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ABSTRACT: Catalytic enantioselective conjugate additions with easily accessible 

alkenylboronic acid pinacol esters as nucleophiles promoted by chiral copper complexes of N-

heterocyclic carbenes are presented. These processes constitute an unprecedented instance of 

conjugate additions of a variety of functionalized alkenyl groups and afford desired products that 

are otherwise difficult-to-access in up to 98% yield and 99.5:0.5 enantiomeric ratio. The origins 

of ligand-controlled enantioselectivity are elucidated with density functional theory (DFT) 

calculations. 

 

KEYWORDS: Conjugate addition, copper catalysis, alkenylboron, enantioselective catalysis,  N-

heterocyclic carbene 
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 2

 

Introduction 

Copper-catalyzed enantioselective conjugate additions of organometallic reagents to α,β-

unsaturated compounds stand for a powerful method for efficient and selective construction of 

C–C bonds.1 Reactions with highly reactive organometallic reagents such as Grignard 

reagents,1c-f, 1l, 2 organozinc reagents1b, 1g, 1h, 3 and organoaluminum,1c-i, 4 organozirconium 

reagents1k, 5 have been well established. In contrast, the utility of more robust nucleophiles has 

been much less studied. Organoboronic acids and their derivatives are attractive due to their high 

functional group tolerance and diversity, low toxicity and ease of access and handling. There are 

only two reports regarding Cu-catalyzed enantioselective 1,4-conjugate additions with 

arylboronic acid derivatives by Hayashi (Scheme 1a)6 and Zhou (Scheme 1b)7. In addition, 

Sawamura disclosed the use of organoboranes as nucleophiles in Cu-catalyzed enantioselective 

conjugate additions (Scheme 1c).8 
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Scheme 1. Cu-Catalyzed Enantioselective Conjugate Additions with Organoboron 

Nucleophiles.  

Introduction of an alkenyl group into α,β-unsaturated compounds is desirable in organic 

synthesis. Although Rh-catalyzed enantioselective conjugate additions with organoboron 

compounds have been well studied,1j-k alkenylboron compounds still stands for a class of 

challenging nucleophiles. To the best of our knowledge, there is no protocol for highly efficient 

and enantioselective conjugate additions of alkenylboron nucleophiles promoted by Cu-based 

catalysts.9 Herein, we describe the first catalytic enantioselective 1,4-additions of alkenylboronic 

acid pinacol esters to enoates promoted by N-heterocyclic carbene (NHC)–Cu complexes. 

       We envision that a suitable Cu(I) complex could promote transmetallation with alkenyl–

B(pin) to generate alkenyl–Cu complex I, which could coordinate with diethyl 

benzylidenemalonate 1a to form a π-complex II. Transfer of alkenyl group to the π-bond would 

deliver the Cu(I) complex III, which rapidly collapsed to Cu enolate IV. Exchange of IV with 

NaOt-Bu released addition product V and regenerated the catalyst. (Scheme 1d)  

      The challenge for reactions with alkenylboron nucleophiles is their lower reactivity. In 

addition, the metal salts that are present in the reactions with more reactive Grignard reagents, 

organozinc reagents and organoaluminum reagents might work as Lewis acids to activate α,β-

unsaturated compounds and lead to more organized transition states, resulting in higher reactivity 

and better control of enantioselectivity.4g, 10 Such activation is significantly diminished in the 

case of alkenylboronic esters as nucleophiles due to their weaker Lewis acidity. Therefore, 

ligands that are strong σ-donor might be necessary to enhance the nucleophilicity of 

alkenylcopper intermediate.11  
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Results and discussion 

     In our initial investigation, reactions of commercially available alkenyl–B(pin) (pin = 

pinacolato) 2a with ethyl cinnamate in the presence of NHC–Cu or bisphosphine–Cu complexes 

resulted in <2% conversion of starting materials. More electronically deficient ethyl 

benzylidenemalonate 1a was tested. Transformation of 1a with alkenyl–B(pin) 2a catalyzed by 

rac-BINAP–Cu complex led to 46% conversion of 1a, indicating σ-donation of the bisphosphine 

ligand is not strong enough to promote the alkenyl addition (Scheme 2a). Follow-up studies 

revealed that 1a did undergo efficient conjugate addition with 2a in the presence of NHC–Cu 

complex derived from imidazolinium salt 4a, affording desired product 3a in 97% yield. 

     Having established the viability of Cu-catalyzed conjugate addition of alkenyl–B(pin) to 

alkylidene malonates, we turned our attention to the development of an enantioselective variant 

(Scheme 2a). 
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Scheme 2. Optimization of Reaction Conditions
a 

aReactions were performed under N2 atmosphere; enantiomeric ratios (e.r.) were determined by HPLC analysis, see Supporting 

Information for details. 

Reaction of enoate 1a with alkenyl–B(pin) 2a was carried out in the presence of NHC–Cu 

complex in situ generated from imidazolinium salt 4b. Under these conditions, desired product 

3a was delivered in 97% yield and 94:6 e.r.. Modification of the N–aryl moiety by increasing the 

size of the 2,6-substituents resulted in diminished enantioselectivity (cf. 4c-d). Reaction 

catalyzed by Cu complex derived from imidazolinium salt 4e bearing 3,5-substituents provided 

3a in 95% yield and 77:23 e.r.. Follow-up studies revealed that changing the amino-alcohol 

moiety of the ligand from phenylglycinol to valinol and tert-leucinol led to improvement of 

enantioselectivity (cf. 4f-g). Cu complexes derived from imidazolinium salts 4h and 4i 

containing two stereogenic centers promoted the reaction to deliver 3a in 87:13 and 90:10 e.r. 

respectively. In addition, Na+ is important for high enantioselectivity. Reactions of enoate 1a and 

alkenyl–B(pin) 2a in the presence of LiOt-Bu and KOt-Bu led to erosion of enantioselectity 

(Scheme 2b). Further investigation indicates that reaction of cyanoester 5 that provides high 

enantioselectivity in Hayashi’s work in the presence of NHC–Cu complexes derived from 

imidazolinium salts 4g and 4i resulted in significantly lower enantioselectivity (Scheme 2c). One 

prominent aspect of this protocol is that the imidazolinium salts 4f-g are air-stable solids, and can 

be readily prepared in multi-gram quantities from inexpensive materials and without costly silica 

gel column chromatography purifications.12 Moreover, the reactions with alkenyl–B(pin) 

proceed in high efficiency and enantioselectivity at ambient temperature. Costly and 

inconvenient cryogenic conditions are avoided.  
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 6

     With the optimal conditions in hand, we first investigated the scope of enoates (Scheme 3). 

Reactions in the presence of imidazolinium salt 4f or 4g were carried out, providing conjugate 

addition products in similar enantioselectivity. Transformations of enoates bearing sterically 

hindered aryl groups afforded desired products in high yield and selectivity (cf. 3b and 3f),  

 

Scheme 3. Substrate Scope
a 

a Same conditions as shown in Scheme 2. b 10 mol % Imidazolinium salts and CuCl were used. 

although 10 mol % catalyst loading is necessary in the case of formation of 3f. Aryl-substituted 

enoates containing electron-withdrawing groups can be converted into products in 60–93% yield 

and 95:5–97:3 e.r. (cf. 3c-d, 3f). Halogen substituents are well tolerated in the reaction 
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 7

conditions (cf. 3c and 3f). Reactions with both electron-rich and electron-deficient hetero-aryl 

substituents generated products in 62–90% yield and 88:12–97:3 e.r. (cf. 3g-i). In these cases, Cu 

complex derived from 4g gives slightly higher enantioselectivity. Enoates that contain primary 

and secondary alkyl substitutent are also suitable substrates, delivering products without 

significant erosion of enantioselectivity (cf. 3j-m). 

Next, the scope of alkenyl–B(pin) was studied (Scheme 3). Reactions with alkenylboron 

compounds bearing E-1,2-disubstituted alkene moieties afforded addition products in 75–98% 

yield and 88:12–99.5:0.5 e.r. (cf. 7a-n). In most cases, Cu complex derived from imidazolinium 

salt 4g induces similar enantioselectivity with that formed from 4f. Transformations of alkenyl–

B(pin) that contain electron-donating (7b-c, 7f, 7h) and electron-withdrawing (7d-e, 7g) aryl 

groups provided products in high yield and enantioselectivity. Heteroaryl-substituted alkenyl–

B(pin) are good substrates (7i). Alkyl-substituted alkenyl–B(pin) were converted into products in 

up to 96% yield and 98:2 e.r. (cf. 7j-l). Protected amine and alcohol are well tolerated. We also 

investigated simple vinyl–B(pin) as nucleophile; product 7m was generated in 98% yield and 

97:3 e.r. and 98:2 e.r. in the presence of 4f and 4g respectively. Reactions with commercially 

available 1,2,2-trisubstituted alkenyl–B(pin) afforded addition product 7n in high efficiency, 

whereas in this case Cu complex formed from imidazolinium salt 4f induced much higher 

enantioselectivity. 

     Other substitution patterns of alkenyl–B(pin) nucleophiles were investigated. However, 

ligands optimized for E-1,2-disubstituted alkenyl–B(pin) proved to be not selective. In addition, 

reactions with enoates bearing electron-donating groups resulted in lower enantioselectivity 

under previous conditions. Therefore, further ligand optimization is necessary for development 

of highly enantioselective conjugate additions. 
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 8

      Reinvestigation of Cu complexes derived from imidazolinium salts shown in Scheme 2a 

revealed that NHC–Cu complex in situ generated from imidazolinium salt 4i promoted the 

reactions with higher enantioselectivity. As shown in Scheme 3, transformations of 1,1,2-

trisubstituted and Z-1,2-disubstituted alkenyl–B(pin) afforded 8a and 8b in much higher 

enantioselectivity (92:8 and 93:7 e.r.) in the presence of NHC–Cu complex prepared from 

imidazolinium salt 4i. Furthermore, enoates bearing electron-donating aryl groups can be 

converted into products in higher selectivity (cf. 8c-d). It is worth mentioning that such alkenyl 

groups are otherwise difficult to introduce through reactions with Grignard reagents, organozinc 

reagents or organoaluminum reagents. These results indicated that the enantioselectivity of 

NHC–Cu-catalyzed enantioselective conjugate additions with alkenyl–B(pin) is highly sensitive 

to the substitution patterns of the alkenyl groups. Ligand optimization is necessary according to 

different substrate combinations. 

     To understand the origins of ligand-controlled enantioselectivity, we studied the determining 

olefin insertion transition states with DFT calculations at the ωB97X-D/6-311+G(d,p)-

SMD(THF)//ωB97X-D/6-31G(d) level.13 The optimized structures and relative enthalpies and 

free energies of transition states for the insertion with E-vinyl copper species and ethyl 

benzylidenemalonate 1a, TS1 and TS2, are summarized in Scheme 4a.14 The sodium bridge 

model is adapted from previous computational studies.9 This is also supported by the results that 

reactions in the presence of LiOt-Bu and KOt-Bu provide lower enantioselectivity (Scheme 2b). 

In addition, the diethyl ester moiety is important for formation of the sodium bridge. This 

explains why reaction of cyanoester 5 led to low enantioselectivity (Scheme 2c). For ligand 4g, 

TS1, which leads to the major enantiomer product 7a, is 2.0 kcal/mol more favorable than TS2 
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 9

in terms of free energy. This is consistent with the experimental enantioselectivity (95:5, Scheme 

3). The favored transition state TS1 has a CH-π interaction15 between the malonate phenyl C-H  

  

Scheme  4. Mechanistic Studies  

and the mesityl group of ligand 4g (highlighted with green line in TS1). This CH-π interaction 

does not exist in the competing TS2, and TS2 has steric repulsions between the malonate phenyl 

group and the bulky tBu group of the ligand. Thus, ligand 4g prefers to have the malonate phenyl 

group proximal to the mesityl group of the ligand, making TS1 the favorable transition state and 

eventually generating enantiomer 7a.  

      The ligand 4i provided the highest enantioselectivity for reactions with Z-1,2-disubstituted 

alkenyl–B(pin) (cf. 8b, Scheme 3). The computed energy differences of the competing transition 

states with Z-vinyl copper species and ethyl benzylidenemalonate 1a reproduced the trends in 
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 10

experiments (Scheme 4b). TS3 has unique dual CH-π interactions. Both phenyl groups of the 

substrates have the appropriate proximity to achieve the CH-π interaction with the ligand. This 

significantly stabilizes TS3, making ligand 4i achieve the highest enantioselectivity for Z-olefins 

among the tested ligands. 

The reaction can be conducted on multi-gram scale. As shown in Scheme 5a, reaction of ethyl 

benzylidenemalonate 1a (1.12 g) with alkenyl–B(pin) 2a (1.56 g) in the presence of NHC–Cu 

complex derived from imidazolinium salt 4f afforded 3a in 98% yield and 95.5:4.5 e.r.. 

Decarboxylation of the conjugate addition products was studied. Treatment of 8d with NaCl in 

DMSO and H2O at 155 oC generated decarboxylation product 9 in 92% yield, which constitutes 

products resulted from a formal enantioselective alkenyl conjugate additions to α,β-unsaturated 

esters that have been unprecedented (Scheme 5b).16 Ester 10 was transformed into a member of a 

family of GPR40 agonists was delivered after several functional group manipulations. Previous 

method for installation of the stereogenic center is resolution of racemic mixture.17 The 

advantage of such catalytic enantioselective protocol is that diversified alkenyl groups with 

various functional groups can be easily introduced, which is of importance in leading compounds 

discovery for pharmaceutical molecules. 
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Scheme 5. Gram Scale Reaction and Application 

Conclusion 

     In conclusion, we have disclosed the first NHC–Cu-catalyzed enantioselective conjugate 

additions of readily available alkenyl–B(pin) to α,β-unsaturated compounds that can be prepared 

in a single step. The reactions are performed at ambient temperature in the presence of NHC–Cu 

complexes in situ generated from easily accessible air-stable imidazolinium salts. Alkenyl groups 

with a variety of substitution patterns and functional groups can be introduced into products in 

high efficiency and enantioselectivity. The enantiomerically enriched products may serve as 

precursors to other useful derivatives that would otherwise be difficult to prepare. The models 

for enantioselective induction were investigated through DFT calculations, illustrating the 

selectivity with different catalysts and the unique way of stereogenicity induction of the catalysts 

that distinguishes our catalytic system from the previous.6, 12 Development of conjugate additions 

with other organoboron nucleophiles is underway.  

Ph
COOEt

COOEt

Cl B

O

O

2a

(1.56 g)

1.5 equiv.

5.0 mol % CuCl, 1.5 equiv. NaOt-Bu

THF, 22 oC, 16 h

1a

(1.12 g)

3a

(1.56 g)

98% yield, 95.5:4.5 e.r.

COOEt

COOEt

Ph

Cl

5.0 mol %

N N
i-Pr

OH

Me

Me
Me

PF6

4f

COOEt

COOEt

NaCl, DMSO, H2O

155 oC, 10 h

COOEt

9

92% yield, 98:2 e.r.

OPMBOPMB

OH

O

O

t-Bu

F

MeO

member of a family of GPR40 agonists

ref 17

a

b

8d

96:4 e.r.
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3b
with 4f: 88% yield, 96:4 e.r.
with 4g: 82% yield, 97:3 e.r.
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wtih 4f: 93% yield, 95:5 e.r.
with 4g: 87% yield, 96:4 e.r.
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Ph
CuL + Ph

COOMe

COOMe
Ph

Ph

COOMe

COOMe

insertion 
transition states

7a and its enantiomer1aL = 4g and 4i

Cu

NN
O

MeO

O

OMe

O

Na

HPh

Ligand = 4g

ΔΔH   = 1.0
ΔΔG   = 2.0

Ligand = 4i

Me

Me

Me

Cu

NN
O

MeO

O

OMe

O

Na

H Ph

ΔΔH   = 0.0
ΔΔG   = 0.0

Me

Me

Me

Cu

NN
O

MeO

O

OMe

O

Na

HPh

ΔΔH   = 0.0
ΔΔG   = 1.0

Me

Me

Me

Cu

NN
O

MeO

O

OMe

O

Na

HPh

ΔΔH   = 0.0
ΔΔG   = 0.0

Me

Me

Me

Favored

Disfavored

Favored

Disfavored

TS2

TS1

TS4

TS3

+ Ph
COOMe

COOMe
Ph Ph

COOMe

COOMe

insertion 
transition states

8b and its enantiomer1aL = 4g and 4i

Cu

NN
O

MeO

O

OMe

O

Na

H

Ph

Ligand = 4g

TS6

ΔΔH   = -2.3
ΔΔG   = -2.2

Ligand = 4i

Me

Me

Me

Cu

NN
O

MeO

O

OMe

O

Na

H Ph

TS5

ΔΔH   = 0.0
ΔΔG   = 0.0

Me

Me

Me

Cu

NN
O

MeO

O

OMe

O

Na

H

Ph

TS8

ΔΔH   = 4.0
ΔΔG   = 2.2

Me

Me

Me

Cu

NN
O

MeO

O

OMe

O

Na

H

Ph

TS7

ΔΔH   = 0.0
ΔΔG   = 0.0

Me

Me

Me

CuL
Ph

Favored

Disfavored

Favored

Disfavored

a. b.
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Ph
COOEt

COOEt

Cl B
O

O

2a
(1.56 g)

1.5 equiv.
5.0 mol % CuCl, 1.5 equiv. NaOt-Bu

THF, 22 oC, 16 h

1a
(1.12 g)

3a
(1.56 g)

98% yield, 95.5:4.5 e.r.

COOEt

COOEt

Ph
Cl

5.0 mol %
N Ni-Pr

OH

Me

Me
Me

PF6

4f

COOEt

COOEt

NaCl, DMSO, H2O

155 oC, 10 h

COOEt

9
92% yield, 98:2 e.r.

OPMBOPMB

OH

O

O

t-Bu
F

MeO

member of a family of GPR40 agonists

ref 17

a

b

8d
96:4 e.r.
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R COOEt

COOEt

R2

R1
B

R3

O

O

5–10 mol % NHC–Cu complex
1.5 equiv NaOt-Bu
THF, 22 oC, 16 h

R COOEt

COOEt

R3R1

R2

28 examples
up to 98% yield
up to 99.5:0.5 e.r.
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