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Synthesis and Reactivity of -Cumyl bromodifluoromethanesulfenate: 

Application to the Radiosynthesis of [18F]arylSCF3 

Jiang Wu,†[a] Qunchao Zhao,†[a] Thomas C. Wilson,[b] Stefan Verhoog,[b] Long Lu,[c] Véronique 

Gouverneur,*[b] and Qilong Shen*[a] 

Abstract: A novel highly reactive electrophilic 

bromodifluoromethylthiolating reagent, -cumyl bromodifluoro-

methanesulfenate 1, was prepared to allow for direct 

bromodifluoromethylthiolation of aryl boron reagents. This coupling 

reaction takes place under copper catalysis, and affords a large range 

of bromodifluoromethylthiolated arenes. These compounds are 

amenable to various transformations including halogen exchange with 

[18F]KF/K222, a process giving access to [18F]arylSCF3 in two steps 

from the corresponding aryl boronic pinacol esters. 

Positron Emission Tomography (PET) is a leading noninvasive 

imaging modality enabling the study of physiological processes in 

vivo. The technique has found a wide range of applications in the 

clinic, and serves as an aid to drug discovery by providing 

valuable information on the pharmacokinetic and 

pharmacodynamic properties of lead compounds.[1] Among the 

commonly used positron-emitting isotopes for PET, fluorine-18 is 

advantageous in part because of its relatively long half-life (t½ = 

109.7 min).[2] As a consequence, considerable efforts have been 

devoted to the development of efficient methods for the 

preparation of 18F-labeled PET radiotracers.[3] The majority of 18F-

labeling methods reported to date have focused on the direct 

[18F]fluorination of pre-functionalized arenes and alkanes,[4] while 

radiosynthetic routes towards 18F-labeled molecules with 

functional groups such as [18F]CF3,[5] [18F]CF2H,[6] [18F]SCF3,[7,8] 

[18F]OCF2H[8b]
 and [18F]OCF3

[8b]
 have appeared only more 

recently. Within this series, the trifluoromethylthiol group (-SCF3) 

has gained much attention in the context of medicinal chemistry 

due to its beneficial effects on pharmacokinetic and 

physicochemical properties including metabolic stability and 

lipophilicity.[9] 

In 2015, Gouverneur and co-workers reported the first 

radiosynthetic route towards [18F]arylSCF3 via halogen exchange 

(halex) of ArSCF2Br with cyclotron-produced 18F-fluoride (Figure 

1A).[8b] Two years later, Labar, Jubault and their co-workers 

described an elegant variant of this approach by reacting various 

aromatic disulfides with [18F]fluoroform, a reagent generated from 

the bench-stable (difluoromethyl)(mesityl)(phenyl) sulfonium salt 

(Figure 1B).[10] These radiosynthetic protocols require either an 

aryl thiol or diaryl disulfide to enable arylS–CF3 bond construction. 

In the present study, our aim was to explore a complementary 

strategy relying instead on aryl–SCF3 bond formation (Figure 1C). 

We opted for a transformation using aryl boron reagents as these 

commercially or readily available reagents have proved highly 

valuable for synthesis and more recently for 18F-radiochemistry as 

exemplified with late stage 18F-fluorination or 18F-

trifluoromethylation.[11] Herein, we demonstrate that aryl boronic 

esters can be converted to [18F]SCF3-arenes via direct 

aryl_SCF2Br bond construction followed by halex nucleophilic 18F-

fluorination. For this chemistry to be easily adopted by 

radiochemists, this new methodology ideally required the design 

and synthesis of a bespoke bromodifluoromethylthiolation 

reagent suitable for cross-coupling chemistry. We gave 

preference to a coupling methodology applying Cu-catalysis 

instead of Pd or Ni, a decision driven by guidelines for residual 

metals in (radio)pharmaceuticals.[12]  Inspired by studies carried 

out in the Shen’s laboratory on the development of the 

electrophilic trifluoromethylthiolation reagent -

cumyltrifluoromethanesulfenate,[13] we envisaged that the 

structurally related bromodifluoromethylthiolation reagent 1 would 

be a good candidate  for coupling with aryl boronic esters. The 

resulting bromodifluoromethylated arenes would subsequently 

undergo halogen exchange with [18F]KF,[8b] thereby affording  

[18F]arylSCF3 from an aryl boron precursor.  

 
Figure 1. Strategies for the preparation of [18F]SCF3-arenes 

 
-Cumyl bromodifluoromethanesulfenate 1 was synthesized 

via a three-step two-pot process from commercially available 

starting materials. The reaction of sodium benzylthiolate with 

CF2Br2 in a mixed solvent THF/DMF (v/v = 10:1) at -78 oC for 24 
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h afforded benzyl bromodifluoromethylthioether in 34% yield. 

Benzyl bromodifluoromethylthioether was then treated with a 

saturated solution of chlorine in CHCl3 at -10 oC for 30 min, 

followed by nucleophilic substitution of the in situ generated 

BrCF2SCl with lithium 2-phenylpropan-2-olate at room 

temperature for 15 min. This protocol gave -cumyl 

bromodifluoromethanesulfenate 1 isolated in 73% yield (Eq. 1). 

Compound 1 is neither air nor moisture sensitive since no 

detectable decomposition was observed after more than a week 

of storage on a shelf at ambient temperature.  

 
With reagent 1 in hand, we explored its reactivity by examining 

the bromodifluoromethylthiolation of the model substrate 4-

biphenylboronic acid. When applying the reaction conditions 

previously described for the trifluoromethylthiolation of aryl 

boronic acids with -cumyltrifluoromethanesulfenate (10 mol% 

Cu(MeCN)4PF6, 20 mol% 2,2’-bipyridine (bpy), 2.0 equiv. of 

K2CO3 in diglyme at 35 oC for 24 h),[14] the desired 

bromodifluoromethylated product 2a was observed but obtained 

in less than 5% yield (Eq. 2).  Attempts to improve the yield of 2a 

by varying the copper source and using variously substituted 

bipyridine ligands were not successful. However, the replacement 

of the boronic acid with a boronic pinacol ester combined with the 

use of copper complexes derived from phosphine-based ligands 

(e.g. 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene 

(Xantphos), 1,2-bis(diphenylphosphino)ethane (DPPE) or 1,2-

bis(diphenylphosphino)benzene (DPPBz)) instead of nitrogen-

based ligands led to 2a in high yield. Specifically, the reaction of 

pinacol-derived 4-biphenylboronic acid with reagent 1 in the 

presence of 10 mol% (DPPE)CuCl and 30 mol% NaOtBu in 

toluene occurred with full conversion after 2 h at 50 oC, and gave 

2a isolated in 93% yield (Eq. 3).[15]  

     We next investigated the scope of the optimized 

bromodifluoromethylthiolation with a range of (hetero)aryl boronic 

pinacol esters (Scheme 1). Electron-rich and electron-poor aryl 

boron reagents reacted with 1 to give the corresponding 

bromodifluoromethylthiolated arenes in high yields (Scheme 1, 

2a-v). Products with substituents at ortho- (2o), meta- (2p-s) or 

para- (2a-m) position were also accessible in high yields. 

Heteroarenes are important structural motifs in pharmaceuticals 

and agrochemicals, and medicinal chemists have long-standing 

interest in the preparation of fluoroalkylated heteroarenes. 

Gratifyingly, our protocol was successfully applied to heteroaryl 

boron reagents affording the desired 

bromodifluoromethylthiolated heteroarenes in high yields; this 

series include furan (2w), benzofuran (2x), dibenzo[b,d]furan (2y), 

benzothiophene (2z), thiophene (2aa), pyrrole (2ab), pyridine 

(2ac), isoquinoline (2ad), quinoline (2ae), pyrimidine (2af), 

benzo[d]imidazole (2ag), pyrazole (2ah-ai), isoxazole (2aj), 

benzo[d]oxazol-2(3H)-one (2ak), phenoxathiine (2al) and  

 

Scheme 1. Scope of copper-catalyzed bromodifluoromethylthiolation of 

(hetero)aryl boronic acid pinacol esters. Reaction conditions: (hetero)aryl 

boronic pinacol ester (0.50 mmol), reagent 1 (0.60 mmol), (DPPE)CuCl (10 

mol%) and NaOtBu (30 mol%) in 2.5 mL of toluene at 50 oC for 2.0 h under an 

argon atmosphere. Isolated yields. [a] Aryl boronic acid neopentyl ester was 

used. [b] The compound was prepared via a one-pot Ir-catalyzed C-H 

borylation/Cu-catalyzed bromodifluoromethyl-thiolation process.  

thianthrene (2am). Furthermore, many functional groups were 

well tolerated including halogens, aldehyde, enolizable ketone, 

ester, amide, alkene, N-Boc-protected amine (Boc = tert-

butyloxycarbonyl), cyano and nitro groups.        

      To further illustrate the value of this 

bromodifluoromethylthiolation protocol, we consider target 

molecules that are relevant for material sciences or the 

pharmaceutical industry (Scheme 2). Bromodifluoromethyl-

thiolated derivatives of compounds that have found applications 

in OLED such as pyrene (3a), 9-phenyl-9H-carbazole (3b), and 

9,9'-spirobi[fluorene] (3c) were generated in high yields. Similarly, 

BrCF2S-substituted natural products and drug molecules 

including coumarin (3d), pterostilbene (3e), clofibrate (3f), 

fenofibrate (3g), D-delta-tocopherol (3h), octabenzone (3i), 

diacetone-D-glucose derivative (3j), N-Boc-trans-4-hydroxy-L-

proline methyl ester (3k) and meclozine (3l) were isolated in yields 

up to 97%. The method was amenable to scaling up and provided 

more than one gram of bromodifluoromethylthiolated pterostilben 

(3e). These results illustrate the broad applicability of the 

bromodifluoromethylthiolation protocol using reagent 1 to access 

products that may not be easily prepared applying previously  
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Scheme 2. Synthesis of bromodifluoromethylthiolated materials and drug 

molecules. Isolated yields. 

reported methodologies.[8b] 

The bromodifluoromethylthio group can be easily converted to 

other functional groups as exemplified with 2q (Scheme 3). 

Oxidation of 2q with meta-chloroperoxybenzoic acid (mCPBA) 

(1.5 equiv) or RuCl3/NaIO4 gave the bromodifluoromethylated 

sulfinate 4 or sulfone 5 in 70% and 95% yield, respectively. 

Compound 2q also reacted with dimethyl diazomalonate in the 

presence of Rh2(esp)2 (esp = tetramethyl m-

benzenediproprionate) to give sulfonium ylide 6 in 74% yield. This 

compound may serve itself as an electrophilic 

bromodifluoromethylating reagent.[16] Furthermore, under 

photoredox catalysis, the carbon-bromine bond of 2q underwent 

homolytical cleavage to generate the radical ArSCF2•,[17] which 

react with benzofuran or 1-methoxy-4-vinylbenzene to afford 

compounds 7 and 8 in 50% and 70% yield, respectively.  

 
Scheme 3. Functional transformations of bromodifluoromethylthiolated 

compound 2q. 

 

Next, we subjected selected BrCF2S-substituted 

(hetero)arenes to silver-mediated halex with [18F]KF. Our 

previous study provided limited information on the scope of this 

process,[8b] so it was of interest to subject more structurally 

complex precursors to nucleophilic 18F-fluorination (Scheme 4). 

Selected bromodifluoromethylthiolated (hetero)arenes were 

treated with [18F]KF/K222 in the presence of 2.0 equivalents of 

AgOTf in 1,2-dichloroethane at 60 oC for 20 minutes (Scheme  

 

Scheme 4. Scope of silver-mediated 18F-fluorination of 

bromodifluoromethylthiolated arenes/heteroarenes. Reaction condition: 

precursor (0.040 mmol), AgOTf (0.080 mmol), [18F]KF/K222 (20 - 30 MBq), 1,2-

dichloroethane (300 µL) at 60 oC for 20 min. RCC (radiochemical conversion) 

and product identity were determined by radioHPLC. RCC’s were reported as 

non-decay corrected. See previous study for molar activity calculation (~ 0.1 

GBqµmol-1).[8b] 

4).[8b] Precursors with electron-donating substituents reacted in 

higher radiochemical conversions (RCCs) than those with 

electron-withdrawing substituents. Heteroarenes such as 3b and 

2ag gave the corresponding [18F]SCF3-heteroarenes 9b and 9c in 

76% and 11% RCY, respectively. Not all heteroarenes underwent 

efficient halex 18F-fluorination. For example, 9e was obtained in 

less than 5% RCC, a result possibly explained evoking 

sequestration of AgOTf as an inactive nitrogen-based complex.[18] 

Radiolabeled derivatives of natural compounds such as coumarin 

(9f), pterostilbene (9g), N-Boc-trans-4-hydroxy-L-proline methyl 

ester (9i), and D-delta-tocopherol (9j) were all be obtained in 

RCCs up to 60%. Furthermore, clofibrate (9h) and fenofibrate (9k), 

two lipid-lowering agents used for controlling cholesterol 

and triacylglyceride level in the blood,[19]  were also successfully 

radiolabelled in 86% and 50% RCCs, respectively, and greater 

than 95% radiochemical purity.  

To further evaluate the applicability of the current protocol, we 

labeled Tiflorex, a potent anorectic drug for the treatment of 

obesity (Scheme 5).[20] With the availability of -cumyl 

bromodifluoromethanesulfenate 1, and further optimization of the 

reaction conditions for the 18F-C bond forming step, [18F]Tiflorex 

was obtained with a radiosynthesis featuring a reductive 

amination post 18F-fluorination. The bromodifluoromethylthiolated 

precursor 12 was obtained from 3-bromophenylacetone by 

applying conventional Bpin chemistry followed by last step 

bromodifluoromethylthiolation. Treatment of 12 with [18F]KF/K222 

in the presence of 2.0 equivalents of AgOTf and 4.0 equivalent of 

pyridine in 1,2-dichloroethane at 60 oC for 20 minutes afforded 
18F-labeled ketone 13 in 49% RCC. Reductive amination 

generated [18F]Tiflorex in 84% RCC. The overall RCC is therefore 
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41%. Efforts to prepare [18F]Tiflorex applying halex 18F-

fluorination with a more advanced N-Boc precursor were not 

successful.  

 
Scheme 5. Synthesis of [18F]Tiflorex. 

 

 

      In summary, we have developed the first 

bromodifluoromethylthiolating reagent, -cumyl bromodifluoro-

methanesulfenate 1, and have demonstrated its applicability for 

the conversion of (hetero)aryl boronic pinacol esters into 

bromodifluoromethylthiolated (hetero)arenes under copper 

catalysis. This protocol provides facile access to a large range of 

BrCF2S-substituted (hetero)arenes including molecules relevant 

to material science and drug discovery. This chemistry enabled 

the validation of a new retrosynthetic route to 18F-labeled 

arylSCF3 featuring (hetero)aryl–SCF3 instead of (hetero)arylS–

CF3 bond construction. This advance expands the range of 

precursors available for 18F-trifluoromethylthiolation, provides 

access to molecules difficult to obtain by other routes, and 

therefore expands the radiochemical space available to 

radiochemists for PET imaging studies. 
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[18F]KF/K222

AgOTf (2.0 equiv)
pyridine (4.0 equiv)

18FF2CS O

13, RCC: 49% ± 13% (n = 4)

18FF2CS

[18F]Tiflorex

RCC: 84% (n = 1)

Overall RCC: 41%

H
N

CH3CH2NH2

NaB(OAc)3H 
AcOH

1,2-dichloroethane
60 °C, 20 min

1,2-dichloroethane
60 °C, 20 min

Br O Bpin

O

O BrF2CS O

10 11, 77% 12, 87%

1) HOCH2CH2OH
    PTSA (10 mol%)
    HC(OEt)3

    CH2Cl2, 70 °C, 12 h

2) Pd(dppf)Cl2
    B2pin2, KOAc 
    DMSO, 80 °C, 12 h

1) reagent 1 (1.2 equiv)
    (DPPE)CuCl (10 mol%)
    NaOtBu (30 mol%)
    toluene, 50 °C, 2 h

2) PTSA (10 mol%)
    Acetone/H2O (5:1)
    60 °C, 24 h
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COMMUNICATION 

A highly reactive electrophilic bromodifluoromethylthioloating reagent -cumyl 

bromodifluoromethanesulfenate 1 was invented. Reagent 1 coupled with a wide 

range of (hetero)aryl boronic pinacol esters under copper catalysis. The resulting 

bromodifluoromethylthiolated (hetero)arenes were amenable to various 

transformations including halex using [18F]KF/K222. As such, the first radiosynthetic 

route to [18F]arylSCF3 via (hetero)aryl–SCF3 bond construction is reported.   
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