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Chiral secondary alcohol-induced asymmetric autocatalysis:
correlation between the absolute configuration

of the chiral initiators and the product
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Abstract—In the presence of various chiral secondary alcohols as chiral initiators, an enantioselective alkylation of a pyrimidine-5-carb-
aldehyde using diisopropylzinc was examined: a pyrimidyl alkanol was obtained in high yield and enantiomeric excess. The correlation
between the absolute configuration of the chiral secondary alcohols and the pyrimidyl alkanol is discussed.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

When the alkylation of a prochiral carbonyl compound is
examined in the presence of a small amount of a chiral sub-
stance, an enantiomeric imbalance most certainly appears
in the alkylated product. In most cases, however, the enan-
tiomeric imbalance (enantiomeric excess) is very slight and
a commonly used apparatus, such as HPLC using chiral
stationary phase, cannot detect it. We have comprehen-
sively studied an asymmetric autocatalysis with the ampli-
fication of the enantiomeric excess in the enantioselective
alkylation of pyrimidine-5-carbaldehyde using diisopropyl-
zinc (i-Pr2Zn), in which a slight enantiomeric imbalance is
drastically amplified by the consecutive asymmetric auto-
catalytic reaction,1–3 its mechanism study using physical
models has been reported by several groups including
us.4 When the asymmetric autocatalytic reaction is exam-
ined in the presence of a chiral substance (we named it as
a ‘chiral initiator’), a slight enantiomeric imbalance could
be induced, then it is amplified by the consecutive asym-
metric autocatalysis, finally highly enantiomerically
enriched pyrimidyl alkanol is obtained. The absolute
configuration of the product is dependent upon that of
the chiral initiator.5,6
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In fact, when the isopropylation of 2-(tert-butylethynyl)
pyrimidine-5-carbaldehyde 1 was examined in the presence
of (S)-2-butanol 3 with ca. 0.1% ee, (S)-pyrimidyl alkanol 2
with 83% ee was obtained. (R)-2-Butanol 3 surely induced
(R)-pyrimidyl alkanol 2 (Scheme 1). These correlations
between the absolute configuration of the chiral secondary
alcohol and pyrimidyl alkanol 2 are derived from the chi-
rality in 2-butanol 3, that is, discrimination of the bulkiness
of the ethyl and methyl groups (Et > Me).

In other words, the correlation of the absolute configura-
tions of chiral secondary alcohols and product 2 elucidates
the steric discrimination of the substituents (RL > RS) of a
(R)-2
[90% ee from (R)-3]

N
t-Bu3: Rs=Me, RL=Et

Scheme 1. The concept of steric discrimination in the enantioselective
alkylation of 1 using chiral secondary alcohols as chiral initiators.
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chiral secondary alcohol in the present enantioselective
alkylation (Scheme 1). We here examined the enantioselec-
tive isopropylation of pyrimidine-5-carbaldehyde 1 using
various chiral secondary alcohols as chiral initiators. The
correlation of the absolute configurations is comprehen-
sively studied and the discrimination on the basis of the
bulkiness of various substituents is discussed.
2. Results and discussion

We prepared chiral secondary alcohols of ca. 10% ee and
used them as chiral initiators of asymmetric autocatalysis.
First, alkyl-substituted benzyl alcohols were submitted to
the asymmetric autocatalysis as the chiral initiator7 (Table
1). When the alkylation was examined in the presence of
(S)-methyl phenyl carbinol 4, (S)-pyrimidyl alkanol 2 was
obtained in high ee and yield (entry 1) and vice versa (entry
2).8 The correlation [(S)-secondary alcohol induces (S)-2]
was the same as 2-butanol 3. On the contrary, in the case
of isopropyl phenyl carbinol 5,9 the correlation was oppo-
site: (S)-secondary alcohol 5 induced (R)-2 (entries 3 and
4). When the isopropyl group was replaced by a more
bulky tert-butyl group, that is, tert-butyl phenyl carbinol
610 was subjected to the asymmetric autocatalysis, the cor-
relation was the same as the results of 5 (entries 5 and 6).
When alcohol 711 with a cyclopropyl group instead of iso-
propyl substitution was used, the correlation was the oppo-
site (entries 7 and 8), which means that the correlation was
the same as the case of methyl phenyl carbinol 4.
Table 1. Alkyl-substituted benzyl alcohols as chiral initiators

+ i-Pr2Zn

Ph R

OH

1
toluene,

c
N

N
CHO

t-Bu

Entrya Chiral initiatorb

1

Ph Me

OH
4f

2

3
Ph

OH
5

4

5

OH

Ph
6

6

7
Ph

OH
7

8

a The molar ratio of sec-alcohol–aldehyde 1–i-Pr2Zn = 0.02:2.1:5.
b sec-Alcohol with ca. 10% ee was prepared by thorough mixing of optically ac

phase.
c The ee value was determined by HPLC on a chiral stationary phase (Daicel
d See Ref. 12.
e Isolated yield.
f Enantiomerically pure and racemic 4 are commercially available.
To ensure the absolute configuration of alcohol 7, X-ray
single crystal analysis was performed to the crystalline
derivative. (�)-Alcohol 7 obtained from the resolution,
was transformed into the ferrocene carboxylate. The X-
ray crystal structure shown in Figure 1 clearly indicated
the absolute configuration of (�)-7 to be (R) (CCDC
618865).

Based on the concept depicted in Scheme 1, these results in
Table 1 could be explained as follows: in the alkylation of
pyrimidine-5-carbaldehyde 1 using i-Pr2Zn, phenyl was dis-
tinguished as a more bulky group than methyl and cyclo-
propyl, and as a less bulky one than isopropyl and tert-
butyl (Scheme 2).13 Therefore, isopropyl is surely more
bulky than cyclopropyl, as expected.

Next, the unsaturated group-substituted benzyl alcohols
were used (Table 2): in the case of phenyl isopropenyl car-
binol 8,14 the correlation was the same as phenyl isopropyl
carbinol 5 (entries 1 and 2). Conversely, phenyl vinyl carb-
inol 915 brought about the opposite correlation (entries 3
and 4). These results imply that branched substituents play
a pivotal role for the bulkiness (Scheme 3).

Finally, b-branched alkyl group-substituted benzyl alco-
hols were examined (Table 3): when isobutyl phenyl carbi-
nol 1016 was used as a chiral initiator, (S)-alcohol 10
induced (S)-pyrimidyl alkanol 2 and the correlation was
the same as methyl phenyl carbinol 4 (entries 1 and 2).
Even if the isobutyl group was replaced with a more bulky
2
 0 °C

a. 10% ee
N

N
t-Bu

OH
∗

Pyrimidyl alkanol 2

ee (%) eec,d (%) Yielde (%)

10 (S) 93 (S) 88
8 (R) 96 (R) 97

9 (S) 94 (R) 91
12 (R) 92 (S) 91

11 (S) 80 (R) 90
10 (R) 87 (S) 89

10 (S) 88 (S) 98
10 (R) 96 (R) 93

tive and racemic ones. Ee was determined by HPLC on a chiral stationary

Chiralcel OD).



Figure 1. X-ray crystal structure of ferrocenyl derivative of (�)-cycloprop-
yl(phenyl)methanol 7.
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Scheme 2. The steric discrimination of Me, i-Pr, t-Bu, c-Pr versus Ph
group.

Table 2. Unsaturated group-substituted benzyl alcohols as chiral
initiators

Entrya Chiral initiatorb Pyrimidyl alkanol 2c

ee (%) eed (%) Yield (%)

1

Ph

OH
8

10 (S) 94 (R) 87
2 11 (R) 86 (S) 92

3
Ph

OH
9 12 (S) 97 (S) 94

4 13 (R) 96 (R) 96

a See Table 1, footnote a.
b See Table 1, footnote b.
c See Table 1, footnote c and d.
d See Ref. 12.
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Scheme 3. The steric discrimination of isopropenyl and vinyl groups
versus a Ph group.

Table 3. b-Branched alkyl-substituted benzyl alcohols as chiral initiators

Entrya Chiral initiatorb Pyrimidyl alkanol 2c

ee (%) ee (%)d Yield (%)

1

Ph

OH
10 10 (S) 96 (S) 92

2 10 (R) 96 (R) 96

3
Ph

OH
11 12 (S) 95 (S) 90

4 8 (R) 93 (R) 97

5
OH

Ph 12 12 (S) 91 (S) 89
6 13 (R) 87 (R) 87

a See Table 1, footnote a.
b See Table 1, footnote b.
c See Table 1, footnote c and d.
d See Ref. 12.
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neopentyl one using 11,17 the correlation did not change
(entries 3 and 4). In order to keep the phenyl group at a dis-
tance, benzyl neopentyl carbinol 1218 was used but the cor-
relation was retained (entries 5 and 6). These results imply
that the branching at the a-position of the stereogenic cen-
tre causes steric bulkiness while the influence of the branch
at b-position is relatively small. (Scheme 4).
3. Conclusion

We have studied the asymmetric induction using various
chiral secondary alcohols as chiral initiators in the alkyl-
ation of pyridine-5-carbaldehyde 1 by i-Pr2Zn. Based on
the correlation of the absolute configurations of 2-butanol
3 and pyrimidyl alkanol 2, the bulkiness of various substit-
uents was determined in comparison with the phenyl
group. In conclusion, it can be ascertained that branching
of the substituent and its position determines the bulkiness.
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