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Abstract

The effects of rutin and quercetin on the repair of the deoxythemindine radical anion (dT��) were studied using the technique of pulse

radiolysis. The radical anion of dTwas formed by the reaction of hydrated electron with dT. After pulse irradiation of nitrogen-saturated

aqueous solutions containing dT, 0.2 M t-BuOH and either rutin or quercetin, the initially formed dT��, detected spectrophotome-

trically, rapidly decayed with the concurrent formation of the radical anion of rutin or quercetin. The results indicated that dT�� can be

rapidly repaired by rutin or quercetin. The rate constants of the repair reactions were determined to be 3.1 and 4:1 � 109 M�1 s�1 for

rutin and quercetin, respectively. With substitution by glycosyl groups at C3–OH being neighbor to C4 keto group, which is the active

site for electron transfer, rutin has a lower repair reaction rate constant toward dT�� than quercetin. Together with findings from our

previous studies, the present results demonstrated that nonenzymatic fast repair may be a universal form of repair involving phenolic

antioxidants.
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1. Introduction

DNA damage is generally regarded as carcinogenic and

actively participates in the process of tumor initiation,

promotion and progression. DNA damage also can be

induced by ionizing radiation, UV light and a variety of

chemical agents as well as reactive oxygen species pro-

duced in the normal metabolism as byproducts. Ionization

can induce DNA damage through two ways: directly occurs

within the DNA itself and generates base radical cations

and base radical anions [1] or indirectly produces hydrated

electrons (eaq
�) and hydroxyl radicals (OH�) through ioni-

zation of water in close vicinity to DNA which easily react

with DNA and induce DNA damage. DNA bases have a

very high intrinsic reactivity with eaq
� [2] and pyrimidine is

a much better electron acceptor than purine. The results of

electron paramagnetic resonance studies demonstrated that

base radicals including radical cations and anions, being

primary and major products of ionizing radiation as well as

eaq
� addition, can induce strand breaks [3,4] or form stable

base lesions [2]. The enzymatic repair systems in both

prokaryotic and eukaryotic cells can efficiently repair DNA

damage including DNA strand breaks and stable base

lesions [5], but they are not perfect. It is true that some

DNA damage always escape from enzymatic repair sys-

tems, even existing SOS process allowing misrepaired

products present [6]. Moreover, during the process of aging

or disease, metabolism of xenobiotics, DNA damage may

be exacerbated, most of the repair capacity decreases,

resulting in the accumulation of DNA damage and increase

in mutation frequency. This means that DNA damage

always exists and probably leads to degenerative disease
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including cancer and aging. So it is necessary to look for an

approach to supplement the inadequate repair capacity of

cells by scavenging reactive oxygen species or hydrated

electrons prior to damaging DNA or repairing damaged

DNA before DNA replication.

Based on this understanding, much attention has been

focused on the scavenging activity of antioxidants to reduce

the risk of cancers and other chronic diseases. The eaq
�

scavenging potential of some compounds has been inves-

tigated. Cai et al. [7] reported that some flavonoids and

phenolic acids can react with eaq
� at close diffusion control

rate (109 to 1010 M�1 s�1) implicating that these com-

pounds may act as efficient scavengers of eaq
�. Our study

also showed that phenylpropanoid glycosides and their

analogs are potent eaq
� scavengers (no published data).

With direct effect of radiation, however, because ionization

occurs within the DNA itself, DNA damage caused thereby

cannot be prevented by antioxidants or eaq
� scavengers. In

indirect effect, because of very high reactivity of the

primary products of ionization of water, eaq
� and OH�

[2] and the much higher concentration of biomolecules

than scavengers in cells, reactions of eaq
� or OH� with

biomolecules are very difficult to prevent in vivo unless the

concentration of scavengers is sufficiently high. Therefore,

a more effective and feasible strategy to prevent mutation

should be elimination or neutralization of DNA radicals

either resulting from ionization of DNA or generated sec-

ondarily by the attack of OH� and eaq
�, that is nonenzymatic

repair of DNA damage or fast repair [8].

With this consideration, the possible influence of

some chemicals in nonenzymatic repair of DNA damage

have been explored. O’Neill reported the fast repair

effects of endogenous antioxidants, such as thiols and

ascorbate towards oxidizing hydroxyl radical adducts

of dGMP and dG with high rate constants (3:6 � 107 to

8:4 � 108 M�1 s�1) [9,10]. Jiang et al. [11] showed that

hydroxycinnamic acid derivatives can fast repair hydroxyl

radical adduct of dGMP. The rapid electron transfer

reaction between thymidine anion and caffeic acid was

reported by Zou et al. [12]. We found fast repair activities

of polyphenols, phenylpropanoid glycosides and their

analogs, towards hydroxyl radical adducts of dGMP,

dAMP [13–16], poly A, poly G, ssDNA and dsDNA

(doctoral thesis of Shi YM), thymine radical anion

[17,18], TMP radical anion [19], radical cations of dAMP,

dGMP and dCMP [20]. The mechanism of fast repair was

elucidated as either reduction or oxidation of DNA radi-

cals. However, the evidences are still insufficient to estab-

lish the universality of fast repair of DNA damage by

chemicals.

The pharmacological significance of polyphenols was

recognized very early. These polyphenols are known to

scavenge free radicals [21], have beneficial action in cardi-

ovascular disorders [22], inhibit H2O2-induced V79 cell

death, prevent DNA single strand breakage [23] and repair

the radical cations of dCMP and poly C [24]. However, their

potential to rapidly repair DNA radical anion has not been

investigated.

The current study focuses on the repair of dT radical

anion (dT��) by employing two representative flavonoids:

rutin (R) and quercetin (Q).

2. Materials and methods

2.1. Materials

Deoxythymidine (dT), rutin and quercetin were pur-

chased from Sigma. All other chemicals were purchased

from Shanghai Biochemical Corporation.

All solutions were prepared with triple distilled water,

saturated with high purity nitrogen by bubbling for

20 min before irradiation and buffered with phosphate

(2 M, pH 7.0). All experiments were carried out at room

temperature.

2.2. Pulse radiolysis

Pulse radiolysis experiments were conducted using a

linear accelerator providing 8 MeV electron pulse of 8 ns

duration. The thiocyanate dosimeter was used for dose

determination, assuming eðSCNÞ� ¼ 7600 dm3 mol�1 cm�1

at 480 nm in nitrous oxide saturated 10 mM KSCN aqu-

eous solution. The detailed descriptions of the pulse radi-

olysis equipment and experimental conditions were given

elsewhere [25]. In these experiments, the average dose per

pulse is 14 Gy.

2.3. Generation of hydrated electron

In aqueous solutions upon pulse radiolysis, hydrated

electrons (eaq
�), OH� and hydrogen atoms (H�) are pro-

duced with G’s (mmol J�1) of 0.29, 0.29 and 0.06, respec-

tively [26]. OH� is scavenged by t-BuOH:

H2O ! OH� þ eaq
� þ H� (1)

t-BuOH þ OH� ! t-BuOHð�HÞ� þ H2O (2)

3. Results

3.1. Transient optical absorption spectrum

of dT radical anion

On pulse irradiation of 2 mM dT aqueous solution satu-

rated with nitrogen at pH 7.0, a transient optical absorption

spectrum arising from reaction of eaq
� with dT was

observed, and was characterized by an optical absorption

maximum at 340 nm (Fig. 1). This transient absorption

spectrum was assigned to dT radical anion (dT��) [17].

The transient optical absorption reached a maximum at 1 ms

after the pulse irradiation (Fig. 1, inset).
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3.2. Transient absorption spectra of radical anions

of the tested polyphenols

In the pulse radiolysis of 0.1 mM rutin aqueous solution

containing 200 mM t-BuOH and saturated with nitrogen, a

transient absorption spectrum appeared and was character-

ized by a maximum absorption at 380 nm (Fig. 2A). The

optical absorption reached a maximum after 5 ms (Fig. 2A,

inset).

The transient absorption spectrum of product of reaction

between hydrated electron and quercetin was also observed

with similar condition (Fig. 2B).

With regard to the reactions of polyphenols with eaq
�,

the benzoyl or the styryl keto group of polyphenols is the

site on which eaq
� attacked and resulting in ketyl radical

ions, which are radical anions of polyphenols [7,27].

Therefore, the transient absorption spectra shown in

Fig. 2 should be assigned to radical anion of rutin and

quercetin (R�� and Q��), respectively.

3.3. Repair reaction of dT radical anion by tested

polyphenols

At 1 ms after pulse radiolysis of 2 mM dT aqueous

solution containing 0.1 mM rutin, 200 mM t-BuOH and

saturated with nitrogen at pH 7.0, a transient absorption

spectrum was observed (Fig. 3A(a)). This spectrum is same

as that of dT��, therefore the spectrum is assigned to dT��.

At 15 ms after the pulse irradiation, a new optical absorp-

tion with lmax ¼ 380 nm grows in concurrence with the

disappearance of that of dT�� (Fig. 3A(b)). Based on its

similarity with rutin radical anion (R��), the new transient

absorption spectrum is assigned to R��. This change of

transient absorption spectrum is due to one electron trans-

fer from dT�� to R by which dT�� is restored to dT and

then R�� is formed.

The analogous results were observed on pulse radiolysis

of 2 mM dT aqueous solution containing 0.1 mM querce-

tin, 200 mM t-BuOH and saturated with nitrogen at pH 7.0

(Fig. 3B).

Fig. 3A inset showed the growth of R�� on pulse

radiolysis of 2 mM dT aqueous solution containing

0.1 mM rutin, 200 mM t-BuOH and saturated with nitro-

gen. The curve represents the change of absorption of R��

at 440 nm with time after the pulse radiation. The growth of

absorbance follows first order kinetics, from which the

apparent rate constant for the formation of R�� by the

repair reaction, kapp was determined. From the linear

dependence of kapp on the concentration of rutin (0.02–

0.1 mM), the rate constant (k) for electron transfer from

dT�� to R was determined. The rate constants of reactions

of tested polyphenols with dT�� were deduced and shown

in Table 1.

Fig. 1. Transient absorption spectrum upon pulse radiolysis of 2 mM dT

(at 4 ms) aqueous solution containing 200 mM t-BuOH and saturated with

N2 at pH 7.0. Inset: the buildup trace of absorption at 340 nm.

Fig. 2. Transient absorption spectra upon pulse radiolysis of 0.1 mM

polyphenols aqueous solution containing 200 mM t-BuOH and saturated

with N2 at pH 7.0. (A) Rutin, at 4 ms; (B) quercetin, at 2 ms. Inset: the

buildup trace of absorption at (A) 380 nm and (B) 370 nm.

Table 1

The rate constants of repair reaction of dT radical anion by polyphenols

k/108 M�1 s�1

Rutin 3.1

Quercetin 4.1
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4. Discussion

In principle, there are two parallel reactions competing

in the above repair system:

dT þ eaq
� ! dT�� . . . k1 (3)

R ðor QÞ þ eaq
� ! R ðor QÞ�� . . . k2 (4)

However, according to the mechanism of competition

reaction, the reaction probability (P) of dT with eaq
� is

calculated by P ¼ k1½dT
=ðk1½dT
 þ k2½R
Þ to be 0.97

(97%). Therefore, almost all eaq
� predominantly reacts

with dT to form dT radical anion.

Concerning the reaction of hydrated electron with dT,

the addition of hydrated electron to C4 produces dT radical

anion (Eq. (5)). The product is a reducing radical.

(5)

Although rutin and quercetin have long been known as

efficient natural antioxidants, with benzoyl or styryl keto,

they may act as electron acceptors, can also react with dT

radical anion (Eq. (6)).

dT�� þ R ðQÞ ! dT þ R ðQÞ�� (6)

However, it is generally suggested that in aqueous solu-

tion dT radical anion can undergo reversible protonation at

O4 whose rate constant was kþHþ ¼ 2:6 � 1010 M�1 s�1

and k�Hþ ¼ 1 � 1010 M�1 s�1, and can undergo irreversible

protonation at C6 at rate constants of 5 � 103 M�1 s�1

(Eq. (7)) [28].

(7)

Obviously, the rate constants of reversible protonation

are higher than that of repair reaction of dT�� by rutin and

quercetin. Thus, in the above repair system the protonation

reaction would compete with repair reaction. Fortunately,

the protonation reaction of dT�� is reversible, and on the

other hand, dT�� is a weak base and only partly was

protonated in neutral aqueous solution. Therefore, the

reaction of dT radical anion with rutin and quercetin

can destroy the reversibility, and leads to the equilibrium

(Eq. (6)) toward dT radical anion, and finally reaction 2 is

advantageous in competition between reactions 1 and 2.

Therefore, it is necessary to suppress the protonation at C6,

which would result in generation of stable dihydrothymine.

It is proposed that rutin and quercetin are able to inhibit

protonation that can cause further damage to cell, impli-

cating a potential repair activity.

For polyphenols acting as electron acceptors, their ben-

zoyl or styryl keto group is the active site, whichever bulky

group being neighbor to the keto would have negative

effects on their electron reception capacities. With glyco-

sylation at C3–OH, rutin has a lower electron reception

capacity than quercetin [7]. The current study also shows

that the rate constant of fast repair reaction of dT radical

anion by rutin is lower than that by quercetin (Table 1).

Concerning cellular DNA, a two-component hypothesis

has been developed. According to this hypothesis, the

electron loss centers (radical cations) end up with the

purines, particularly with the guanine moiety, whereas the

final site of deposition of the ejected electron is with the

pyrimidines, particularly with thymine [2]. In other words,

the two-component hypothesis implies that in DNA there are

mechanisms of electron and positive hole transfer by which

the initially generated and randomly distributed electron

gain and loss centers are tunneled into the T and G ‘‘traps,’’

respectively. Therefore, it is reasonable to say that by

repairing dT radical anion, rutin and quercetin can repair

indirectly other base radical anions produced in cellular

DNA by radiation, protecting DNA from strand breaks.

As the product of protonation, dihydrothimine present in

DNA is generally considered to be relatively innocuous in

terms of constituting a replicative block. However, it appears

Fig. 3. Transient absorption spectra upon pulse radiolysis of saturated with

N2 2 mM dT aqueous solution containing 200 mM t-BuOH and (A)

0.1 mM rutin, a: 1 ms, b: 15 ms; (B) 0.1 mM quercetin, a: 1 ms, b: 35 ms.

Inset: the buildup trace of absorption at (A) 440 nm and (B) 460 nm.
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that accumulation of a large number of dihydrothymines in

DNA may still be a disadvantage for cells since they would

generate a significantly detectable level of termination of

polymerization in vivo. Furthermore, the N-glycosylic bond

of dihydrothymine is more susceptible to hydrolysis than

thymine, therefore apurine/aprymidine (AP) sites would be

formed more frequently from dihydrothymine than from

thymine. It is more important for repair enzymes to recog-

nize and remove dihydrothymine [29].

Cai et al. [7] reported that some flavonoids and phenolic

acids including rutin and quercetin can react with hydrated

electron at close to diffusion control rate meaning they are

efficient scavengers of hydrated electrons. So, rutin and

quercetin not only fast repair DNA damage caused by

radiation, but also scavenge hydrated electron, thereby,

protecting DNA from hydrated electron attack. Therefore,

rutin and quercetin may act as efficient radioprotectors and

therapeutical agents for the diseases related with DNA

damage.

The result of the current study together with that of our

previous studies demonstrate that nonenzymatic fast repair

may be a universal form of repair involving phenolic

compounds.
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