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The first synthesis of 1-deaza-pyridoxal 5 -phosphate (2-formyl-3-hydroxy-4-methylbenzyl phosphate)
is described. The chemoenzymatic approach described here is a reliable route to this important isosteric
pyridoxal phosphate analogue. This work enables elucidation of the role of the pyridine nitrogen in pyr-
idoxal 50-phosphate dependent enzymes.

� 2010 Elsevier Ltd. All rights reserved.
Pyridoxal 50-phosphate (PLP) dependent enzymes comprise
more than 140 enzyme commission numbers.1 They catalyze a
wide variety of reactions including decarboxylation, racemization,
transamination, b elimination and retro aldol cleavages.1–3 Yet de-
spite this versatility, mechanistic similarities are found. All reac-
tions diverge from the common ‘external aldimine’ intermediate1

(Fig. 1) formed by the displacement of a lysine residue (which
forms the ‘internal aldimine’) by the amino group of the amino acid
substrate. Most reactions are thought to proceed through forma-
tion of the ‘quinonoid’ intermediate,1–3 a Ca carbanion stabilized
by delocalization with the conjugated p system of the cofactor
(Fig. 1). Indeed, the protonated pyridine nitrogen of the cofactor
acting as an electron sink in carbanion stabilization is considered
to be the hallmark of PLP catalyzed reactions.2

Recently, however, both experimental and computational stud-
ies call into question the crucial importance of the protonated pyr-
idine nitrogen.1,4a–c The structures of several enzyme active sites
preclude protonation of the pyridine nitrogen.4d,e Alternatively,
the protonated Schiff base, through electrostatic stabilization of
the carbanion, may play a central role (Fig. 1, structures A and B).1

Studies of catalysis by PLP analogues are a direct experimental
approach to this fundamental debate. At one extreme the pyridine
nitrogen of PLP and pyridine-based PLP analogues may be quatern-
ized, (1, Fig. 2), enforcing a positive charge. At the other extreme
are carbocyclic salicylaldehyde analogues (3, Fig. 2), which have
neither the potential for protonation nor the greater electronega-
tivity of nitrogen (vs carbon) in the aromatic ring. The charge of
the pyridine nitrogen on PLP itself (2, Fig. 2) depends on pH (non-
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y).
enzymatic) and the acidity of active site residue(s) interacting with
it (enzymatic).

Nonenzymatic transamination5 and racemization6 catalyzed by
the above mentioned analogues have been studied. However, the
constraints of active sites optimized for PLP preclude the use of
analogues structurally dissimilar from PLP in enzyme catalyzed
reactions. While N-methyl PLP, which contains a quaternized pyr-
idine nitrogen, has a long history of enzymatic study,1,7 the lack of
an isosteric salicylaldehyde analogue of PLP (‘deazaPLP’; 2-formyl-
3-hydroxy-4-methylbenzyl phosphate; 8, Scheme 1) has hampered
investigation of the role of the pyridine nitrogen in enzymatic reac-
tions. Surprisingly, the literature contains few attempts at obtain-
ing deazaPLP8 and, to the best knowledge of the authors, until now
there has been no successful synthesis reported.

The general strategy employed here in the synthesis of dea-
zaPLP centers on oxidation and phosphorylation of triol 6 (Scheme
1) to the final product. Therefore a reliable route to 6 was sought
out. Reduction of lactone 5 would provide the desired compound.
A search of the literature revealed a previous published synthesis9

which proved to be a reliable route to lactone 5. Steps (i)–(iv) were
carried out as described in the original article except as noted.16 All
yields proved to be close to those published with the exception of
2, which provided only half the expected product.

Reduction of 5 with borane dimethyl sulfide provided triol 6
with yields of �50%. Attempts to obtain 6 by treatment of 5 with
LiBH4 proved unsuccessful. Phosphorylation of triol 6 by pyridoxal
kinase10,11 proved to be a facile and reliable route to the phosphor-
ylated triol with yields typically at 60–70%. Surprisingly, oxidation
of the phosphorylated triol by manganese dioxide to the final prod-
uct was not successful.

The presence of the negatively charged phosphate group
precluded the use of organic solvents for oxidation of the
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Figure 1. Carbanion formation and stabilization by PLP.
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phosphorylated triol. On the other hand, water is a suboptimal sol-
vent choice for manganese dioxide oxidations due to competition
from solvent for adsorption to manganese dioxide12 and the pro-
pensity for over-oxidation to the acid. The obvious alternative
was to oxidize triol 6 to 7, followed by phosphorylation to 8.
Oxidation to the desired product occurred readily, but only with
freshly prepared manganese dioxide.13 Commercially available
manganese dioxide was ineffective and decreases in yield were
noted with the use of manganese dioxide over one week old. Yields
for 7 were 10–20%.

Phosphorylation of 7 was carried out with pyridoxal kinase,
with yields similar to those with 6, although removal of contami-
Figure 2. Simplest pyridine and salicylaldehyde based analogues of PLP. H—A in
structure 2 denotes that the charge of the pyridine nitrogen may vary by pH
(nonenzymatic conditions) and the acidity of active site residue(s) interacting with
it (enzymatic conditions).

Scheme 1. Reagents and conditions: (i) HCL, formaldehyde, 80 �C; (ii) KOH, KMnO4, 5–1
sulfide, THF, reflux; (vi) MnO2, ethyl acetate, rt; (vii) ATP, MgCl2, pyridoxal kinase.16
nating manganese with cation exchange resin was necessary. The
overall yield for 8 was 0.2%.

While the presence of two benzylic alcohols presented the com-
plication of a potential mixture of oxidation products13 from step
(vi), comparison of the UV–vis absorption spectra of salicylalde-
hyde and 3-hydroxybenzaldehyde with deazaPLP indicated that
the desired isomer was obtained. Successful enzymatic phosphor-
ylation of 7 further supports this conclusion. Final confirmation of
the structure of 8 was made by 1D nOe NMR experiments14 (see
Supplementary data for NMR and mass spectra).

To test the enzymatic binding properties of deazaPLP, apo
aspartate aminotransferase was prepared according to literature
methods15 and reconstituted with deazaPLP in a split-cell cuvette
to give difference absorption spectra due to deazaPLP binding.
The resulting spectra vs. time show a decrease in absorbance at
�350 nm and an increase in absorbance at �420 nm due to the
bathochromic shift on internal aldimine formation (Fig. 3). Fluores-
cence quenching (280 nm/340 nm) titrations of apo aspartate ami-
notransferase with deazaPLP indicate the dissociation constant to
be less than 1 lM (data not shown).

In summary, a reliable synthesis of the isosteric, carbocyclic
analogue of PLP (8) has been described. It binds tightly to aspartate
aminotransferase and forms the internal aldimine with the active
site lysine. The availability of this analogue will contribute to the
ongoing debate concerning the source of the catalytic prowess of
PLP enzymes.
0 �C; (iii) HCL, reflux; (iv) copper chromite, quinoline, 180 �C; (v) borane dimethyl



Figure 3. Difference UV–vis spectra vs. time (over �30 min) showing formation of
the internal aldimine of aspartate aminotransferase with deazaPLP.
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