SDSPAGE. After electrophoresis, proteins were transferred onto nitrocellulose membranes which were then incubated in PBS, pH 7.4, containing 5% fat-free dried milk and 0.1% Tween 20^{TM} (PBSMT) for 2 h at room temperature and then with $1 / 500$ monoclonal anti- β-tubulin for 2 h . Membranes were washed with PBSMT and incubated with $1 / 2500$ peroxidase-conjugated antimouse immunoglobulin in PBSMT for 1 h . Detection of the immunoblot was carried out with the ECL Western blotting detection reagent kit.
4.1.3. Cell cycle analysis. M21 cells were incubated with the different drugs for 24 h , harvested, resuspended in 1 mL of PBS, and fixed by the addition of 2.4 ml of ice-cold anhydrous ethanol. Then, 5×10^{5} cells from each sample were centrifuged for 3 min at 8000 rpm . Cell pellets were resuspended in PBS containing $50 \mu \mathrm{~g} /$ mL of propidium iodide and $40 \mathrm{U} / \mathrm{mL}$ of RNase A (Boehringer Mannheim, Laval, Canada). Cell suspen-
sions were incubated at room temperature for 30 min , and cell cycle distribution was analyzed by flow cytometry (Coulter Corporation, Miami, FL). Quantification of the FACS analyses was carried out with the software developed by Scripps Research Institute (http:// www.scripps.edu/e_index.html).

4.2. Experimental procedures

4.2.1. Chemistry and chemical methods. Proton NMR spectra were recorded on a Brucker AM-300 spectrometer (Bruker, Germany). Chemical shifts (δ) are reported in parts per million relative to the internal standard tetramethylsilane. IR spectra were recorded on a Unicam spectrometer. Uncorrected melting points were determined on an Electrothermal melting point apparatus. ESIMS spectra were carried out in the Mass Spectroscopy Laboratory of Molecular Medicine Research Centre, Medical Sciences Bldg, University of Toronto (http://www.medresearch.utoronto.ca/pmsc_home.html). All reactions were conducted under rigorously dried nitrogen atmosphere. All chemicals were obtained from Aldrich Chemical Co. (Milwaukee, WI). Compounds $\mathbf{1 f}$, 2f, and 3e were prepared as described previously. ${ }^{24,25}$ Purification of compounds was performed by liquid flash chromatography on silica gel 60 A (American Chemicals Ltd., Montreal, Canada). Solvents and reagents were used without purification unless specified otherwise. The progress of all reactions was monitored using TLC on precoated silica gel plates (Merck Silica Gel $60 \mathrm{~F}_{254}$).

4.3. General preparation of compounds $\mathbf{4 a - f}$, $\mathbf{5 a - f}$, $\mathbf{6 a - f}$, 7a-f, 8a, 8e, and $8 f$

2-Chloroethylisocyanate (1.640 mmol) was added dropwise to a cold solution (ice bath) of the required aniline $(1.370 \mathrm{mmol})$ in dry dichloromethane $(15 \mathrm{~mL}$ per g of aniline). The ice bath was then removed and the reaction mixture was stirred at room temperature for 20 h . After completion of the reaction, the solvent was evaporated under reduced pressure to give an off-white solid, which was purified by flash chromatography.
4.3.1. 3-[3-(2-Chloroethyl)ureido]benzoic acid (4a). Compound $\mathbf{4 a}$ was synthesized from 13a. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}\right.$ (95/5)). Yield: $26 \% ; \mathrm{mp} 208-210^{\circ} \mathrm{C}$; IR (KBr): v 3353,1693, 1642, $1243 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): δ 12.87 (brs, $1 \mathrm{H}, \mathrm{OH}$), 8.91 (brs, $1 \mathrm{H}, \mathrm{NH}$), 8.08 (s, 1 H , Ar), $7.68(\mathrm{~d}, 1 \mathrm{H}, J=7.0, \operatorname{Ar}), 7.61(\mathrm{~d}, 1 \mathrm{H}, J=7.5$, Ar), 7.36 (m, 1H, Ar), 6.48 (brs, $1 \mathrm{H}, \mathrm{NH}$), 3.68 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 3,45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 167.4,155.0,140.6,131.3,128.9,122.1,121.9,118.5$, 44.3, 41.3. ESIMS: $(\mathrm{m} / \mathrm{z}): 265.0[\mathrm{M}+\mathrm{Na}]^{+}, 243.0[\mathrm{M}+1]^{+}$.
4.3.2. 3-[3-(2-Chloroethyl)ureido]phenyl acetic acid (4b). Compound 4b was synthesized from 13b. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(95 / 5)\right)$. Yield: 25%; mp 214-215 ${ }^{\circ} \mathrm{C}$; IR (KBr): v 3311, 1658, 1632, $1245 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 8.95$ (brs, 1H, NH), 7.89 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar)}$, $7,61(\mathrm{~d}, 1 \mathrm{H}, J=8.0, \mathrm{Ar}), 7.41(\mathrm{~d}, 1 \mathrm{H}, J=8.0, \mathrm{Ar})$,
7.29 (m, 1H, Ar), 6.61 (brs, 1H, NH), 3.68 (m, 4H, CH_{2}), $3.34\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): δ 168.8, 155.7, 148.6, 135.2, 128.5, 116.5, 114.7, 113.2, 47.3, 44.8, 38.2. ESIMS: $(\mathrm{m} / \mathrm{z}): 279.0[\mathrm{M}+\mathrm{Na}]^{+}, 257.0[\mathrm{M}+1]^{+}$.
4.3.3. 5-\{3-[3-(2-Chloroethyl)ureido]phenyl\}pentanoic acid (4e). Compound $\mathbf{4 e}$ was synthesized from 13e. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ EtOH (95/5)). Yield: 37%; IR (NaCl): v 3274, 1651, 1593, $1244 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): $\delta 7.57$ (brs, $1 \mathrm{H}, \mathrm{NH}), 7.36(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 6.87$ (d, $1 \mathrm{H}, J=7.0$, Ar), 6.74 (brs, $1 \mathrm{H}, \mathrm{NH}$), 3.66 (m, 4 H , $\left.\mathrm{CH}_{2}\right), 3.46\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.63(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR (acetone- d_{6}): δ 174.6, 155.1, 143.7, 129.2, 123.9, 122.2, 118.9, 116.2, 49.7, 44.6, 41.2, 36.1, 30.2, 29.8. ESIMS: $(\mathrm{m} / \mathrm{z}): 297.1[\mathrm{M}-1]^{+}$.
4.3.4. 6-\{3-[3-(2-Chloroethyl)ureidolphenyl\}hexanoic acid (4f). Compound $\mathbf{4 f}$ was synthesized from 13f. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ $\mathrm{EtOH}(90 / 10)$). Yield: 31%; mp 128-130 ${ }^{\circ} \mathrm{C}$; IR (KBr): v 3306, 1690, 1633, $1241 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): δ 8.17 (brs, $1 \mathrm{H}, \mathrm{NH}$), 7.31 (m, 1H Ar), 7.12 (m, 2H, Ar), 6.79 (d, $1 \mathrm{H}, J=7,5, \mathrm{Ar}), 6.23$ (brs, $1 \mathrm{H}, \mathrm{NH}$), 3.64 $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.71\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.22(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (acetone- d_{6}): δ 174.1, 156.1, 143.9, 141.1, 129.2, 122.6, 119.2, 116.8, 44.9, 42.5, 36.3, 34.1, 31.8, 30.6, 25.4. ESIMS: $(\mathrm{m} / \mathrm{z}): 335.1[\mathrm{M}+\mathrm{Na}]^{+}, 313.1[\mathrm{M}+1]^{+}$.
4.3.5. 3-[3-(2-Chloroethyl)ureido]benzoic acid methyl ester (5a). Compound 5a was synthesized from 14a. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(98 / 2)\right)$. Yield: 77%; mp $103-$ $105^{\circ} \mathrm{C}$; IR (KBr): v 3309, 1709, 1638, $1235 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 8.21$ (brs, $1 \mathrm{H}, \mathrm{NH}$), 7.87 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}$), $7.61(\mathrm{~d}, 1 \mathrm{H}, J=7,0, \mathrm{Ar}), 7.58(\mathrm{~d}, 1 \mathrm{H}, J=7,0, \mathrm{Ar})$, $7.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 5.89$ (brs, $1 \mathrm{H}, \mathrm{NH}), 3.76$ (s, 3 H , $\left.\mathrm{CH}_{3}\right), 3.57\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 167.1$, $156.2,139.3,131.1,129.0,125.0,123.9,120.4,52.2$, 46.4, 42.0. ESIMS: $(\mathrm{m} / \mathrm{z}): 257.0[\mathrm{M}+1]^{+}$.
4.3.6. 3-[3-(2-Chloroethyl)ureido]phenyl acetic acid methyl ester (5b). Compound $\mathbf{5} \mathbf{b}$ was synthesized from $\mathbf{1 4 b}$. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(98 / 2)\right)$. Yield: 61%; mp $96-97^{\circ} \mathrm{C}$; IR (KBr): v 3330, 1732, 1650, $1234 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.57($ brs, $1 \mathrm{H}, \mathrm{NH}), 7.21(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 6.79$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{Ar}), 5.91$ (brs, $1 \mathrm{H}, \mathrm{NH}), 3.57\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{2}\right.$, $\left.\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 172.5,156.0,139.1,134.7$, 129.2, 124.0, 120.9, 118.8, 52.1, 44.4, 40.9, 40.3. ESIMS: $(\mathrm{m} / \mathrm{z}): 293.0[\mathrm{M}+\mathrm{Na}]^{+}, 271.0[\mathrm{M}+1]^{+}$.
4.3.7. 5-\{3-[3-(2-Chloroethyl)ureido]phenyl\}pentanoic acid methyl ester (5e). Compound 5e was synthesized from 14e. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(97 / 3)\right)$. Yield: 19%; IR (NaCl): v 3326, 1702,1629, $1212 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.21$ (brs, $1 \mathrm{H}, \mathrm{NH}$), $7.07(\mathrm{~m}, 1 \mathrm{H} \mathrm{Ar}), 6.57(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar})$, 6.17 (brs, $1 \mathrm{H}, \mathrm{NH}), 3.66$, ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $3.51(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.33\left(\mathrm{t}, 2 \mathrm{H}, J=7.0, \mathrm{CH}_{2}\right)$, $1.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 174.1,155.3,146.3,143.4,129.2,118.8$,
$115.3,112.8,51.3,44.7,41.8,35.5,34.2,30.4,24.6$. ESIMS: $(\mathrm{m} / \mathrm{z}): 337.1[\mathrm{M}+2+\mathrm{Na}]^{+}, 336.1[\mathrm{M}+1+\mathrm{Na}]^{+}$, $335.1[\mathrm{M}+\mathrm{Na}]^{+}, 315.1[\mathrm{M}+3]^{+}, 314.1[\mathrm{M}+2]^{+}, 213.1$ $[\mathrm{M}+1]^{+}$.
4.3.8. 6-\{3-[3-(2-Chloroethyl)ureido]phenyl\}hexanoic acid methyl ester (5f). Compound $\mathbf{5 f}$ was synthesized from 14f. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(97 / 3)\right)$. Yield: 32%; IR (NaCl): v 3323, 1702, 1631, $1251 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.11$ (brs, $1 \mathrm{H}, \mathrm{NH}$), 7,48 (m, 2H, Ar), 6.51 (m, 2H, Ar), 6.38 (brs, $1 \mathrm{H}, \mathrm{NH}$), $3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.57\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.17\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.78(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 174.1,155.3,138.3,131.7$, $129.3,124.2,121.1,116.8,51.4,44.6,41.9,35.9,34.1$, 32.6, 30.8, 23.6. ESIMS: $(\mathrm{m} / \mathrm{z}): 351.1[\mathrm{M}+2+\mathrm{Na}]^{+}$, $350.1[\mathrm{M}+1+\mathrm{Na}]^{+}, 349.1[\mathrm{M}+\mathrm{Na}]^{+}, 329.1[\mathrm{M}+3]^{+}$, $328.2[\mathrm{M}+2]^{+}, 227.1[\mathrm{M}+1]^{+}$.
4.3.9. 3-[3-(2-Chloroethyl)ureido]benzoic acid ethyl ester (6a). Compound 6a was synthesized from 15a. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(98 / 2)\right)$. Yield: 88%; mp $128-130{ }^{\circ} \mathrm{C}$; IR (KBr): v 3335, 1730, 1642, $1238 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.22$ (brs, $\left.1 \mathrm{H}, \mathrm{NH}\right), 7.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 7.63$ $(\mathrm{d}, 1 \mathrm{H}, J=8.0, \mathrm{Ar}), 7.57(\mathrm{~d}, 1 \mathrm{H}, J=7.0, \mathrm{Ar}), 7.30(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{Ar}), 6.35$ (brs, $1 \mathrm{H}, \mathrm{NH}), 4.31(\mathrm{q}, 2 \mathrm{H}, J=7.0$, $\left.\mathrm{CH}_{2}\right), 3.57\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.34\left(\mathrm{t}, 3 \mathrm{H}, J=7.0, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 166.7,156.0,139.1,131.0,129.1$, 124.3, 124.1, 120.5, 61.2, 44.5, 42.0, 14.2. ESIMS: $(\mathrm{m} / \mathrm{z})$: $293.0[\mathrm{M}+\mathrm{Na}]^{+}, 271.0[\mathrm{M}+1]^{+}$.
4.3.10. 3-[3-(2-Chloroethyl)ureido|phenyl acetic acid ethyl ester (6b). Compound $\mathbf{6 b}$ was synthesized from 15b. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(98 / 2)\right)$. Yield: 52%; mp $95-97^{\circ} \mathrm{C}$; IR (KBr): v 3341, 1727, 1595, $1230 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.89$ (brs, NH, 1H), 7.17 (s, 1H, Ar), 7.08 (m, 2H, Ar), $6.81(\mathrm{~d}, 1 \mathrm{H}, J=8.0, \operatorname{Ar}), 6.54$ (brs, 1 H , $\mathrm{NH}), 4.09\left(\mathrm{q}, 2 \mathrm{H}, J=7,0, \mathrm{CH}_{2}\right), 3.46\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.21\left(\mathrm{t}, 3 \mathrm{H}, \quad J=7,0, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 172.1, 156.2, 139.2, 134.9, 129.7, 123.8, 120.8, 118.6, 61.1, 44.4, 42.0, 41.8, 14.1. ESIMS: $(\mathrm{m} / \mathrm{z})$: 307.0 $[\mathrm{M}+\mathrm{Na}]^{+}, 285.0[\mathrm{M}+1]^{+}$.
4.3.11. 5-\{3-[3-(2-Chloroethyl)ureido]phenyl\}pentanoic acid ethyl ester (6e). Compound $\mathbf{6 e}$ was synthesized from 15e. The crude product was purified by flash chromatography (hexanes/ethyl acetate (6/4)). Yield: 87%; mp $>310^{\circ} \mathrm{C}$; IR (KBr): v 3311, 1728, 1636, $1184 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.23(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}, \mathrm{NH}), 6.89$ (m, 1H, Ar), 5.63 (brs, $1 \mathrm{H}, \mathrm{NH}), 4.31$ (q, 2 H , $\left.J=7.0, \mathrm{CH}_{2}\right), 3.63\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.56(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.81\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.23$ $\left(\mathrm{t}, 3 \mathrm{H}, \quad J=7.0, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 175.1$, $155.8,143.6,138.3,129.3,124.2,121.1,118.6,60.3$, 44.8, 42.0, 35.5, 34.2, 30.9, 25.3, 14.2. ESIMS: (m / z) : $349.1[\mathrm{M}+\mathrm{Na}]^{+}, 327.1[\mathrm{M}+1]^{+}$.
4.3.12. 6-\{3-[3-(2-Chloroethyl)ureido]phenyl\}hexanoic acid ethyl ester ($\mathbf{6 f}$). Compound $\mathbf{6} f$ was synthesized from $\mathbf{1 5 f}$. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(98 / 2)\right)$. Yield: $81 \% ; \mathrm{mp} 72-74{ }^{\circ} \mathrm{C}$;

IR (KBr): v 3323, 1725, 1634, $1247 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.14(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}, \mathrm{NH}), 6.86(\mathrm{~d}, 1 \mathrm{H}, J=7.0$, Ar), 5.66 (brs, $1 \mathrm{H}, \mathrm{NH}$), $4.10\left(\mathrm{q}, 2 \mathrm{H}, J=7.0, \mathrm{CH}_{2}\right)$, $3.59\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.27(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.62\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.35\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 174.9,155.9,143.9,138.4,129.1$, $124.0,120.9,118.3,60.3,53.4,44.8,42.0,35.6,34.3$, 30.9, 24.8, 14.2. ESIMS: $(\mathrm{m} / \mathrm{z}): 363.1[\mathrm{M}+\mathrm{Na}]^{+}, 341.1$ $[\mathrm{M}+1]^{+}$.
4.3.13. 3-[3-(2-Chloroethyl)ureido]benzoic acid amide (7a). Compound 7a was synthesized from 16a. The crude product was purified by flash chromatography (ethyl acetate/EtOH (95/5)). Yield: 68\%; mp 212$214{ }^{\circ} \mathrm{C}$; IR (KBr): v 3320, 1660, $1635 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 8.92$ (brs, 1H, NH), 7.83 (m, 2H, Ar), $7.40(\mathrm{~d}, 1 \mathrm{H}, J=8.0, \mathrm{Ar}), 7.32\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}, \mathrm{NH}_{2}\right), 6.57$ (brs, $1 \mathrm{H}, \mathrm{NH}$), $3.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.44\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): δ 168.1, 155.1, 140.4, 135.1, 128.5, 120.5, 120.1, 117.3, 44.4, 41.3. ESIMS: $(\mathrm{m} / \mathrm{z})$: $264.0[\mathrm{M}+\mathrm{Na}]^{+}, 242.0[\mathrm{M}+1]^{+}$.
4.3.14. 3-[3-(2-Chloroethyl)ureido]phenyl acetic acid amide (7b). Compound 7b was synthesized from 16b. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(90 / 10)\right)$. Yield: 57%; mp $119-121^{\circ} \mathrm{C}$; IR (KBr): v 3324, $1664, \quad 1627 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 8.17$ (brs, 1H, NH), 8.12 (d, 1H, $J=8.0, ~ A r), 7.65\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}, \mathrm{NH}_{2}\right), 7.03$ (brs, 1 H , $\mathrm{NH}), 3.68\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.45\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): δ 171.3, 152.5, 147.7, 138.7, 136.1, 129.6, 123.8, 121.4, 58.1, 41.3, 40.1. ESIMS: $(\mathrm{m} / \mathrm{z}): 278.0[\mathrm{M}+\mathrm{Na}]^{+}$.
4.3.15. 5-\{3-[3-(2-Chloroethyl)ureido]phenyl\}pentanoic acid amide (7e). Compound 7 e was synthesized from $16 e$. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(90 / 10)\right)$. Yield: 23%; IR (NaCl) : v 3328, 1670, $1657 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 8.03$ (brs, $1 \mathrm{H}, \mathrm{NH}$), $7.11\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}, \mathrm{NH}_{2}\right), 6.69(\mathrm{~d}, 1 \mathrm{H}$, $J=7.0, ~ A r), 6.21$ (brs, 1H, NH), 3.47 (m, 4H, $\left.\mathrm{CH}_{2}\right), 3.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.67(\mathrm{t}, 2 \mathrm{H}, \quad J=7.0$, $\left.\mathrm{CH}_{2}\right), 2.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.39(\mathrm{t}, 2 \mathrm{H}, \quad J=7.0$, CH_{2}); ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): δ 172.3, 155.8, 147.9, $137.5,130.3,125.6,124.7,122.9,58.3,44.9,41.2$, 33.9, 29.3, 15.0. ESIMS: $(\mathrm{m} / \mathrm{z}): \quad 320.1 \quad[\mathrm{M}+\mathrm{Na}]^{+}$, $298.1[\mathrm{M}+1]^{+}$.
4.3.16. 6-\{3-[3-(2-Chloroethyl)ureido|phenyl\}hexanoic acid amide (7f). Compound $7 \mathbf{f}$ was synthesized from 16f. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(90 / 10)\right)$. Yield: 27%; IR (NaCl): v 3326, 1669, $1633 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 8.21$ (brs, $1 \mathrm{H}, \mathrm{NH}$), $7.38\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}, \mathrm{NH}_{2}\right), 6.55(\mathrm{~m}, 2 \mathrm{H}$, Ar), 6.38 (brs, $1 \mathrm{H}, \mathrm{NH}$), 3.45 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2}$), 2.56 (m, $\left.4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.23\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 172.3,146.2,143.8,137.4,129.2,123.7$, 121.1, 117.2, 60.1, 44.7, 42.1, 35.9, 32.4, 30.9, 23.8. ESIMS: $(\mathrm{m} / \mathrm{z})$: $334.1[\mathrm{M}+\mathrm{Na}]^{+}, 312.1[\mathrm{M}+1]^{+}$.
4.3.17. 1-(3-Acetylphenyl)-3-(2-chloroethyl)urea (8a). Compound 8a was synthesized from 17a. The crude product was purified by flash chromatography
$\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(90 / 10)\right)$. Yield: $94 \% \quad(3.329 \mathrm{~g})$; IR $(\mathrm{NaCl}): v 3356,1664,1320 ;{ }^{1} \mathrm{H}$ RMN (DMSO- d_{6}): δ 8.97 (brs, $1 \mathrm{H}, \mathrm{NH}$), 8.03 (s, $1 \mathrm{H}, \mathrm{Ar}$), 7.66 (d, 1 H , $J=8.0$, Ar $), 7.53(\mathrm{~d}, 1 \mathrm{H}, J=7.5, \mathrm{Ar}), 7.39(\mathrm{~m}, 1 \mathrm{H}$, Ar), 6.51 (brs, $1 \mathrm{H}, \mathrm{NH}), 3.68\left(\mathrm{t}, 2 \mathrm{H}, J=6.0, \mathrm{CH}_{2}\right.$), $3.46\left(\mathrm{t}, 2 \mathrm{H}, J=6.0, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ RMN (DMSO- d_{6}): δ 197.8, 155.1, 140.8, 137.4, 129.1, 122.3, 121.3, 117.0, 44.3, 41.3, 26.7. ESIMS: $(\mathrm{m} / \mathrm{z}): 263.0[\mathrm{M}+\mathrm{Na}]^{+}, 241.0$ $[\mathrm{M}+1]^{+}$.
4.3.18. 1-[3-(5-Oxohexyl)phenyl]-3-(2-chloroethyl)urea (8e). Compound $\mathbf{8 e}$ was synthesized from 17e. The crude product was purified by flash chromatography (hexane/ ethyl acetate (65/35)). Yield: 73\%; IR (NaCl): v 3346 $(\mathrm{NH}), 1711,1316 ;{ }^{1} \mathrm{H}$ RMN (acetone- d_{6}) $\delta: 7.17$ (m, $4 \mathrm{H}, \mathrm{Ar}, \mathrm{NH}$), 6.87 (m, 1H, Ar,), 5.70 (brs, $1 \mathrm{H}, \mathrm{NH}$), $3.59\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.42(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.57\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ RMN (acetone- d_{6}): δ 209.5, 155.9, 143.5, 138.4, 129.2, 124.1, 120.9, 118.4, 44.7, 43.5, 42.0, 35.6, 30.7, 30.0, 23.4. ESIMS: $(\mathrm{m} / \mathrm{z}): 335.2[\mathrm{M}+\mathrm{K}]^{+}, \quad 321.2$ $[\mathrm{M}+2+\mathrm{Na}]^{+}, 319.2[\mathrm{M}+\mathrm{Na}]^{+}, 299.3[\mathrm{M}+3]^{+} ; 297.2$ $[\mathrm{M}+1]^{+}$.
4.3.19. 1-[3-(5-Oxoheptyl)phenyl]-3-(2-chloroethyl)urea (8f). Compound $\mathbf{8 f}$ was synthesized from $\mathbf{1 7 f}$. The crude product was purified by flash chromatography (hexane/ ethyl acetate (65/35)). Yield: 72\%; IR (NaCl): v 3324, 1710, 1306; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.75$ (brs, $1 \mathrm{H}, \mathrm{NH}$), 7.07 (m, 3H, Ar), 6.79 (d, 1H, $J=5.0$, Ar) 5.89 (brs, $1 \mathrm{H}, \mathrm{NH}), 3.49\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.43\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.12$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.54\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 210.2,156.5,143.6,138.84$, $128.9,123.2,120.0,117.4,44.3,43.7,42.0,35.7,31.0$, 29.9, 28.7, 23.6. ESIMS $(\mathrm{m} / \mathrm{z}): 349.2[\mathrm{M}+\mathrm{K}]^{+}, 335.3$ $[\mathrm{M}+2+\mathrm{Na}]^{+}, 333.2[\mathrm{M}+\mathrm{Na}]^{+}, 313.3[\mathrm{M}+3]^{+} ; 311.3$ $[\mathrm{M}+1]^{+}$.
4.4. General preparation of compounds $13 \mathrm{a}, 13 \mathrm{~b}, 13 \mathrm{e}, 13 \mathrm{f}$, 14a, 14b, 14e, 14f, 15a, 15b, 15e, 15f, 16a, 16b, 16e, 16f, and $17 \mathrm{e}, 17 \mathrm{f}$

Method A: The appropriate nitro compound $(1.00 \mathrm{mmol})$ was dissolved in a mixture of ethanol and water ($10: 1,22 \mathrm{~mL}$). Powdered iron (7.28 mmol) and five drops of concentrated hydrochloric acid were added. The mixture was refluxed for 4 h . After cooling, the mixture was evaporated to dryness. A saturated solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(20 \mathrm{~mL})$ was added, and the mixture was extracted with dichloromethane $(3 \times 15 \mathrm{~mL})$. The organic portions were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The solid residue was then purified by flash chromatography on silica gel to afford 14a, 14b or 15a, 15b.

Method B: A mixture of the appropriate nitro compound (0.43 mmol), $\mathrm{Pd} / \mathrm{C} 10 \%$ in ethanol $(30 \mathrm{~mL})$ was reduced under hydrogen atmosphere (38 psi) overnight. The catalyst was removed by filtration on Celite and the filtrate was evaporated to dryness. The residue was purified by flash chromatography on silica gel to afford 13a, $13 b, 13 e, 13 f$ and $14 e, 14 f$ and $15 e, 15 f$ and 16a, 16b, 16e, $16 f$ and $17 \mathrm{e}, 17 \mathrm{f}$.
4.4.1. 3-Aminobenzoic acid (13a). Compound 13a was synthesized from 9a using Method B. The crude product was purified by flash chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(95 / 5)$). Yield: 57%; mp $246-250^{\circ} \mathrm{C}$; IR (KBr): v 3427, 1638, $1390 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 7.23(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Ar}), 7.08(\mathrm{~d}, 1 \mathrm{H}, J=8.0, \operatorname{Ar}), 7.03(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{Ar}), 6.63(\mathrm{~d}, 1 \mathrm{H}, J=7.5, \mathrm{Ar}), 5.85$ (brs, 2 H , $\left.\mathrm{NH}_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): δ 168.9, 148.2, 135.5, 128.2, 117.0, 116.4, 114.8.
4.4.2 2-(3-Aminophenyl)acetic acid (13b). Compound 13b was synthesized from 9 b using Method B. The crude product was purified by flash chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(95 / 5)$). Yield: 74%; mp $166-169{ }^{\circ} \mathrm{C}$; IR (KBr) v 3390, 1639, $1402 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}\right): \delta 7.19(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 6.69(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 5.17(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}); ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): δ 168.7, 148.5, 135.1, $128.5,116.4,114.6,113.1,39.5$.
4.4.3. 5-(3-Aminophenyl)pentanoic acid (13e). Compound 13 e was synthesized from 19e using Method B. The crude product was purified by flash chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(95 / 5)$). Yield: 30%; mp $70-72{ }^{\circ} \mathrm{C}$; IR (KBr): v 3347, 1694, $1353 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 7.11(\mathrm{t}, 1 \mathrm{H}, J=8.0, \mathrm{Ar}), 6.61$ (d, 1H, J=7.5, Ar), 6.54 (m, 2H, Ar), 6.17 (brs, 2H, $\left.\mathrm{NH}_{2}\right), 2.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.68$ $\left(\mathrm{m}, \quad 4 \mathrm{H}, \quad \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): δ 179.6, $146.01,143.4,129.3,119.2,115.6,113.1,35.5,34.0$, 30.6, 24.4.
4.4.4. 6-(3-Amminophenyl)hexanoic acid (13f). Compound 13f was synthesized from $19 f$ using Method B. The crude product was purified by flash chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(95 / 5)$). Yield: 64%; mp $131-133{ }^{\circ} \mathrm{C}$; IR (KBr): v 3402, 1705, $1420 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}\right): \delta 7.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 6.64(\mathrm{~d}, 1 \mathrm{H}, J=8.0, \mathrm{Ar}), 6.59$ (m, 2H, Ar), 6.14 (brs, 2H, NH2), 2.55 (t, $2 \mathrm{H}, J=7.0$, $\left.\mathrm{CH}_{2}\right), 2.33\left(\mathrm{t}, 2 \mathrm{H}, J=7.0, \mathrm{CH}_{2}\right), 1.64\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}\right): \delta 179.6$, $145.9,143.8,129.2,119.3,115.6,113.0,35.6,34.1$, 30.9, 28.7, 24.6 .
4.4.5. 3-Aminobenzoic acid methyl ester (14a). Compound 14a was synthesized from 10a using Method A. The crude product was purified by flash chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(98 / 2)$). Yield: 76%; IR (NaCl): v 3372, 1712, $1238 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}\right): \delta 7.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 7.15(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 6.77(\mathrm{~d}, 1 \mathrm{H}$, $J=8.0, \mathrm{Ar}), 5.49\left(\mathrm{brs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 2.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;$ ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 166.2,148.9,130.4,129.0$, 118.2, 116.3, 114.0, 51.8.
4.4.6. 3-Aminophenylacetic acid methyl ester (14b). Compound 14b was synthesized from 10b using Method A. The crude product was purified by flash chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(98 / 2)$). Yield: 59%; IR (NaCl): v 3360, 1724, $1286 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 6.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 6.43(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$, $6.37(\mathrm{~d}, 1 \mathrm{H}, J=8.0, \mathrm{Ar}), 5.11$ (brs, $2 \mathrm{H}, \mathrm{NH}_{2}$), 3.58 $\left(\mathrm{s}, \quad 3 \mathrm{H}, \quad \mathrm{CH}_{3}\right), \quad 3.44 \quad\left(\mathrm{~s}, \quad 2 \mathrm{H}, \quad \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C} \quad \mathrm{NMR}$ (DMSO- d_{6}): δ 171.7, 148.6, 134.7, 128.8, 116.6, $114.5,112.5,51.5,40.5$.
4.4.7. 5-(3-Aminophenyl)pentanoic acid methyl ester (14e). Compound $14 e$ was synthesized from 20e using general Method B. The crude product was purified by flash chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(95 / 5)$). Yield: 50%; IR (NaCl): v 3427, 1724, $1275 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 7.07(\mathrm{~m}, 1 \mathrm{H}, \operatorname{Ar}), 6.58(\mathrm{~d}, 1 \mathrm{H}$, $J=7.5, \mathrm{Ar}), 6.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.55$ (brs, $2 \mathrm{H}, \mathrm{NH}_{2}$), $2.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.33(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.65\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): δ 174.1, 146.3, 143.4, 129.2, 118.8, 115.3, 112.8, 51.7, $33.5,33.2,30.7,24.6$.
4.4.8. 6-(3-Aminophenyl)hexanoic acid methyl ester (14f). Compound $\mathbf{1 4 f}$ was synthesized from $20 f$ using general Method B. The crude product was purified by flash chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(95 / 5)$). Yield: 17%; IR (NaCl): v 3402, 1742, $1170 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 7.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 6.68(\mathrm{~m}, 3 \mathrm{H}$, Ar), $3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.59$ (brs, $2 \mathrm{H}, \mathrm{NH}_{2}$), 2.54 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.49\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.28$ (m, 2H, CH_{2}); ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): δ 174.2, 149.1, $143.8,129.1,120.1,112.5,109.9,52.4,36.1,34.1,31.0$, 28.9, 24.8.
4.4.9. 3-Aminobenzoic acid ethyl ester (15a). Compound 15a was synthesized from 11a using Method A. The crude product was purified by flash chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(98 / 2)$). Yield: 56%; IR (NaCl): $v 3378,112,1237 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 7.24$ (s, $1 \mathrm{H}, \mathrm{Ar}), 7.17$ (m, 2H, Ar), 6.81 (d, 1H, $J=7.5, \mathrm{Ar}), 5.54$ (brs, $2 \mathrm{H}, \mathrm{NH}_{2}$), $4.31\left(\mathrm{q}, 2 \mathrm{H}, J=7.0, \mathrm{CH}_{2}\right), 1.29(\mathrm{t}, 3 \mathrm{H}$, $J=7.0, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 173.8,148.8$, 131.0, 129.0, 118.3, 116.4, 114.1, 60.3, 14.2.
4.4.10. 3-Aminophenylacetic acid ethyl ester (15b). Compound 15b was synthesized from 11b using Method A. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(98 / 2)\right)$. Yield: 51%; IR (NaCl): v 3372, 1724, $1292 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 6.99$ ($\mathrm{t}, 1 \mathrm{H}, J=7.5, \mathrm{Ar}), 7.47(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 6.34(\mathrm{~d}, 1 \mathrm{H}$, $J=8.0, \mathrm{Ar}), 5.17\left(\mathrm{brs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.08(\mathrm{q}, 2 \mathrm{H}, J=7.0$, $\left.\mathrm{CH}_{2}\right), 3.47\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.15\left(\mathrm{t}, 3 \mathrm{H}, J=7.0, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): δ 171.2, 148.5, 134.8, 128.8, 116.7, 114.6, 112.5, 60.1, 40.7, 14.0.
4.4.11. 5-(3-Aminophenyl)pentanoic acid ethyl ester (15e). Compound 15e was synthesized from 20e using Method B. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(95 / 5)\right)$. Yield: 50%; IR (NaCl) : v 3420, 1732, $1186 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 7.07$ (m, 1H, Ar), $6.57(\mathrm{~d}, 1 \mathrm{H}, J=7.5, \operatorname{Ar}), 6.51(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{Ar}, \mathrm{NH}_{2}\right), 4.13\left(\mathrm{q}, 2 \mathrm{H}, J=7.0, \mathrm{CH}_{2}\right), 2.55(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.31\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.63\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.22(\mathrm{t}$, $\left.3 \mathrm{H}, \quad J=7.0, \quad \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): δ 173.7, $146.4,143.5,129.2,118.8,115.2,122.7,60.2,35.6$, 34.2, 30.7, 24.6, 14.3.
4.4.12. 6-(3-Aminophenyl)hexanoic acid ethyl ester (15f). Compound $\mathbf{1 5 f}$ was synthesized from $20 f$ using Method B. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(95 / 5)\right)$. Yield: 63%; IR $(\mathrm{NaCl}): v$ 3390, 1651, $1073 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 6.89$ (t, $1 \mathrm{H}, J=7.5, \mathrm{Ar}), 6.34(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 4.92$ (brs, 2 H ,
$\left.\mathrm{NH}_{2}\right), 4.04\left(\mathrm{q}, 2 \mathrm{H}, J=7.0, \mathrm{CH}_{2}\right), 2.39(\mathrm{t}, 2 \mathrm{H}, J=7$, $\left.\mathrm{CH}_{2}\right), 2.27\left(\mathrm{t}, 2 \mathrm{H}, J=7, \mathrm{CH}_{2}\right), 1.51\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.17\left(\mathrm{t}, 3 \mathrm{H}, J=7.0, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): δ $173.5,148.5,142.6,128.7,115.9,113.9,111.5,59.7$, 38.2, 33.5, 30.5, 28.2, 25.9, 14.2.
4.4.13. 3-Aminobenzoic acid amide (16a). Compound 16a was synthesized from 12a using general Method B. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(95 / 5)\right)$. Yield: 31%; mp $72-74{ }^{\circ} \mathrm{C}$; IR (KBr): v 3384, 3183, $1687 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 7.74$ (brs, $2 \mathrm{H}, \mathrm{NH}_{2}$), 7.07 (m, 3H, Ar), 6.72 (d, 1H, $J=7.5$, Ar), 5.48 (brs, 2H, NH_{2}); ${ }^{13} \mathrm{C}$ NMR (DMSO$\left.d_{6}\right): \delta 168.8,148.0,135.3,128.6,116.8,115.1,113.5$.
4.4.14. 3-Aminophenylacetic acid amide (16b). Compound 16b was synthesized from 12b using Method B. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(95 / 5)\right)$. Yield: 28%; mp 111$113^{\circ} \mathrm{C}$; IR (KBr): v 3402, 3177, $1645 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 7.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 7.03(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 6.68$ (d, $1 \mathrm{H}, J=8.0, \mathrm{Ar}$), 5.19 (brs, $2 \mathrm{H}, \mathrm{NH}_{2}$), 3.46 (brs, $2 \mathrm{H}, \mathrm{NH}_{2}$), $3.84\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): δ 171.3, 147.5, 138.7, 136.1, 129.6, 123.7, 121.3, 42.0.
4.4.15. 5-(3-Aminophenyl)pentanoic acid amide (16e). Compound 16e was synthesized from 22e using Method B. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(95 / 5)\right)$. Yield: 9%; IR (NaCl): v 3384, 2928, $1650 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 7.12$ (m, $1 \mathrm{H}, \mathrm{Ar}$), $6.63(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 5.27$ (brs, $2 \mathrm{H}, \mathrm{NH}_{2}$), 3.46 (brs, $2 \mathrm{H}, \mathrm{NH}_{2}$), $2.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.23(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 171.1,146.5,143.9,130.9,119.8$, 115.1, 112.9, 36.4, 31.5, 28.2, 24.6.
4.4.16. 6-(3-Aminophenyl)hexanoic acid amide (16f). Compound 16 f was synthesized from $22 f$ using Method B. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(95 / 5)\right)$. Yield: 17%; IR $(\mathrm{NaCl}): v$ 3390, 3195, $1669 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 7.18$ (m, 1H, Ar), 6.68 (m, 3H, Ar), 5.14 (brs, $2 \mathrm{H}, \mathrm{NH}_{2}$) $\mathrm{NH}_{2}, 2.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.31\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.71(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 171.2,146.2,143.8,130.0,119.3,115.5,112.7,35.8$, 30.9, 28.8, 28.0, 24.9.
4.4.17. 6-(3-Aminophenyl)hexan-2-one (17e). Compound 17 e was synthesized from 23e using general Method B. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(95 / 5)\right)$. Yield: 18%; IR (NaCl): v 3366, $1708 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.05(\mathrm{~m}, 1 \mathrm{H}$, Ar), $6.55(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 3.56$ (brs, $2 \mathrm{H}, \mathrm{NH}_{2}$), 2.51 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.59$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 209.1,146.4,143.5$, 129.2, 118.7, 115.3, 112.7, 43.6, 35.7, 30.8, 29.9, 23.5.
4.4.18. 6-(3-Aminophenyl)heptan-2-one (17f). Compound 17f was synthesized from 23 f using Method B. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ EtOH (95/5)). Yield: 96\%; IR (NaCl): v 3368, $1710 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar})$, $6.50(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 3.56\left(\mathrm{brs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 2.48(\mathrm{~m}, 2 \mathrm{H}$,
$\left.\mathrm{CH}_{2}\right), 2.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.58(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 209.4, 146.6, 143.7, 129.1, 118.6, 115.3, 112.6, 43.7, 35.7, 31.1, 29.8, 29.4, 23.6.

4.5. General preparation of compounds $10 \mathrm{a}, 10 \mathrm{~b}, 11 \mathrm{a}$, $11 \mathrm{~b}, 20 \mathrm{e}, 20 \mathrm{f}$, and 21e, 21f

In a bottom flask, the appropriate carboxylated compound (5.98 mmol) was dissolved in $\mathrm{MeOH}(20 \mathrm{~mL})$ (Method C) or EtOH (20 mL) (Method D) and APTS (0.15 mmol) was added. The mixture was refluxed for 18 h . After cooling, the mixture was evaporated under reduced pressure. The residue was dissolved in a saturated solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(20 \mathrm{~mL})$, extracted with dichloromethane $(3 \times 15 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated to dryness, and purified by chromatography on silica gel.
4.5.1. 3-Nitrobenzoic acid methyl ester (10a). Compound $10 a$ was synthesized from 9 a using Method C. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Yield: 84%; mp $68-74^{\circ} \mathrm{C}$; IR (KBr): v 1724, $1523,1268 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.89(\mathrm{~s}, 1 \mathrm{H}$, Ar), $8.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.71(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 4.01(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 170.8,148.2,135.6,129.4$, 127.3, 124.3, 121.7, 52.7.
4.5.2. 3-Nitrophenyl acetic acid methyl ester (10b). Compound 10b was synthesized from 9b using Method C. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Yield: 70%; IR $(\mathrm{NaCl}): v 1724,1523$, $1225 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 7.99$ $(\mathrm{d}, 1 \mathrm{H}, J=7.0, \mathrm{Ar}), 7.53(\mathrm{~d}, 1 \mathrm{H}, J=7.0, \mathrm{Ar}), 7.40(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{Ar}), 3.65\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 170.8,148.2,135.9,135.3,129.4$, 124.3, 121.9, 52.4, 40.3 .
4.5.3. 3-Nitrobenzoic acid ethyl ester (11a). Compound 11a was synthesized from 9a using Method D. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Yield: $81 \% ; \mathrm{mp} 36-38^{\circ} \mathrm{C}$; IR (KBr): v 1700 , $1523,1292 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.71(\mathrm{~s}, 1 \mathrm{H}$, Ar), $8.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 4.38$ (q, 2H, $\left.J=7.0, \mathrm{CH}_{2}\right), 1.36\left(\mathrm{t}, 3 \mathrm{H}, J=7.0, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 164.3,148.1,135.1,132.1,129.6,127.1$, 124.3, 61.9, 14.1.
4.5.4. 3-Nitrophenyl acetic acid ethyl ester (11b). Compound 11b was synthesized from 9b using Method D. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Yield: 81%; IR $(\mathrm{NaCl}): v 1736,1523$, $1231 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 8.09$ $(\mathrm{d}, 1 \mathrm{H}, J=8.0, \mathrm{Ar}), 7.62(\mathrm{~d}, 1 \mathrm{H}, J=8.0, \mathrm{Ar}), 7.59(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{Ar}), 4.15\left(\mathrm{q}, 2 \mathrm{H}, J=7.0, \mathrm{CH}_{2}\right), 3.71\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.24\left(\mathrm{t}, 3 \mathrm{H}, \quad J=7.0, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $170.4,148.2,136.1,135.6,129.8,124.3,122.1,61.3$, 40.6, 14.1 .
4.5.5. 5-(3-Nitrophenyl)pent-4-ynoic acid methyl ester (20e). Compound 20e was synthesized from 19e using Method C. The crude product was purified by flash
chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(98 / 2)\right)$. Yield: 64%; IR $(\mathrm{NaCl}): v 2229,1718,1536,1268 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 8.08(\mathrm{~d}, 1 \mathrm{H}, J=7.5, \mathrm{Ar})$, $7.64(\mathrm{~d}, 1 \mathrm{H}, J=7.5, \mathrm{Ar}), 7.38(\mathrm{t}, 1 \mathrm{H}, J=7.5, \mathrm{Ar}), 3.70$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 172.1,148.1,137.3,129.2,126.4$, 125.3, 122.5, 91.1, 79.0, 51.9, 33.0, 15.2.
4.5.6. 6-(3-Nitrophenyl)hex-5-ynoic acid methyl ester (20f). Compound $20 f$ was synthesized from $19 f$ using Method C. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(95 / 5)\right)$. Yield: 57%; IR (NaCl): v 2229, 1718, 1536, $1268 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 8.05(\mathrm{~d}, 1 \mathrm{H}, J=8.0, \mathrm{Ar})$, $7.61(\mathrm{~d}, 1 \mathrm{H}, J=8.0, \mathrm{Ar}), 7.41(\mathrm{t}, 1 \mathrm{H}, J=8.0, \mathrm{Ar}), 3.71$ (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.57\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 171.6,148.0,137.3,129.2,126.3$, $125.4,122.5,91.2,79.0,60.7,33.2,15.2,14.2$.
4.5.7. 5-(3-Nitrophenyl)pent-4-ynoic acid ethyl ester (21e). Compound 21e was synthesized from 19e using Method C. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(98 / 2)\right)$. Yield: 69%; IR (NaCl): $v 2234,1735,1530,1164 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 8.13(\mathrm{~d}, 1 \mathrm{H}, J=8.0, \mathrm{Ar})$, $7.71(\mathrm{~d}, 1 \mathrm{H}, J=7.5, \operatorname{Ar}), 7.48(\mathrm{~m}, 1 \mathrm{H}, \operatorname{Ar}), 4.11(\mathrm{q}$, $\left.2 \mathrm{H}, J=7.0, \mathrm{CH}_{2}\right), 2.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.53(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.19\left(\mathrm{t}, 3 \mathrm{H}, J=7.0, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $171.6,148.0,137.3,129.2,126.3,125.4,122.5,91.2$, 79.0, 60.7, 33.2, 15.3, 14.2.
4.5.8. 6-(3-Nitrophenyl)hex-5-ynoic acid ethyl ester (21f). Compound 21f was synthesized from $19 f$ using Method D. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(95 / 5)\right)$. Yield: 91%; IR $(\mathrm{NaCl}): v$ 2235, 1730, 1536, $1159 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 8.19 (s, 1H, Ar), 8.03 (d, 1H, $J=8.0, ~ A r), 7.64(\mathrm{~d}, 1 \mathrm{H}$, $J=8.0, A r), 7.39(\mathrm{t}, 1 \mathrm{H}, J=8.0, A r), 4.09(\mathrm{q}, 2 \mathrm{H}$, $\left.J=7.0, \mathrm{CH}_{2}\right), 2.43\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.23\left(\mathrm{t}, 3 \mathrm{H}, \quad J=7.0, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $173.0,148.3,137.3,129.2,126.4,125.6,122.4,92.0$, $79.3,60.5,33.1,23.6,18.8,14.2$.

4.6. General preparation of compounds $12 \mathrm{a}, 12 \mathrm{~b}$ and 22 e , $22 f$

A mixture of compound $9 \mathbf{a}$ or $9 \mathbf{b}(5.52 \mathrm{mmol}), 1.66 \mathrm{~mL}$ of SOCl_{2}, and 10 mL dry CHCl_{3} was refluxed for 14 h . CHCl_{3} and the excess of thionyl chloride were removed in vacuo, and the residue was evaporated twice with 25 mL of toluene to remove traces of thionyl chloride. The residue was taken into 10 mL of toluene and 30 mL of cold concentrated ammonium hydroxyde was added. The white solid formed was collected and dried with ethanol in vacuo and used without further purification.
4.6.1. 3-Nitrobenzoic acid amide (12a). Compound 12a was synthesized from 9a. Yield: $71 \% ; \mathrm{mp} 135-137{ }^{\circ} \mathrm{C}$; IR (KBr): v 3360, 1663, $1523 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{C}$ NMR (DMSO$\left.d_{6}\right): \delta 8.71(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Ar}), 8.41(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.82(\mathrm{~m}, 1 \mathrm{H}$, Ar), 7.37 (brs, $2 \mathrm{H}, \mathrm{NH}_{2}$); ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): δ 165.7, 147.7, 135.7, 133.8, 130.0, 125.8, 122.2.
4.6.2. 3-Nitrophenyl acetic acid amide (12b). Compound 12b was synthesized from 9b. Yield: 57%; mp 133$135{ }^{\circ} \mathrm{C}$; IR (KBr): v 3403, 1657, $1535 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 8.14$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}$), 7.71 (m, 3H, Ar), 7.06 (brs, $2 \mathrm{H}, \mathrm{NH}_{2}$), $3.38\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSOd_{6}): $\delta 171.4,147.5,138.7,136.5,129.5,123.7,121.3,41.2$.
4.6.3. 5-(3-Nitrophenyl)pent-4-ynoic acid amide (22e). Compound 22e was synthesized from 19e. Yield: 65%; $\mathrm{mp} \quad 124-127^{\circ} \mathrm{C}$; IR (KBr): v 3397, 2222, 1663, $1511 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 8.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar})$, $8.11(\mathrm{~d}, 1 \mathrm{H}, J=8.5, \mathrm{Ar}), 7.66$ (d, $1 \mathrm{H}, J=8.0, \mathrm{Ar})$, 7.45 ($\mathrm{t}, 1 \mathrm{H}, J=8.0, \mathrm{Ar}$), 5.78 (brs, $2 \mathrm{H}, \mathrm{NH}_{2}$), 2.78 (t , $\left.2 \mathrm{H}, J=7.0, \mathrm{CH}_{2}\right), 2.53\left(\mathrm{t}, 2 \mathrm{H}, J=7.0, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 173.1,148.2,137.3,129.2,126.5$, 125.3, 122.7, 91.3, 79.3, 34.4, 15.5.
4.6.4. 6-(3-Nitrophenyl)hex-5-ynoic acid amide (22f). Compound 22f was synthesized from 19f. Yield: 69%; IR (NaCl): v 3378, 2235, 1650, $1523 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 8.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 8.04(\mathrm{~d}, 1 \mathrm{H}, J=8.0$, Ar), $7.65(\mathrm{~d}, 1 \mathrm{H}, J=8.0, \mathrm{Ar}), 7.45(\mathrm{t}, 1 \mathrm{H}, J=8.0, \mathrm{Ar})$, 6.17 (brs, $2 \mathrm{H}, \mathrm{NH}_{2}$), $2.50\left(\mathrm{t}, 2 \mathrm{H}, J=7.0, \mathrm{CH}_{2}\right), 2.36$ $\left(\mathrm{t}, 2 \mathrm{H}, J=7.0, \mathrm{CH}_{2}\right), 1.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 175.1,148.1,137.4,129.3,127.8,125.6$, 122.4, 92.3, 79.2, 34.6, 24.2, 19.1.

4.7. General preparation of compounds $19 \mathrm{e}, \mathrm{f}$ and $23 \mathrm{e}, \mathrm{f}$

To a mixture of the compound $\mathbf{1 8}(4.56 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}$ $(1.57 \mathrm{~g}, 11.4 \mathrm{mmol})$ in a mixture of 1,2-DME/water ($1: 1 ; 30 \mathrm{~mL}$) were successively added CuI (34 mg , $0.18 \mathrm{mmol}), \mathrm{PPh}_{3}(95.80 \mathrm{mg}, 0.36 \mathrm{mmol})$, and Pd / C $10 \%(97.5 \mathrm{mg}, 0.09 \mathrm{mmol})$. The mixture was stirred at room temperature for 1 h . Afterward, the appropriate alkyne (14.40 mmol) was added, and the mixture was refluxed overnight. After cooling, the mixture was filtered on Celite and the solvent was evaporated under reduced pressure. An aqueous solution of $1 \mathrm{~N} \mathrm{HCl}(20 \mathrm{~mL})$ was then added to the residue. The aqueous solution was extracted with ethyl acetate $(3 \times 15 \mathrm{~mL})$. The organic extracts were combined, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated under reduced pressure.
4.7.1. 5-(3-Nitrophenyl)-pent-4-ynoic acid (19e). Compound 19e was synthesized from 4-pentynoic acid. The crude product was purified by flash chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(95 / 5)$). Yield: 44%; mp $134-$ $135{ }^{\circ} \mathrm{C}$; IR (KBr): v 3427, 1720, $1347 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 12.39$ (brs, $\left.1 \mathrm{H}, \mathrm{OH}\right), 8.19(\mathrm{~d}, 1 \mathrm{H}$, $J=8.0, \mathrm{Ar}), 8.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 7.82(\mathrm{~d}, 1 \mathrm{H}, J=8.0, \mathrm{Ar})$, $7.66(\mathrm{t}, 1 \mathrm{H}, J=8.0, \mathrm{Ar}), 2.59\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 172.8,147.9,137.5,130.3,125.7$, 124.5, 122.9, 92.5, 78.5, 32.8, 14.8.
4.7.2. 6-(3-Nitrophenyl)-hex-5-ynoic acid (19f). Compound 19f was synthesized from 5-hexynoic acid. The crude product was purified by flash chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}$ (95/5)). Yield: 77%; IR (KBr): v 3080, 2229, 1704, 1531, $1348 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 11.23$ (brs, $1 \mathrm{H}, \mathrm{OH}$), $8.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar})$, $8.11(\mathrm{~d}, 1 \mathrm{H}, J=8.0, \mathrm{Ar}), 7.67(\mathrm{~d}, 1 \mathrm{H}, J=8.0, \mathrm{Ar})$, $7.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 2.54\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.95(\mathrm{~m}, 2 \mathrm{H}$,
$\left.\mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): δ 179.0, 148.0, 137.3, 130.7, 125.5, 123.7, 123.1, 91.9, 79.4, 32.9, 23.3, 18.7.
4.7.3. 6-(3-Nitrophenyl)hex-5-yn-2-one (23e). Compound 23e was synthesized from hex-5-yn-2-one. The crude product was purified by flash chromatography (silica gel, Hexanes/ethyl acetate (90/10)). Yield: 61%; IR (KBr): v 2228, 1713, $1525 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $8.21(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Ar}), 8.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.66(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar})$, $7.44(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 2.79\left(\mathrm{t}, 2 \mathrm{H}, J=7.0, \mathrm{CH}_{2}\right), 2.66(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 206.0, 148.9, 137.3, 129.2, 126.4, 125.5, 122.5, 91.7, 68.7, 42.1, 29.9, 13.8.
4.7.4. 6-(3-Nitrophenyl)hept-6-yn-2-one (23f). Compound 23f was synthesized from 18 and hept-6-yn-2one. The crude product was purified by flash chromatography (silica gel, hexanes/ethyl acetate (60/40)). Yield: 58%; IR (NaCl): $v 2223,1714,1528 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{C}$ NMR (CDCl_{3}): $\delta 8.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 8.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar})$, $7.66(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.45(\mathrm{t}, 1 \mathrm{H}, J=8.0, \mathrm{Ar}), 2.61$ (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.46\left(\mathrm{t}, 2 \mathrm{H}, J=7.0, \mathrm{CH}_{2}\right), 2.17(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 208.0$, $147.9,137.2,129.2,126.1,125.5,122.3,92.4,79.0$, 42.1, 29.9, 22.3, 18.6.

Acknowledgments

This research program was realized under research grants from the Canadian Institute for Health Research (Grant \# MOP-67782), the Cancer Research Society Inc., a sponsorship from IMOTEP inc and the Centre de Recherche de l'Hôpital Saint-François d'Assise and the Faculty of pharmacy at Laval University (studentship to SF). We also acknowledge the technical expertise of Dr. Maurice Dufour for flow cytometry experiments.

References and notes

1. Cragg, G. M.; Newman, D. J. J. Nat. Prod. 2004, 67, $232-$ 244.
2. Jordan, M. A.; Wilson, L. Nat. Cancer Rev. 2004, 4, 253265.
3. Prinz, H. Expert Rev. Anticancer Ther. 2002, 2, 695-708.
4. Gupta, K.; Bishop, J.; Peck, A.; Brown, J.; Wilson, L.; Panda, D. Biochemistry 2004, 43, 6645-6655.
5. Nam, N. H. Curr. Med. Chem. 2003, 10, 1697-1722.
6. Nguyen, T. L.; McGrath, C.; Hermone, A. R.; Burnett, J. C.; Zaharevitz, D. W.; Day, B. W.; Wipf, P.; Hamel, E.; Gussio, R. J. Med. Chem. 2005, 48, 6107-6116.
7. Tron, G. C.; Pirali, T.; Sorba, G.; Pagliai, F.; Busacca, S.; Genazzani, A. A. J. Med. Chem. 2006, 49, 3033-3044.
8. Ravelli, R. B.; Gigant, B.; Curmi, P. A.; Jourdain, I.; Lachkar, S.; Sobel, A.; Knossow, M. Nature 2004, 428, 198-202.
9. Andreu, J. M.; Perez-Ramirez, B.; Gorbunoff, M. J.; Ayala, D.; Timasheff, S. N. Bicohemistry 1998, 37, 83568368.
10. Bai, R.; Covell, D. G.; Pei, X.-F.; Ewelli, J. B.; Nguyeni, N. Y.; Brossi, A.; Hamel, E. J. Biol. Chem. 2000, 275, 40443-40452.
11. Xiao, Z.; Vance, J. R.; Bastow, K. F.; Brossi, A.; Wang, H. K.; Lee, K. H. Bioorg. Med. Chem. 2004, 12, $3363-$ 3369.
12. Fodstad, O.; Breistol, K.; Pettit, G. R.; Shoemaker, R. H.; Boyd, M. R. J. Exp. Ther. Oncol. 1996, 1, 119-125.
13. Do, Y. K.; Kyun-Hwan, K.; Nam, D. K.; Ki, Y. L.; Cheol, K. H.; Jeong, H. Y.; Seung, K. M.; Sung, S. L.; Baik, L. S. J. Med. Chem. 2006, 49, 5664-5670.
14. Wu-Wong, J. R.; Alder, J. D.; Alder, L.; Burns, D. J.; Han, E. K.-H.; Credo, B.; Tahir, S. K.; Dayton, B. D.; Ewing, P. J.; Chiou, W. J. Cancer Res. 2001, 61, 1486-1492.
15. Oshumi, K.; Nakagawa, R.; Fukuda, Y.; Hatanaka, T.; Tsuji, T. J. Med. Chem. 1998, 41, 3022-3032.
16. Pettit, G. R.; Lippert, J. W. Anti-Cancer Drug Design 2000, 15, 203-216.
17. Singh, V. K.; Zhou, Y.; Marsh, J. A.; Uversky, V. N.; Forman-Kay, J. D.; Liu, J.; Jia, Z. Cancer Res. 2007, 67, 626-633.
18. Khong, S. H.; Cho, H. T.; Devi, S.; Zhang, Z.; Escuin, D.; Liang, Z.; Mao, H.; Brat, D. J.; Olson, J. J.; Simons, J. W.; Lavalee, T. M.; Giannakakou, P.; Van Meir, E. G.; Shim, H. Cancer Res. 2006, 66, 11991-11997.
19. Wipf, P.; Reeves, J. T.; Balachandran, R.; Day, B. W. J. Med. Chem. 2002, 45, 1901-1917.
20. Lebegue, N.; Gallet, S.; Flouquet, N.; Carato, P.; Pfeiffer, B.; Renard, P.; Léonce, S.; Pierré, A.; Chavatte, P.; Berthelot, P. J. Med. Chem. 2005, 48, 7363-7373.
21. Jiang, J. D.; Davis, A. S.; Middleton, K.; Ling, Y. H.; Perez-Soler, R.; Holland, J. F.; Bekesi, J. G. Cancer Res. 1998, 58, 5389-5395.
22. Legault, J.; Gaulin, J. F.; Mounetou, E.; Bolduc, S.; Lacroix, J.; Poyet, P.; C-Gaudreault, R. Cancer Res. 2000, 60, 985-992.
23. Bouchon, B.; Chambon, C.; Mounetou, E.; Papon, J.; Miot-Noirault, E.; C-Gaudreault, R.; Madelmont, J. C.; Degoul, F. Mol. Pharmacol. 2005, 68, 1415-1422.
24. Moreau, E.; Fortin, S.; Desjardins, M.; Rousseau, J. L.; L, E.; C-Gaudreault, R. Bioorg. Med. Chem. 2005, 13, 67036712.
25. Fortin, S.; Moreau, E.; Patenaude, A.; Desjardins, M.; Lacroix, J.; Rousseau, J. L.; C-Gaudreault, R. Bioorg. Med. Chem. 2007, 15, 1430-1438.
26. Fortin, S.; Moreau, E.; Lacroix, J.; Teulade, J. C.; Patenaude, A.; C-Gaudreault, R. Bioorg. Med. Chem. Lett. 2007, 17, 2000-2004.
27. Hadfield, J. A.; Ducki, S.; Hirst, N.; McGown, A. T. Progress Cell Cycle Res. 2003, 5, 309-325.
28. Medrano, F. J.; Andreu, J. M.; Gorbunoff, M. J.; Timasheff, S. N. Biochemistry 1991, 3770-3777.
29. Perez-Ramirez, B.; Gorbunoff, M. J.; Timasheff, S. N. Biochemistry 1998, 37, 1646-1661.
30. NCI/NIH Developmental Therapeutics Program, Human Tumor Cell Line Screen. http://dtp.nci.nih.gov/branches/ btb/ivclsp.html.
31. Petitclerc, E.; Deschesnes, R. G.; Côté, M.-F.; Marquis, C.; Janvier, R.; Lacroix, J.; Miot-Noirault, E.; Legault, J.; Mounetou, E.; Madelomont, J.-C.; C-Gaudreault, R. Cancer Res. 2004, 64, 4654-4663.
32. Mounetou, E.; Legault, J.; Lacroix, J.; C-Gaudreault, R. J. Med. Chem. 2001, 44, 694-702.
33. Mounetou, E.; Legault, J.; Lacroix, J.; C-Gaudreault, R. J. Med. Chem. 2003, 46, 5055-5063.

[^0]: Keywords: Phenyl chloroethylureas; Antimicrotubule agents; Antitubulin agents; Antimitotics; Soft alkylating agents; Anticancer drugs; Colchicine-binding site ligands.

 * Corresponding authors. Tel.: +334731780 13; fax: +33 47317 8000 (E.M.); tel.: $+14185254444 \times 52363$; fax: +14185254372 (R.-C.G.); e-mail addresses: Emmanuel.Moreau@u-clermont1.fr; rene.c-gaudreault@crsfa.ulaval.ca
 ${ }^{\dagger}$ These authors have contributed equally to the present manuscript.

