Accepted Manuscript

Synthesis of Coumarin-3-carboxylic Esters *via* FeCl₃-Catalyzed Multicomponent Reaction of Salicylaldehydes, Meldrum's Acid and Alcohols

Xinwei He, Yongjia Shang, Yao Zhou, Zhiyu Yu, Guang Han, Wenjing Jin, Jiaojiao Chen

PII: S0040-4020(14)01746-3

DOI: 10.1016/j.tet.2014.12.042

Reference: TET 26263

To appear in: *Tetrahedron*

Received Date: 31 October 2014

Revised Date: 5 December 2014

Accepted Date: 12 December 2014

Please cite this article as: He X, Shang Y, Zhou Y, Yu Z, Han G, Jin W, Chen J, Synthesis of Coumarin-3-carboxylic Esters *via* FeCl₃-Catalyzed Multicomponent Reaction of Salicylaldehydes, Meldrum's Acid and Alcohols, *Tetrahedron* (2015), doi: 10.1016/j.tet.2014.12.042.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Synthesis of Coumarin-3-carboxylic Esters via FeCl₃-Catalyzed Multicomponent Reaction of Salicylaldehydes, Meldrum's Acid and Alcohols

Leave this area blank for abstract info.

Xinwei He, Yongjia Shang,* Yao Zhou, Zhiyu Yu, Guang Han, Wenjing Jin, Jiaojiao Chen The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China

Tetrahedron ACCEPTED MANUSCRIPT

journal homepage: www.elsevier.com

Synthesis of Coumarin-3-carboxylic Esters *via* FeCl₃-Catalyzed Multicomponent Reaction of Salicylaldehydes, Meldrum's Acid and Alcohols

Xinwei He, Yongjia Shang, * Yao Zhou, Zhiyu Yu, Guang Han, Wenjing Jin, Jiaojiao Chen

The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China

ARTICLE INFO

Received in revised form

Article history:

Available online

Received

Accepted

ABSTRACT

A FeCl₃-catalyzed multicomponent reaction was developed for the facile synthesis of coumarin-3-carboxylic ester derivatives in a highly atom-economic and environmentally friendly way. Using simple and cheaply available salicylaldehydes, Meldrum's acid and alcohols as the starting materials, the method needs no extra additives and features wide substrate scope, good functional group tolerance and mild reaction conditions.

2009 Elsevier Ltd. All rights reserved.

Keywords: FeCl₃ Coumarin-3-carboxylic esters Meldrum's acid Multicomponent reaction Salicylaldehydes

Introduction

Coumarins are very attractive targets for combinatorial library synthesis due to their wide range of valuable biological activities including anticancer,¹ anti-HIV,² anti-acetylcholinesterase,³ anti-fungal,⁴ antioxidant,⁵ antihelmintic,⁶ antibacterial⁷ and antiviral⁸ activities. They are also extensively used in fragrances, agrochemicals, insecticides and in food and cosmetics as additives.⁹ On the other hand, they have also found applications as photosensitizers, laser dyes, fluorescent indicators, optical brighteners and photosensitizers.¹⁰⁻¹³ As a result, the drive to obtain typically functionalized coumarins in one step from readily available starting materials with minimal waste, less time and simple manipulation has been prevalent among the community of organic chemists.¹⁴

Multicomponent reactions (MCRs) has been one of the best approaches that meet the requirements of green chemistry as well as the library development of medicinal scaffolds.¹⁵ Previously, we have reported FeCl₃-catalyzed cascade reaction to efficient approach to functionalized coumarin derivatives.¹⁶ In continuation of our efforts toward the development of novel methodologies for the synthesis of heterocycles,¹⁷ a new synthetic route to coumarin-3-carboxylic esters has been explored. To the best of our knowledge, this work presents the first simple direct route to the important class of coumarin <u>derivatives</u>, which would facilitate relevant studies on the pharmacological properties of these coumarin derivatives. Herein, we report the details of our research on this multicomponent reaction (Scheme 1).

Scheme 1. Synthesis of coumarin-3-carboxylic esters *via* FeCl₃-catalyzed multicomponent reaction of salicylaldehydes, Meldrum's acid and alcohols.

Results and discussion

Initially, salicylaldehyde (1a), Meldrum's acid (2) and ethanol (3a) were chosen as the starting materials in the model reaction. Ethanol played both as the reagent and solvent while different metal salt catalysts were screened (Table 1). Interestingly, when the FeCl₃ were used as the catalyst (Table 1, entry 7), the highest yield of the product (92% yield) was obtained, and that CuBr₂ (Table 1, entry 2) also had good catalytic ability (86% yield). Here, the yield could not be improved by increasing the amount of catalyst (Table 1, entries 12 and 13), even while decreasing the amount of catalyst to 5 mol% could lead to a slightly higher yield of 93% (Table 1, entry 11). However, the product yield dropped to 72% by further decreasing the catalyst to 2 mol% (Table 1,

* Corresponding author. Tel.: +86-553-5910129; fax: +86-553-5910126; e-mail: shyj@mail.ahnu.edu.cn

entry 9). In the absence of catalyst, the model reaction failed to provide the desired product, while 2-oxo-2*H*-chromene-3-carboxylic acid was isolated as the only product in 72% yield after a prolonged reaction time of 24 h. Therefore, 5 mol% FeCl₃ was chosen as catalyst for further optimizing other reaction conditions.

Table 1. Screen of catalysts.^a

O OH 1a	H + O - O - O - O - O - O - O - O - O - O -	$<$ + CH ₃ CH ₂ OH $\frac{\text{cataly}}{70^{\circ}\text{C}}$, 3a	rst 8h 000 4aa
	Entry	Catalyst (mol %)	Yield (%) ^b
	1	Cu(OAc) ₂ (10)	10
	2	CuBr ₂ (10)	86
	3	CuSO ₄ (10)	65
	4	NiCl ₂ ·6H ₂ O (10)	80
	5	AgNO ₃ (10)	10
	6	K ₃ Fe(CN) ₆ (10)	trace
	7	FeCl ₃ (10)	92
	8 ^c	_	0
	9	$FeCl_3(2)$	72
	10	$CuBr_2(2)$	70
	11	$\operatorname{FeCl}_{3}(5)$	93
	12	FeCl ₃ (15)	92
	13	FeCl ₃ (20)	90

^{*a*} Reaction condition: **1a** (1.0 mmol), **2** (1.2 mmol), **3a** (3 mL), 70 °C, 8 h.

^b Isolated yields.

^c 2-oxo-2*H*-chromene-3-carboxylic acid was obtained

in 72% yield as the only product after 24 h.

To determine the optimum reaction conditions, the effects of other reaction parameters such as the solvent, temperature, and reaction time were studied. Several other solvents including dimethyl formamide (DMF), tetrahydrofuran (THF), acetonitrile, toluene, dimethylsulfoxide (DMSO), cyclohexane and water were screened but inferior yields were obtained (Table 2, entries 5-11). So in this reaction alcohol was used both as a solvent and as one of the reactants as well. In addition, the effect of temperature and reaction time were also investigated (Table 2, entries 1-4, and 12-14). It was found that neither decreasing nor increasing the reaction could be best performed with 5 mol % of FeCl₃ as catalyst in ethanol at 70 °C for 8 h.

		CH ₃ CH ₂ OH <mark>FeCl₃ (5 mol%)</mark> 3a			
_	Entry	Temp. (°C)	Solvent	Time (h)	Yield (%) ^b
_	1^c	r.t.	EtOH	8	20
	2 <i>°</i>	50	EtOH	8	60
	3 ^c	70	EtOH	8	93

USC:	RIP100	EtOH	8	90
5	70	DMF	8	0
6	70	THF	8	60
7	70	CH ₃ CN	8	60
8	70	Toluene	8	45
9	70	DMSO	8	0
10	70	Cyclohexane	8	50
11	70	H_2O	8	21
12 ^{<i>c</i>}	70	EtOH	2	40
13 ^{<i>c</i>}	70	EtOH	5	80
14 ^{<i>c</i>}	70	EtOH	10	92

^{*a*} Reaction condition: salicylaldehyde **1a** (1.0 mmol), Meldrum's acid **2** (1.2 mmol), ethanol **3a** (1.2 mmol), solvent (3 mL), FeCl₃ (0.05 mmol).

^b Isolated yields.

^c Ethanol (3 mL) was used as solvent.

Subsequently, various structural diverse salicylaldehydes 1b-1j were subjected to the optimum reaction conditions with Meldrum's acid 2 and ethanol 3a. The results are summarized in Table 3. A variety of functional groups in the examined substituted salicylaldehydes were well tolerated to give good to excellent yields of ethyl 2-oxo-2H-chromene-3-carboxylate (4aa-4ja), regardless of their electronic nature or steric hindrance. Particularly, when the substituents on salicylaldehydes 1 were strongly electron-donating groups (e.g. -OCH₃, -NEt₂) at the para position of the aldehydes (Table 3, entries 3, 4) or strongly electron-withdrawing groups (e.g. -NO₂) at the para position of the phenol hydroxyl group (Table 3, entry 8), also gave the desired products in good to excellent yields. Moreover, tert-butyl group at the 3,5-position of salicylaldehydes 1e participated successfully in this reaction (Table 3, entry 5). The structure of the product 4aa was unambiguously confirmed by X-ray crystallographic analysis (Figure 1).

Figure 1. X-ray crystal structure of compound 4aa.¹⁸

Table 3. Synthesis of ethyl coumarin-3-carboxylate derivatives *via* FeCl₃-catalyzed multicomponent reactions of salicylaldehydes, Meldrum's acid and ethanol.

$ \begin{array}{c} $	H + H + H = 0 OH $H + H = 0$ OH $H = 0$ O	$\begin{array}{c} \hline \text{FeCl}_3 (5\text{mol\%}) \\ \hline \hline 70 ^{\circ}\text{C}, 6-8 \text{h} \\ \hline \end{array} \xrightarrow{\text{R}_2} \\ \hline \text{R}_3 \\ \hline \end{array}$	$R_1 \qquad 0$ $\downarrow \qquad 0$ $R_4 \qquad 4$
Entry	R_1, R_2, R_3, R_4	Product	Yields (%) ^b
1	1a (H, H, H, H)	4aa	93
2	1b (H, CH ₃ , H, H)	4ba	89
3	1c (H, H, CH ₃ O, H)	4ca	89

Tetrahedron

4	1d (H, H, NEt ₂ , H)	4daACC	CEP ₈₃ ED I
5	1e (C(CH ₃) ₃ , H, C(CH ₃) ₃ , H)	4ea	80
6	1f (H, Cl, H, H)	4fa	91
7	1g (H, Br, H, H)	4ga	90
8	1h (H, NO ₂ , H, H)	4ha	89
9	1i (H, F, H, H)	4ia	93
10	1j (-CH=CH-CH=CH-, H, H, H)	4ja	90

^a Reaction condition: salicylaldehyde 1 (1.0 mmol), Meldrum's acid 2 (1.2 mmol), ethanol 3a (3 mL), FeCl₃ (0.05 mmol), 70 °C, 6-8 h.
 ^b Isolated yields.

Subsequently, a series of alcohols such as methyl alcohol (3b), 2-pentanol (3c), benzyl alcohol (3d) and allyl alcohol (3e) were subjected to the reaction with salicylaldehydes 1 and Meldrum's acid 2 (Table 4). We found that both saturated and unsaturated alcohols gave the desired products, and the allyl alcohol gave relatively higher yields of the products. To our delight, good yields of products were also obtained in the case of benzyl alcohol **3d** (Table 4, entries 13-15).

Table 4. FeCl₃-catalyzed multicomponent reactions for the formation of coumarin-3-carboxylic esters. a

R_1 C R_2 C R_3 R_4 1	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $ } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array}	H FeCl ₃ (5mol%) 70 °C, 6-8 h	R ₁ R ₂ R ₃ R ₄ R ₄	
Entry	R_1, R_2, R_3, R_4	R ₅	Product	Yields $(\%)^{b}$
1	1a (H, H, H, H)	CH ₃ (3b)	4ab	91
2	1b (H, CH ₃ , H, H)	3b	4bb	90
3	1c (H, H, CH ₃ O, H)	3b	4cb	88
4	1d (H, H, NEt ₂ , H)	3b	4db	85
5	$\begin{array}{llllllllllllllllllllllllllllllllllll$	3 b	4eb	80
6	1f (H, Cl, H, H)	3b	4fb	89
7	1g (H, Br, H, H)	3b	4gb	88
8	1h (H, NO ₂ , H, H)	3b	4hb	89
9	1j (-CH=CH- CH=CH-, H, H, H)	3b	4jb	90
10	1c	pentan-2-yl (3c)	4cc	88
11	1f	3c	4fc	90
12	1g	3c	4gc	89
13	1c	$C_{6}H_{5}CH_{2}\left(\boldsymbol{3d}\right)$	4cd	73
14	1g	3d	4gd	81
15	1h	3d	4hd	83
16	1c	CH ₂ =CH-CH ₂ (3e)	4ce	90
17	1e	3e	4ee	85
18	1f	3e	4fe	91
19	1g	3e	4ge	90
20	1h	3e	4he	91

I QUOCINII I Ij	3e	4je	91
^{<i>a</i>} Reaction condition: salicylaldehyde 1	(1.0 mmol), M	Aeldrum's	acid 2
(1.2 mmol), alcohol 3 (3 mL), FeCl ₃ (0.0	5 mmol), 70 °C	, 6-8 h.	
^b Isolated yields.			

In order to understand the reaction mechanism, we examined the reaction of Meldrum's acid **2** with ethanol **3a** catalyzed by FeCl₃ in 70 °C. The esterification product of diethyl malonate was obtained in 93% yield after 4 h. On the basis of the above observations and our reported work,¹⁶ a possible reaction mechanism is proposed in Scheme 2. First, Meldrum's acid **2** reacted with alcohol **3** to form the esterification products **5** in the presence of FeCl₃ as a Lewis acid catalyst, and then the Knoevenagel condensation between 5 and 2-hydroxy aromatic aldehydes **1** would form the intermediate **A**, which are readily converted to the desired products **4** *via* intramolecular transesterification.

Scheme 2. Proposed mechanism for the formation of coumarin-3-carboxylic esters **4**.

Conclusions

In conclusion, we have developed a highly efficient and environmental friendly method for the synthesis of coumarin-3carboxylic ester derivatives *via* FeCl₃-catalyzed multicomponent reactions in good to excellent yields. The notable advantages of this method are mild reaction conditions, lower amounts of cheap and nontoxic FeCl₃ as catalyst, and the reactant of alcohol as solvent. It should be noted that this protocol is an expedient and atom-economic approach to the coumarin-3-carboxylic esters from easy available starting materials. In addition, operational simplicity and no need for extra solvent are the attractive features which make this protocol highly practical for accessing new coumarin scaffolds.

4. Experimental SectionGeneral comments

4.1 General comments

Unless otherwise specified, all reagents and starting materials were purchased from commercial sources and used as received, and the solvents were purified and dried by standard procedures. The chromatography solvents were technical grade and distilled prior to use. Flash chromatography was performed using 200-300 mesh silica gel with the indicated solvent system according to standard techniques. The ¹H and ¹³C NMR data were recorded on 300 MHz NMR spectrometers, unless otherwise specified. Chemical shifts (δ) in parts per million are reported relative to the residual signals of chloroform (7.26 ppm for ¹H and 76.1 ppm for ¹³C). Multiplicities are described as s (singlet), d (doublet), t (triplet), q (quartet), or m (multiplet), and coupling constants (*J*) are reported in hertz. HRMS analysis with a quadrupole time-of-flight mass spectrometer yielded ion mass/charge (m/z) ratios in

atomic mass units. IR spectra were measured as dry films (KBr), \bigwedge CDCl₃) δ : 8.43 (s, 1H), 7.60 (s, 1H), 7.26-7.33 (m, 2H), 4.43 (q, J and peaks are reported in terms of wave number (cm⁻¹). = 7.2 Hz, 2H), 1.41 (t, J = 7.2 Hz, 3H) ppm. ¹³C NMR (75 MHz,

4.2 General procedure for the synthesis of polysubstituted coumarin-3-carboxylic esters 4.

Anhydrous FeCl₃ (0.05 mmol) was added to a stirred solution of salicyladehyde **1a** (1 mmol), Meldrum's acid **2** (1.2 mmol) in ethanol (3 mL). The mixture was heated at 70 °C for 8 h in an oil bath and then cooled down to room temperature. The solvent was removed under vacuum, and the residue was directly purified by flash column chromatography on silica gel with ethyl acetate and petroleum ether (1:6, v/v) as eluting solvent to afford the product **4aa** in 93% yield.

4.2.1 Ethyl 2-oxo-2H-chromene-3-carboxylate (4aa).¹⁶ White solid, yield 93%, mp 90-91 °C. ¹H NMR (300 MHz, CDCl₃) δ : 8.52 (s, 1H), 7.60-7.67 (m, 2H), 7.30-7.37 (m, 2H), 4.42 (q, J = 7.2 Hz, 2H), 1.43 (t, J = 7.2 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 162.9, 156.8, 155.0, 148.6, 134.3, 129.5, 124.8, 118.1, 117.8, 116.6, 61.9, 14.2 ppm. IR (KBr) v: 3062, 1776, 1766, 1606, 1564, 1450, 1375, 1296, 1132, 1033, 962, 775 cm⁻¹. HRMS (ESI) calcd for C₁₂H₁₀O₄ ([M+H]⁺) 219.0657, found 219.0657.

4.2.2 Ethyl 6-methyl-2-oxo-2H-chromene-3carboxylate (**4ba**). White solid, yield 89%, mp 108-109 °C. ¹H NMR (300 MHz, CDCl₃) δ : 8.45 (s, 1H), 7.44 (d, J = 8.4 Hz, 1H), 7.37 (s, 1H), 7.24 (d, J = 8.4 Hz, 1H), 4.40 (q, J = 7.2 Hz, 2H), 2.40 (s, 3H), 1.41 (t, J = 7.2 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 163.0, 156.9, 153.2, 148.5, 135.4, 134.6, 129.1, 118.0, 117.5, 116.3, 61.8, 20.6, 14.2 ppm. IR (KBr) *v*: 3053, 1761, 1705, 1620, 1575, 1492, 1375, 1296, 1134, 1039, 979, 798 cm⁻¹; HRMS (ESI) calcd for C₁₃H₁₃O₄ ([M+H]⁺) 233.0814, found 233.0814.

4.2.3 Ethyl 7-methoxy-2-oxo-2H-chromene-3-carboxylate (4ca).¹⁶ Yellow solid, yield 89%, mp 130-132 °C. ¹H NMR (300 MHz, CDCl₃) δ : 8.45 (s, 1H), 7.48 (d, J = 8.7 Hz, 1H), 6.87 (d, J = 8.7 Hz, 1H), 6.77 (s, 1H), 4.39 (q, J = 7.2 Hz, 2H), 3.86 (s, 3H), 1.38 (t, J = 7.2 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 165.1, 163.7, 157.5, 157.1, 148.9, 130.7, 114.0, 113.6, 111.5, 100.3, 61.6, 56.0, 14.2 ppm. IR (KBr) v: 3053, 1753, 1726, 1714, 1620, 1558, 1506, 1381, 1294, 1172, 1118, 1031, 829, 761 cm⁻¹. HRMS (ESI) calcd for C₁₃H₁₂O₅ ([M+H]⁺) 249.0763, found 249.0762.

4.2.4 Ethyl 7-(diethylamino)-2-oxo-2H-chromene-3carboxylate (**4da**).¹⁶ Pale brown solid, yield 83%; mp 171-172 °C. ¹H NMR (300 MHz, CDCl₃) δ : 8.40 (s, 1H), 7.34 (d, J = 9.3Hz, 1H), 6.60 (d, J = 9.0 Hz, 1H), 6.43 (s, 1H), 4.38 (q, J = 7.2Hz, 2H), 3.45 (q, J = 7.2 Hz, 4H), 1.38 (t, J = 7.2 Hz, 3H), 1.23 (t, J = 7.2 Hz, 6H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 164.2, 158.4, 158.3, 152.8, 149.2, 131.0, 109.5, 108.8, 107.6, 96.6, 61.1, 45.0, 14.3, 12.4 ppm. IR (KBr) ν : 3354, 1732, 1699, 1622, 1589, 1514, 1477, 1446, 1354, 1222, 1186, 1103, 1028, 819, 792 cm⁻¹. HRMS (ESI) calcd for C₁₆H₁₉NO₄ ([M+H]⁺) 290.1392, found 290.1393.

4.2.5 Ethyl 6,8-di-tert-butyl-2-oxo-2H-chromene-3-carboxylate (4ea). White solid, yield 80%; mp 115-116 °C. ¹H NMR (300 MHz, CDCl₃) δ : 8.49 (s, 1H), 7.66 (s, 1H), 7.39 (s, 1H), 4.40 (q, J = 7.2 Hz, 2H), 1.49 (s, 9H), 1.41 (t, J = 7.2 Hz, 3H), 1.34 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 163.3, 156.6, 152.0, 149.9, 147.1, 137.4, 129.7, 123.9, 117.8, 117.0, 61.7, 35.1, 34.6, 31.2, 29.7, 14.2 ppm. IR (KBr) v: 2981, 1739, 1707, 1618, 1577, 1471, 1396, 1286, 1255, 1211, 1035, 979, 796 cm⁻¹; HRMS (ESI) calcd for C₂₀H₂₇O₄ ([M+H]⁺) 331.1909, found 331.1909.

4.2.6 Ethyl 6-chloro-2-oxo-2H-chromene-3-carboxylate (4fa).¹⁶ White solid, yield 91%, mp 174-175 °C. ¹H NMR (300 MHz,

4.2.7 *Ethyl* 6-*bromo*-2-*oxo*-2*H*-*chromene*-3-*carboxylate* (**4ga**).¹⁶ White solid, yield 90%, mp 175-177 °C. ¹H NMR (300 MHz, CDCl₃) δ : 8.42 (s, 1H), 7.69-7.74 (m, 2H), 7.24 (s, 1H), 4.44 (q, *J* = 7.2 Hz, 2H), 1.42 (t, *J* = 7.2 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 162.6, 155.9, 153.9, 147.0, 136.9, 131.5, 119.4, 119.3, 118.5, 117.3, 62.2, 14.1 ppm. IR (KBr) *v*: 3070, 1753, 1705, 1616, 1598, 1558, 1477, 1411, 1367, 1290, 1242, 1211, 1024, 794 cm⁻¹. HRMS (ESI) calcd for C₁₂H₉BrO₄ ([M+H]⁺) 296.9762, found 296.9765.

4.2.8 Ethyl 6-nitro-2-oxo-2H-chromene-3-carboxylate (**4ha**).¹⁶ White solid, yield 89%, mp 192-193 °C. ¹H NMR (300 MHz, CDCl₃) δ : 8.58 (s, 1H), 8.56 (s, 1H), 8.51 (d, J = 9.0 Hz, 1H), 7.51 (d, J = 9.3 Hz, 1H), 4.47 (q, J = 7.2 Hz, 2H), 1.44 (t, J = 7.2 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 162.0, 158.3, 155.0, 146.9, 144.2, 128.6, 125.2, 120.5, 118.0, 117.8, 62.5, 14.1 ppm. IR (KBr) ν : 3088, 1780, 1757, 1691, 1618, 1570, 1497, 1348, 1257, 1219, 1095, 1018, 985, 752 cm⁻¹. HRMS (ESI) calcd for C₁₂H₉NO₆ ([M+Na]⁺) 286.0322, found 286.0324.

4.2.9 Ethyl 6-fluoro-2-oxo-2H-chromene-3-carboxylate (4ia). White solid, yield 93%, mp 104-106 °C. ¹H NMR (300 MHz, CDCl₃) δ : 8.48 (s, 1H), 7.59 (s, 2H), 7.32 (d, J = 8.4 Hz, 1H), 4.44 (q, J = 7.2 Hz, 2H), 1.42 (t, J = 7.2 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 162.7 (d, ¹ $J_{CF} = 177.4$ Hz), 157.1 (d, ¹ $J_{CF} = 62.0$ Hz), 151.3, 147.4 (d, ¹ $J_{CF} = 1.8$ Hz), 130.5, 122.0 (d, ¹ $J_{CF} = 24.4$ Hz), 119.5, 118.5 (d, ¹ $J_{CF} = 8.2$ Hz), 114.5 (d, ¹ $J_{CF} = 23.6$ Hz), 62.2, 14.2 ppm. IR (KBr) v: 3059, 1751, 1687, 1618, 1571, 1489, 1369, 1294, 1157, 1114, 1026, 993, 796 cm⁻¹; HRMS (ESI) calcd for C₁₂H₁₀FO₄ ([M+H]⁺) 237.0563, found 237.0562.

4.2.10 Ethyl 3-oxo-3H-benzo[f]chromene-2-carboxylate (**4***ja*).¹⁶ Yellow solid, yield 90%, mp 118-119 °C. ¹H NMR (300 MHz, CDCl₃) δ : 9.30 (s, 1H), 8.32 (d, J = 8.1 Hz, 1H), 8.10 (d, J = 9.0 Hz, 1H), 7.93 (d, J = 8.1 Hz, 1H), 7.77 (t, J = 7.5 Hz, 1H), 7.63 (t, J = 7.8 Hz, 1H), 7.46 (d, J = 9.0 Hz, 1H), 4.50 (q, J = 7.2 Hz, 2H), 1.46 (t, J = 7.2 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 162.7, 155.9, 155.0, 143.6, 135.2, 128.3, 128.2, 125.6, 120.5, 115.7, 111.4, 61.1, 13.4 ppm. IR (KBr) v: 3080, 1745, 1697, 1627, 1604, 1568, 1463, 1396, 1296, 1217, 1124, 1095, 742 cm⁻¹. HRMS (ESI) calcd for C₁₆H₁₂O₄ ([M+H]⁺) 269.0814, found 269.0813.

4.2.11 Methyl 2-oxo-2H-chromene-3-carboxylate (**4ab**). White solid, yield 91%, mp 118-120 °C. ¹H NMR (300 MHz, CDCl₃) δ : 8.53 (s, 1H), 7.56-7.64 (m, 2H), 7.27-7.34 (m, 2H), 3.92 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 163.8, 156.9, 155.2, 149.1, 134.4, 129.5, 124.9, 117.9, 117.8, 116.7, 52.9 ppm. IR (KBr) *v*: 3059, 1745, 1701, 1685, 1616, 1560, 1452, 1363, 1311, 1247, 1215, 1155, 997, 756 cm⁻¹; HRMS (ESI) calcd for C₁₁H₉O₄ ([M+H]⁺) 205.0501, found 205.0500.

4.2.12 Methyl 6-methyl-2-oxo-2H-chromene-3-carboxylate (**4bb**). White solid, yield 90%; mp 135-136 °C. ¹H NMR (300 MHz, CDCl₃) δ : 8.49 (s, 1H), 7.45 (d, J = 8.7 Hz, 1H), 7.37 (s, 1H), 7.24 (d, J = 8.7 Hz, 1H), 3.93 (s, 3H), 2.40 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 163.8, 156.9, 153.3, 149.2, 149.1, 135.6, 134.7, 129.1, 117.7, 117.5, 116.4, 52.8, 20.6 ppm. IR (KBr) v: 3064, 1772, 1755, 1622, 1571, 1492, 1436, 1381, 1294, 1132, 1029, 933, 756 cm⁻¹; HRMS (ESI) calcd for C₁₂H₁₁O₄ ([M+H]⁺) 219.0657, found 219.0655.

4.2.13 Methyl 7-methoxy-2-oxo-2H-chromene-3-carboxylate (4cb). Yellow solid, yield 88%, mp 226-228 °C. ¹H NMR (300 MHz, CDCl₃) δ : 8.81 (s, 1H), 7.62 (d, J = 8.7 Hz, 1H), 7.00 (d, J = 8.7 Hz, 1H), 6.89 (s, 1H), 3.91 (s, 6H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 163.1, 151.2, 149.5, 131.7, 130.7, 115.1, 113.7, 100.7, 100.3, 56.3, 52.7 ppm. IR (KBr) v: 3049, 1751, 1681, 1614, 1556, 1473, 1363, 1298, 1205, 1072, 1001, 829, 798 cm⁻¹; HRMS (ESI) calcd for C₁₂H₁₁O₅ ([M+H]⁺) 235.0606, found 235.0605.

4.2.14 Methyl 7-(diethylamino)-2-oxo-2H-chromene-3carboxylate (4db).¹⁶ Yellow solid, yield 85%, mp 173-174 °C. ¹H NMR (300 MHz, CDCl₃) δ : 8.41 (s, 1H), 7.34 (d, J = 9.0 Hz, 1H), 6.59 (d, J = 9.0 Hz, 1H), 6.42 (s, 1H), 3.87 (s, 3H), 3.45 (q, J = 7.8 Hz, 4H), 1.22 (t, J = 6.6 Hz, 6H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 164.9, 158.5, 152.9, 149.6, 131.1, 109.6, 108.3, 107.6, 96.6, 52.2, 45.0, 12.3 ppm. IR (KBr) v: 3502, 1755, 1703, 1618, 1587, 1514, 1446, 1419, 1354, 1224, 1199, 1136, 1078, 796 cm⁻¹; HRMS (ESI) calcd for C₁₅H₁₇NO₄ (M+H⁺) 276.1236, found 276.1235.

4.2.15 Methyl 6,8-di-tert-butyl-2-oxo-2H-chromene-3carboxylate (**4eb**). White solid, yield 80%, mp 157-159 °C. ¹H NMR (300 MHz, CDCl₃) δ : 8.50 (s, 1H), 7.64 (s, 1H), 7.36 (s, 1H), 3.90 (s, 3H), 1.46 (s, 9H), 1.31 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 164.0, 156.5, 152.1, 150.5, 147.2, 137.4, 129.9, 123.9, 117.8, 116.6, 52.7, 35.1, 31.2, 29.7 ppm. IR (KBr) v: 2953, 1739, 1718, 1622, 1581, 1467, 1363, 1288, 1240, 1209, 1018, 956, 767 cm⁻¹; HRMS (ESI) calcd for C₁₉H₂₅O₄ ([M+H]⁺) 317.1753, found 317.1754.

4.2.16 Methyl 6-chloro-2-oxo-2H-chromene-3-carboxylate (**4fb**). White solid, yield 89%, mp 199-200 °C. ¹H NMR (300 MHz, CDCl₃) δ : 8.83 (s, 1H), 8.43 (s, 1H), 7.43 (d, J = 9.6 Hz, 1H), 7.29 (d, J = 9.3 Hz, 1H), 3.92 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 163.4, 161.9, 153.5, 150.2, 147.7, 135.6, 134.2, 129.3, 128.4, 118.6, 118.3, 53.1 ppm. IR (KBr) v: 3051, 1753, 1680, 1614, 1560, 1475, 1429, 1384, 1300, 1269, 1205, 1087, 1035, 1001, 798 cm⁻¹; HRMS (ESI) calcd for C₁₁H₈ClO₄ ([M+H]⁺) 239.0111, found 239.0111.

4.2.17 *Methyl* 6-bromo-2-oxo-2H-chromene-3-carboxylate (**4gb**). White solid, yield 88%, mp 184-185 °C. ¹H NMR (300 MHz, CDCl₃) δ : 8.82 (s, 1H), 8.43 (s, 1H), 7.36 (d, J = 8.1 Hz, 1H), 7.23 (d, J = 8.1 Hz, 1H), 3.92 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 163.4, 161.8, 150.0, 147.5, 138.4, 137.1, 132.4, 131.5, 118.8, 118.5, 117.4, 53.0 ppm. IR (KBr) *v*: 3051, 1750, 1699, 1616, 1564, 1454, 1438, 1365, 1285, 1209, 1092, 1002, 796, 758 cm⁻¹; HRMS (ESI) calcd for C₁₁H₈BrO₄ ([M+H]⁺) 282.9606, found 282.9608.

4.2.18 Methyl 6-nitro-2-oxo-2H-chromene-3-carboxylate (**4hb**). White solid, yield 89%, mp 222-224 °C. ¹H NMR (300 MHz, CDCl₃) δ : 8.58 (s, 1H), 8.52 (s, 1H), 8.47 (d, *J* = 8.1 Hz, 1H), 7.48 (d, *J* = 8.4 Hz, 1H), 3.94 (s, 3H) ppm. ¹³C NMR (75MHz, CDCl₃) δ : 162.6, 158.3, 147.4, 128.7, 125.2, 120.1, 118.1, 117.7, 53.3 ppm. IR (KBr) *v*: 3105, 3068, 1780, 1757, 1697, 1618, 1570, 1521, 1477, 1436, 1348, 1305, 1257, 1139, 1095, 1001, 796, 752 cm⁻¹; HRMS (ESI) calcd for C₁₁H₈NO₆ ([M+H]⁺) 250.0351, found 250.0350.

4.2.19 Methyl 3-oxo-3H-benzo[f]chromene-2-carboxylate (**4jb**). Yellow solid, yield 90%, mp 162-163 °C. ¹H NMR (300 MHz, CDCl₃) δ : 9.24 (s, 1H), 8.25 (d, *J* = 8.4 Hz, 1H), 8.05 (d, *J* = 9.0 Hz, 1H), 7.89 (d, *J* = 8.1 Hz, 1H), 7.70 (t, *J* = 7.2 Hz, 1H), 7.57 (t, *J* = 7.5 Hz, 1H), 7.39 (d, *J* = 9.0 Hz, 1H), 3.98 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 164.0, 156.8, 155.9, 144.9, 136.2, 130.1, 129.3, 129.2, 129.1, 126.6, 121.4, 116.5, 115.8, 112.2, 52.9, 29.6 ppm. IR (KBr) *v*: 3051, 1745, 1701, 1602, 1570, 1442, / $(1394, 1296, 1211, 1120, 1103, 1008, 983, 794 \text{ cm}^{-1}; \text{HRMS (ESI)})$ calcd for $C_{15}H_{11}O_4$ ([M+H]⁺) 255.0657, found 255.0658.

4.2.20 Pentan-2-yl 7-methoxy-2-oxo-2H-chromene-3carboxylate (**4cc**). White solid, yield 88%, mp 125-126 °C. ¹H NMR (300 MHz, CDCl₃) δ : 8.43 (s, 1H), 7.50 (d, J = 9.0 Hz, 1H), 6.85-6.89 (d, J = 8.7 Hz, 1H), 6.80 (s, 1H), 5.10-5.20 (m, 1H), 3.89 (s, 3H), 1.68-1.75 (m, 1H), 1.51-1.60 (m, 1H), 1.36-1.48 (m, 2H), 1.34 (d, J = 6.3 Hz, 3H), 1.23 (t, J = 6.9 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ : 164.1, 162.0, 156.6, 147.5, 138.7, 129.7, 113.7, 112.7, 110.7, 99.4, 71.5, 55.1, 37.1, 17.8, 17.5, 13.0 ppm; IR (KBr) v: 2962, 1749, 1697, 1606, 1556, 1506, 1462, 1377, 1263, 1219, 1170, 1022, 794 cm⁻¹; HRMS (ESI) calcd for C₁₆H₁₉O₅ ([M+H]⁺) 291.1232, found 291.1232.

4.2.21 Pentan-2-yl 6-chloro-2-oxo-2H-chromene-3-carboxylate (**4fc**). White solid, yield 90%, mp 139-140 °C. ¹H NMR (300 MHz, CDCl₃) δ : 8.36 (s, 1H), 7.54-7.59 (m, 2H), 7.28 (d, J = 8.4 Hz, 1H), 5.12-5.26 (m, 1H), 1.68-1.78 (m, 1H), 1.52-1.61 (m, 1H), 1.39-1.46 (m, 2H), 1.36 (d, J = 6.3 Hz, 3H), 0.94 (t, J = 7.2 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 162.1, 156.0, 153.3, 146.5, 133.9, 130.0, 128.4, 119.8, 118.8, 118.2, 73.0, 37.9, 19.8, 18.6, 13.8 ppm. IR (KBr) *v*: 3097, 1745, 1708, 1625, 1566, 1479, 1363, 1292, 1246, 1118, 1083, 1010, 968, 792 cm⁻¹; HRMS (ESI) calcd for C₁₅H₁₆ClO₄ ([M+H]⁺) 295.0737, found 295.0735.

4.2.22 Pentan-2-yl 6-bromo-2-oxo-2H-chromene-3-carboxylate (**4gc**). White solid, yield: 89%, mp 147-148 °C. ¹H NMR (300 MHz, CDCl₃) δ : 8.35 (s, 1H), 7.68-7.74 (m, 2H), 7.22 (d, J = 8.4 Hz, 1H), 5.14-5.20 (m, 1H), 1.69-1.78 (m, 1H), 1.54-1.61 (m, 1H), 1.39-1.46 (m, 2H), 1.33 (d, J = 6.3 Hz, 3H), 0.91 (t, J = 7.5 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 162.1, 155.9, 153.8, 146.4, 136.7, 131.4, 119.9, 119.3, 118.5, 117.2, 73.1, 37.9, 19.9, 18.6, 13.8 ppm. IR (KBr) *v*: 3091, 1753, 1703, 1624, 1600, 1560, 1475, 1359, 1267, 1209, 1149, 1105, 1010, 968, 792 cm⁻¹; HRMS (ESI) calcd for C₁₅H₁₆BrO₄ ([M+H]⁺) 339.0232, found 339.0232.

4.2.23 Benzyl 7-methoxy-2-oxo-2H-chromene-3-carboxylate (**4cd**). Yellow solid, yield 73%, mp 123-125 °C. ¹H NMR (300 MHz, CDCl₃) δ : 8.50 (s, 1H), 7.48 (d, J = 9.0 Hz, 2H), 7.33-7.41 (m, 4H), 6.88 (d, J = 9.0 Hz, 1H), 6.81 (s, 1H), 5.37 (s, 2H), 3.89 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ : 165.2, 163.1, 157.6, 149.2, 135.7, 130.7, 128.6, 128.3, 113.7, 111.6, 100.3, 67.2, 56.0 ppm; IR (KBr) v: 2951, 1751, 1689, 1614, 1562, 1500, 1463, 1377, 1305, 1276, 1170, 1116, 1026, 1006, 869, 736 cm⁻¹; HRMS (ESI) calcd for C₁₈H₁₅O₅ ([M+H]⁺) 311.0919, found 311.0918.

4.2.24 Benzyl 6-bromo-2-oxo-2H-chromene-3-carboxylate (**4gd**). White solid, yield 81%, mp 186-187 °C. ¹H NMR (300 MHz, CDCl₃) δ : 8.43 (s, 1H), 7.70-7.73 (m, 2H), 7.45-7.48 (m, 2H), 7.36-7.42 (m, 4H), 7.23 (s, 1H), 5.39 (s, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 162.3, 155.9, 153.9, 147.4, 137.1, 135.1, 131.5, 128.7, 128.5, 128.3, 119.2, 119.1, 118.5, 117.3, 67.7 ppm. IR (KBr) *v*: 3091, 3034, 1762, 1693, 1618, 1558, 1473, 1413, 1382, 1288, 1209, 1136, 1072, 985, 792, 744 cm⁻¹; HRMS (ESI) calcd for C₁₇H₁₂BrO₄ ([M+H]⁺) 358.9919, found 358.9916.

4.2.25 Benzyl 6-nitro-2-oxo-2H-chromene-3-carboxylate (**4hd**). White solid, yield 83%, mp 236-237 °C. ¹H NMR (300 MHz, DMSO- d^{0}) δ : 8.98 (s, 1H), 8.96 (s, 1H), 8.51 (d, J = 8.7 Hz, 1H), 7.65 (d, J = 8.7 Hz, 1H), 7.50 (d, J = 6.9 Hz, 2H), 7.34-7.42 (m, 3H), 5.34 (s, 2H) ppm. ¹³C NMR (75 MHz, DMSO- d^{0}) δ : 162.5, 158.5, 155.5, 148.4, 144.1, 136.0, 129.1, 128.9, 128.6, 128.4, 126.6, 119.6, 118.6, 118.2, 107.5, 67.2 ppm. IR (KBr) v: 3086, 3057, 1755, 1703, 1573, 1498, 1452, 1379, 1290, 1217, 1095, 1002, 862, 796 cm⁻¹; HRMS (ESI) calcd for C₁₇H₁₂NO₆ ([M+H]⁺) 326.0664, found 326.0664.

4.2.26 Allyl 7-methoxy-2-oxo-2H-chromene-3-carboxylate (4ce). M Yellow solid, yield 90%, mp 108-109 °C. ¹H NMR (300 MHz, CDCl₃) δ : 8.52 (s, 1H), 7.49 (d, J = 8.7 Hz, 1H), 6.89 (d, J = 8.7 Hz, 1H), 6.80 (s, 1H), 595-6.08 (m, 1H), 5.47 (d, J = 17.1 Hz, 1H), 5.31 (d, J = 10.5 Hz, 1H), 4.82 (d, J = 5.7 Hz, 2H), 3.89 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 165.2, 163.1, 157.6, 157.1, 149.3, 131.6, 130.8, 118.9, 113.7, 113.6, 111.5, 100.3, 66.1, 56.0 ppm. IR (KBr) v: 3047, 3018, 1755, 1732, 1693, 1616, 1560, 1498, 1419, 1379, 1309, 1230, 1172, 1024, 1008, 943, 860, 792 cm⁻¹; HRMS (ESI) calcd for C₁₄H₁₃O₅ ([M+H]⁺) 261.0763, found 261.0762.

4.2.27 Allyl 6,8-di-tert-butyl-2-oxo-2H-chromene-3-carboxylate (4ee). White solid, yield 85%, mp 122-123 °C. ¹H NMR (300 MHz, CDCl₃) δ : 8.52 (s, 1H), 7.66 (s, 2H), 7.39 (s, 1H), 5.82-6.01 (m, 1H), 4.81 (d, J = 5.4 Hz, 2H), 4.63 (d, J = 5.7 Hz, 2H), 1.48 (s, 9H), 1.33 (s, 9H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ : 166.0, 163.0, 156.5, 152.1, 150.3, 147.1, 137.4, 131.6, 131.4, 129.8, 124.0, 118.7, 117.8, 116.5, 66.1, 41.4, 31.2, 29.7 ppm; IR (KBr) v: 2954, 1739, 1710, 1649, 1620, 1579, 1467, 1365, 1282, 1211, 1145, 1010, 993, 796 cm⁻¹; HRMS (ESI) calcd for C₂₁H₂₇O₄ ([M+H]⁺) 343.1909, found 343.1906.

4.2.28 Allyl 6-chloro-2-oxo-2H-chromene-3-carboxylate (**4fe**). White solid, yield 91%, mp 142-143 °C. ¹H NMR (300 MHz, CDCl₃) δ : 8.45 (s, 1H), 7.59 (s, 2H), 7.32 (d, J = 8.7 Hz, 1H), 5.95-6.08 (m, 1H), 5.49 (d, J = 16.8 Hz, 1H), 5.34 (d, J = 10.2 Hz, 1H), 4.85 (d, J = 5.1 Hz, 2H,) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 162.3, 155.9, 153.5, 147.4, 134.2, 131.3, 130.1, 128.4, 119.2, 118.7, 118.2, 66.5 ppm. IR (KBr) *v*: 3053, 1766, 1741, 1701, 1643, 1620, 1562, 1479, 1379, 1301, 1251, 1012, 943, 794 cm⁻¹; HRMS (ESI) calcd for C₁₃H₁₀ClO₄ ([M+H]⁺) 265.0267, found 265.0265.

4.2.29 Allyl 6-bromo-2-oxo-2H-chromene-3-carboxylate (**4ge**). White solid, Yield 90%, mp 154-155 °C. ¹H NMR (300 MHz, CDCl₃) δ : 8.44 (s, 1H), 7.73 (s, 2H), 7.23 (s, 1H), 5.97-6.04 (m, 1H), 5.48 (d, *J* = 16.8 Hz, 1H), 5.33 (d, *J* = 8.7 Hz, 1H), 4.84 (d, *J* = 6.0 Hz, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 162.2, 155.8, 153.9, 147.3, 137.0, 131.5, 131.3, 119.2, 118.5, 117.3, 66.5 ppm. IR (KBr) *v*: 3099, 3053, 1766, 1741, 1699, 1643, 1560, 1477, 1415, 1379, 1247, 1207, 1010, 943, 794 cm⁻¹; HRMS (ESI) calcd for C₁₃H₁₀BrO₄ ([M+H]⁺) 308.9762, found 308.9760.

4.2.30 Allyl 6-nitro-2-oxo-2H-chromene-3-carboxylate (**4he**). Yellow solid, yield 91%, mp 165-166 °C. ¹H NMR (300 MHz, CDCl₃) δ : 8.60 (s, 1H), 8.56 (s, 1H), 8.50 (d, J = 9.3 Hz, 1H), 7.50 (d, J = 9.3 Hz, 1H), 5.95-6.08 (m, 1H), 5.49 (d, J = 17.4 Hz, 1H), 5.35 (d, J = 10.5 Hz, 1H), 4.87 (d, J = 7.2 Hz, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 161.7, 158.3, 154.8, 147.2, 144.2, 131.0, 128.7, 125.2, 120.2, 119.5, 118.1, 117.7, 66.8 ppm. IR (KBr) ν : 3074, 3055, 1776, 1755, 1693, 1647, 1622, 1568, 1477, 1346, 1255, 1093, 1006, 939, 752 cm⁻¹; HRMS (ESI) calcd for C₁₃H₁₀NO₆ ([M+H]⁺) 276.0508, found 276.0505.

4.2.31 Allyl 3-oxo-3H-benzo[f]chromene-2-carboxylate (**4je**). Yellow solid, yield 91%, mp 115-116 °C. ¹H NMR (300 MHz, CDCl₃) δ : 9.30 (s, 1H), 8.29 (d, J = 8.4 Hz, 1H), 8.09 (d, J = 9.3 Hz, 1H), 7.92 (d, J = 8.1 Hz, 1H), 7.76 (t, J = 7.5 Hz, 1H), 7.59 (t, J = 7.5 Hz, 1H), 7.45 (d, J = 8.7 Hz, 1H), 6.00-6.14 (m, 1H), 5.53 (d, J = 17.4 Hz, 1H), 5.35 (d, J = 11.7 Hz, 1H),4.91 (d, J = 6.9 Hz, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ : 163.2, 156.7, 155.9, 144.7, 136.3, 131.5, 130.1, 129.3, 129.2, 129.1, 126.6, 121.4, 119.1, 116.6, 115.9, 112.1, 66.4 ppm. IR (KBr) ν : 3014, 2922, 1745, 1695, 1625, 1600, 1564, 1454, 1392, 1300, 1255, 1134, 1012, 989, 750 cm⁻¹; HRMS (ESI) calcd for C₁₇H₁₃O₄ ([M+H]⁺) 281.0814, found 281.0816.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21172001, 21372008), the Program for the NCET (NCET-10-0004), and the Anhui Provincial Natural Science Foundation (No. 1308085QB39).

References and notes

- (a) Bandyopadhyay, A.; Gopi, H. N. Org. Biomol. Chem. 2011, 9, 8089-8095.
 (b) Reutrakul, V.; Leewanich, P.; Tuchinda, P.; Pohmakotr, M.; Jaipetch, T.; Sophasan, S.; Santisuk, T. Planta Med. 2003, 69, 1048-1051.
 (c) Wang, C. J.; Hsieh, Y. J.; Chu, C. Y.; Lin, Y. L.; Tseng, T. H. Cancer Lett. 2002, 183, 163-168.
- (a) Spino, C.; Dodier, M.; Sotheeswaran, S. Bioorg. *Med. Chem. Lett.* **1998**, *8*, 3475-3478. (b) Yamamoto, Y.; Kirai, N. Org. Lett. **2008**, *10*, 5513-5516.
- (a) Kang, S. Y.; Lee, K. Y.; Sung, S. H.; Park, M. J.; Kim, Y. C. J. Nat. Prod. 2001, 64, 683-685. (b) Shen, Q.; Peng, Q.; Shao, J.; Liu, X.; Huang, Z.; Pu, X.; Ma, L.; Li, Y.-M.; Chan, A. S. C.; Gu, L. Eur. J. Med. Chem. 2005, 40, 1307-1315.
- Sardari, S.; Mori, Y.; Horita, K.; Micetich, R. G.; Nishibe, S.; Daneshtalab, M. Bioorg. Med. Chem. 1999, 7, 1933-1940.
- (a) Sabry, N. M.; Mohamed, H. M.; Khattab, E. S. A.E.H.; Motlaq, S. S.; El-Agrody, A. M. *Eur. J. Med. Chem.* 2011, 46, 765-772. (b) Kontogiorgis, C.; Litina, D. H. *J. Enzyme Inhib. Med. Chem.* 2003, 18, 63-69.
- Mahmoud, Z. F.; Sarg, T. M.; Amer, M. E.; Khafagy, S. M. Pharmazie 1983, 38, 486-487.
- (a) Liu, Y.-K.; Zhu, J.; Qian, J.-Q.; Jiang, B.; Xu, Z.-Y. J. Org. Chem. 2011, 76, 9096–9101. (b) Singh, I.; Kaur, H.; Kumar, S.; Kumar, A.; Lata, S.; Kumar, A. Int. J. ChemTech. Res. 2010, 2, 1745-1752.
- (a) Hwu, J. R.; Singha, R.; Hong, S. C.; Chang, Y. H.; Das, A. R.; Vliegen, I.; Clercq, E. D.; Neyts, J. *Antiviral Res.* 2008, 77, 157-162. (b) Hwu, J. R.; Lin, S. Y.; Tsay, S. C.; Clercq, E. D.; Leyssen, P.; Neyts, J. J. Med. Chem. 2011, 54, 2114-2126.
- (a) Rabahi, A.; Makhloufi-Chebli, M.; Hamdi, S. M.; Silva, A. M. S.; Kheffache, D.; Boutemeur-Kheddis, B.; Hamdi, M. J. Molecular Liquids 2014, 95, 240–247. (b) Yeh, T.-F.; Lin, C.-Y.; Chang, S.-T. J. Agric. Food Chem. 2014, 62, 1706–1712. (c) Dugrand, A.; Olry, A.; Duval, T.; Hehn, A.; Froelicher, Y.; Bourgaud, F. J. Agric. Food Chem. 2013, 61, 10677–10684. (d) Wang, Y.-H.; Avula, B.; Nanayakkara, N. P. D.; Zhao, J.; Khan, I. A. J. Agric. Food Chem. 2013, 61, 4470–4476.
- (a) Yi, C.-L.; Sun, J.-H.; Zhao, D.-H.; Hu, Q.; Liu, X.-Y.; Jiang, M. Langmuir 2014, 30, 6669–6677. (b) Yam, V. W. W.; Song, H. O.; Chan, S. T. W.; Zhu, N.; Tao, C. H.; Wong, K. M. C.; Wu, L.-X. J. Phys. Chem. C 2009, 113, 11674-11682.
- (a) Cui, S.-L.; Lin, X.-F.; Wang, Y.-G. Org. Lett. 2006, 8, 4517-4520. (b) Ren, X.; Kondakova, M. E.; Giesen, D. J.; Rajeswaran, M.; Madaras, M.; Lenhart, W. C. Inorg. Chem. 2010, 49, 1301-1303.
- (a) Tanaka, T.; Yamashita, K.; Hayashi. M. Heterocycles 2010, 80, 631-636. (b) Lee, K. S.; Kim, H. J.; Kim, G. H.; Shin, I.; Hong, J. I. Org. Lett. 2008, 10, 49-51.
- (a) Barooah, N.; Sundararajan, M.; Mohanty, J.; Bhasikuttan A. C. J. Phys. Chem. B 2014, 118, 7136–7146. (b) Li, J.; Zhang, C.-F.; Yang, S.-H.; Yang, W.-C.; Yang, G.-F. Anal. Chem. 2014, 86, 3037–3042.
- (a) Shi, Y. L.; Shi, M. Org. Biomol. Chem. 2007, 5, 1499-1504.
 (b) Santana, L.; Uriarte, E.; Gonzalez-Diaz, H.; Zagotto, G.; Soto-Otero, R.; Mendez-Alvarez, E. J. Med. Chem. 2006, 49, 1149-1156.
 (c) Henry, C. E.; Kwon, O. Org. Lett. 2007, 9, 3069-3072.
 (d) Li, J.-M.; Chen, H.-Y.; Zhang-Negrerie, D.; Du, Y.-F.; Zhao, K. RSC Adv. 2013, 3, 4311-4320.
 (e) Yoshida, H.; Ito, Y.; Ohshita, J. Chem. Commun. 2011, 47, 8512-8514;
 (f) Masubara, S. J. Am. Chem. Soc. 2011, 133, 11066-11068.
 (g) Guo, X.-W.; Yu, R.; Li, H.-J.; Li, Z.-P. J. Am. Chem. Soc. 2009, 133, 17387-17393.
 (h) Maiti, G.; Karmakar, R.; Kayal, U.; Bhattacharya, R. N. Tetrahedron 2012, 68, 8817-8822.
- (a) Mudumala, V. R.; Chinthaparthi, R. R.; Yeon, T. J. *Tetrahedron* 2014, 70, 3762–3769. (b) Qian, W.-Y.; Amegadzie, A.; Winternheimer, D.; Allen, J. Org. Lett. 2013, 15, 2986-2989.
 (c) Luan, Y.; Yu, J.; Zhang, X.-W.; Schaus, S. E.; Wang, G. J. Org. Chem. 2014, 79, 4694–4698. (d) Arenas, D. R. M.; Kouznetsov, V. V. J. Org. Chem. 2014, 79, 5327–5333.
- He, X.-W.; Yan, Z.-L.; Hu, X.-Q.; Zuo, Y.; Jiang, C.; Jin, L.; Shang, Y.-J. Synth. Commun. 2014, 44, 1507-1514.

17. (a) He, X.-W.; Shang, Y.-J.; Yu, Z.-Y.; Fang, M. Zhou, Y.; Han, MANUS 0°, V=1038.3(4) Å³, T = 293 K, Z = 4. Crystallographic data for Compound **4i** (CCDC-1011994) reported in this paper can be found in the ESI. These data can be obtained free of charge from 10138. (c) Wu, J.-P.; Shang, Y.-J.; Wang, C.-E.; He, X.-W.; Yan, Z.-L.; Hu, M.-M.; Zhou, F.-Y.; *RSC Adv.* **2013**, *3*, 4643-4651.

Crystallographic data for 4aa: space group P(2)1/c, a = 7.933(2)
 Å, b = 15.745(4) Å, c = 8.748(2) Å, α = 90°, β = 108.157(3)°, γ =

The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.