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ABSTRACT: The iridium-catalyzed asymmetric allylic 
substitution under biphasic conditions is reported. This approach 
allows the use of various unstable and/or volatile nucleophiles 
including hydrazines, methylamine, t-butyl hydroperoxide, N-
hydroxylamine, α -chloroacetaldehyde and glutaraldehyde. This 
transformation provides rapid access to a broad range of products 
from simple starting materials in good yields and up to >99% ee 
and 20:1 d.r. Additionally, these products can be elaborated 
efficiently into a diverse set of cyclic and acyclic compounds, 
bearing up to four stereocenters.

Enantioselective, transition metal-catalyzed allylic substitution 
has emerged as a powerful tool for the synthesis of chiral building 
blocks from simple starting materials and a wide range of 
nucleophiles.1 The electrophilic nature of the η3-organometal 
intermediate typically restricts the conditions to non-nucleophilic 
organic solvents and with few exceptions prescribes rigorous 
exclusion of water.2 Yet, there are a number of highly reactive 
and/or unstable small molecules such as chloroacetaldehyde, 
hydrazines or N-hydroxylamine that due to their reactivity or 
limited stability in pure form are stored, sold, and most safely 
handled as aqueous solutions. To date, only protected versions of 
these reagents including hydroxamic acids and hydrazones have 
been employed in transition metal-catalyzed allylic substitution.2d,3 
Developing methods which employ the commercially available 
aqueous solutions of these unstable molecules, however, would 
significantly expand the synthetic utility of enantioselective 
catalysis. 

In general, organocatalytic methods based on enamine catalysis 
or hydrogen bonding catalysts have been shown to be compatible 
with aqueous media.4 For instance, aqueous chloroacetaldehyde 
has been employed as an electrophile in enzymatic or 
organocatalytic aldol reactions but its use as an nucleophile remains 
elusive.5 In the field of asymmetric transition-metal catalysis, 
biphasic systems for enantioselective oxidations6 and 
hydrogenations7 have garnered significant attention, but 
transformations generating carbon-carbon bonds under aqueous 
conditions remain scarce.8 Herein we report the asymmetric 
substitution reaction of racemic allylic alcohols with aqueous 
nucleophiles such as hydrazines, N-hydroxylamines, and α-halo-
acetaldehydes catalyzed by a chiral Ir(P,olefin) complex under 
aqueous biphasic conditions (Scheme 1). The transformations 
employ aqueous solutions that the reagents are supplied in, and thus 
avoid laborious extraction and dehydration techniques.9 Our 
approach delivers products in good yields and high regio- and 
enantioselectivities for nucleophiles that have been rarely 
employed to date.

Scheme 1. Iridium-Catalyzed Allylic Substitution Using 
Nucleophiles or their Hydrates in Aqueous Solutions.
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Excess water can pose a challenge in transition metal-catalyzed 
allylic substitution not only because it can lead to decomposition of 
the η3-organometal intermediate but also due to its inherent 
nucleophilicity.2g,10 Thus, for a productive catalytic cycle with 
nucleophiles in aqueous solutions, the nucleophilic addition of 
water to the activated allyl-metal complex needs to be either 
kinetically disfavored or reversible. This makes allylic substitution 
reactions employing branched, unactivated allylic alcohols prime 
targets for the development of biphasic reactions, as nucleophilic 
attack by water would regenerate the starting material. With these 
considerations in mind, we set out to develop a general approach to 
biphasic allylic substitutions using the complex derived from 
[Ir(cod)Cl]2/(S)-L and nucleophiles in aqueous solutions.11

Our group has previously developed an Ir(P,olefin) complex 
derived from phosphoramidate ligand (S)-L and iridium(I) for the 
displacement of allylic alcohols with various nucleophiles.11 Key 
features of this catalytic system are its high robustness and its use 
of branched, unactivated allylic alcohols as substrates, activated by 
Brønsted acids.11b Therefore, we envisioned that this system would 
be well suited to explore allylic substitutions under biphasic 
conditions with nucleophiles that are stabilized in water and thus 
readily available as aqueous solutions. To demonstrate the 
feasibility of this approach, we initially focused on aqueous 
hydrazine. Chiral hydrazine derivatives are used in stereoselective 
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[3+2]-cycloadditions,12 as organocatalysts,13 and as 
commercialized drugs for the treatment of Parkinson’s disease.14 
Hydrazine is a colorless liquid that decomposes explosively and is 
commonly used as a rocket fuel.15 Thus, aqueous solutions of 
hydrazine find widespread applications in organic synthesis. When 
a 51% aqueous solution of hydrazine was used in combination with 
the Ir(P,olefin) complex, allylic alcohol 1a (R = 2-Np) and 3,5-
dichlorobenzoic acid as a Brønsted acid promoter adduct 2a was 
obtained in 61 % yield and 94% ee (Table 1).16 This result 
encouraged us to investigate aqueous solutions of various 
substituted hydrazine derivatives (Table 1, 2b-2e). Of particular 
interest are substrates 2d and 2e. Such 1-amino piperazine and 4-
amino-1,2,3-triazole derivatives have garnered significant attention 
from medicinal chemists and can be found in commercial drugs.17 
Due to their limited solubility in aprotic, non-nucleophilic organic 
solvents and the fact that they are freely soluble in water, these 
substrates demonstrate the synthetic power of a biphasic approach

Subsequently, we examined methyl, ethyl and dimethyl amine, 
which are gases at room temperature but are readily available as 
aqueous solutions. Interestingly, for these more basic and less 
nucleophilic reagents, kinetic resolution of allylic alcohol 1a was 
observed, and the enantioselectivity and conversion was found to 
strongly depend on the acidic promoter used (see supplementary 
information). With 3,5-dichlorobenzoic acid the corresponding 
secondary and tertiary amines were obtained in good yields along 
with the enantioenriched starting material. We then aimed to 
expand the scope of aqueous nucleophiles to other heteroatoms. 
Interestingly, tert-butyl hydroperoxide and sodium thiomethoxide, 
sold as 70% and 21% aqueous solutions respectively, afforded the 
corresponding adducts (2p and 2q) in good yield and 
stereoselectivity. It is noteworthy, that the catalytic system 
described herein is compatible with both reductants (hydrazines)18 
and oxidants (t-butyl hydroperoxide).

Encouraged by these results, N-hydroxylamine was also 
investigated as nucleophile for iridium-catalyzed allylic 
substitution. N-alkylated hydroxylamines are useful precursors for 
chiral nitrones and find application in the synthesis of complex 
molecules.19 Similarly to hydrazine, hydroxylamine is preferably 
used as an aqueous solution or its hydrochloride salt since the pure 
compound is unstable.20 Recently Zhao reported the 
enantioselective allylation of H2NOH·HCl requiring DMSO as 
solvent and triethyl amine to liberate hydroxyl amine.21 Hence, we 
believe the biphasic system utilizing aqueous N-hydroxylamine 
complements this approach. When a 50% aqueous solution of N-
hydroxylamine was used in combination with the Ir(P,olefin) 
complex, allylic alcohol 1a (R = 2-Np) and dibenzenesulfonamide 
as a Brønsted acid promoter a adduct 2k was obtained in 64% yield 
and 93% ee. This transformation was found to be compatible with 
a series of allylic alcohols with excellent selectivity for N-
alkylation (Table 1, and supporting information).

We next focused on the construction of carbon-carbon bonds 
under biphasic conditions. Since the synthesis of halogenated, 
biologically active molecules has been an ongoing field of research 
in our group,22 we first investigated chloracetaldehyde (3) as 
nucleophile. Due to its high reactivity chloroacetaldehyde is only 
commercially available as a 50% aqueous solution.23-25 Notably, 
the asymmetric α-functionalization of chloracetaldehyde is not 
known. thus, our approach provides a complementary approach to 
optically active chlorides which are traditionally obtained by 
organocatalytic α-halogenation.26

We found that using 1b (R = Ph) and aqueous 
chloroacetaldehyde in combination with proline derived amine 
A1,26b ligand (R)-L, and dimethylphosphate afforded aldehyde 4b 
in 82% yield, 10:1 d.r. and >99% ee. Optimization studies revealed 
that using solvents that give a homogenous reaction mixture such 
as 1,4-dioxane or acetone did not lead to any product formation, 
indicating that biphasic conditions were essential for this 
transformation. Furthermore, we found that inorganic salt additives 

(NaCl, Na2SO4, MgSO4) increased the overall conversion of the 
reaction. Presumably, an increase of ionic strength facilitates 
transfer of the water-soluble aldehyde to the organic phase.27

Table 1. Scope of the Biphasic Iridium-Catalyzed 
Allylation of N-, O- and S-Nucleophiles.a
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a 0.25 mmol scale. Isolated Yields. ee determined SFC on a chiral 
stationary phase. 2-Np= 2-naphthyl. b (PhSO2)2NH  (1.3 equiv), 
isolated after benzoylation. cDCBA (1.3 equiv), yield determined 
by 1H NMR with an internal standard, isolated after acetylation. 
dDCBA (1.8 equiv). e2.0 equiv. of nucleophile, DCBA (2.3 equiv). 
f2.0 equiv. of nucleophile, DCBA (2.8 equiv). g(PhSO2)2NH (0.5 
equiv). h(PhO)2P(O)OH (1.8 equiv). acid. i(PhSO2)2NH (1.3 equiv). 
DCBA = 3,5-dichlorobenzoic

With optimized conditions in hand, the substrate scope of the 
reaction with regard to allylic alcohols was explored (Table 2). 
Electron-poor as well as electron-rich substrates were tolerated, 
resulting in good yields (41-81%), d.r. values between 5:1 and 20:1 
and excellent enantioselectivity (>99% ee) (4c-4j). Additionally, 
hetereoaromatic allylic alcohols (1k and 1l) afforded the respective 
products in good yields and excellent selectivities.

When dichloroacetaldehyde (3b), commercially available as its 
solid hydrate, was employed under identical reaction conditions, no 
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allylated product was obtained. Optimization studies revealed that 
for this sterically hindered aldehyde, primary amine catalysts were 
required. The iridium-catalyzed reaction of solid 
dichloroacetaldehyde hydrate, diphenylmethane amine, allylic 
alcohol 1a and Zn(OTf)2 as a Lewis acid promoter afforded the 
corresponding dichlorinated aldehyde, which was isolated as 

primary alcohol 4m in 55% yield and >99% ee after reduction with 
NaBH4. Bromoacetaldehyde could also be allylated by slight 
alteration of the reaction conditions and several adducts (4n-4w) 
could be obtained in 62–83% yield, high diastereomeric ratios 
(10:1–20:1 d.r.) and excellent enantioselectivity (98 - >99% ee).

 

Table 2. Allylic Alcohol Scope of the α-Allylation of Aqueous Chloro- and Bromoacetaldehyde.a
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isolated products. DCE = 1,2-dichloroethane. The (R)-L, (R)-A1 or (S)-L, (S)-A1 ligand combination resulted in a d.r. of approximately 1:1. 
Reaction conditions: bBenzhydrylamine (0.1 equiv), ZnBr2 (50 mol%), 40°C, then NaBH4, MeOH. c(S)-L, (R)-A1, (PhSO2)2NH (50 mol%) 
and Na2SO4.
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In an effort to demonstrate the synthetic versatility of the product 
chiral α-chloro- and α-bromoaldehydes, a variety of 
functionalization reactions were carried out (Scheme 2). Diverse 
heterocycles with various ring sizes including aziridines (8), 
tetrahydrofurans (10) and β-lactams (7) could be accessed 
efficiently. Addition of acetophenone to 4b followed by syn-
selective reduction allowed the installation of two additional 
stereocenters with good selectivity (product 5). Furthermore, 
reduction of 4b and 4o to the primary alcohol with NaBH4 enables 
the synthesis of β-chloronitrile 6 and hydroxylthio ether 11.

Scheme 2. Functionalization of γ,δ-Unsaturaded 
Aldehydesa
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aReagents and conditions: For detailed experimental procedures see 
supporting information. (a) 1) 4b, acetophenone, LDA; 2) DIBAL-
H. (b) 1) 4b, NaBH4; 2) Tf2O, 2,6-lutidine, then KCN, 18-crown-
6. (c) 4b, cyclohexylamine, MgSO4, then 2-(benzyloxy)acetyl 
chloride, NEt3. (d) 1) 4b, NaBH4; 2) Tf2O, 2,6-lutidine, then 
H2NBn. (e) 4n, imidazole, ethyl nitroacetate. (f) 1) 4n, NaBH4; 2) 
K2CO3, I2. (g) 1) 4n, NaBH4; 2) PhSH, NaOH. (h) 1) 4n, NaBH4; 
2) NaOH. 

To further extend the synthetic potential of this iridium-catalyzed 
α-allylation of aldehydes in biphasic media, glutaraldehyde was 
examined as a substrate. Like many small dialdehydes, 
glutaraldehyde is unstable and readily forms polymeric solids.28 In 
aqueous solutions, glutaraldehyde forms cyclic hydrate 13 which 
can be stored for extended periods of time (Scheme 3).29

We found that 13 also participates in dual-catalytic α-allylation 
reactions with allylic alcohol 1b. Interestingly, the reaction 
proceeds with high selectivity for the mono-allylated aldehyde. 
Since attempts to isolate the resulting dialdehyde were 
unsuccessful, the crude reaction mixture was reduced to the 
corresponding diol 14, which could be further elaborated into 
tetrahydropyran 15 Alternatively, the mono-allylated aldehyde 
could be reductively aminated in one pot to afford piperidine 16, 
demonstrating the synthetic potential of the method for the 
enantioselective synthesis of chiral saturated heterocycles. 
Additionally, we found that with an excess of allylic alcohol bis-
allylated product 17 could be obtained with high enantio- and 
diastereoselectivity. Oxidation of diol 17 using 
tetrapropylammonium perruthenate afforded unsymmetrical, 
lactone 18. Sequential addition of two distinct allylic alcohols, 
followed by reduction furnished asymmetric diol 19 in >99:1 ee 
and >10:1 d.r., which is remarkable considering that the reaction 
could in principle afford 16 different stereoisomers. 

In conclusion, we have developed a biphasic aqueous system for 
the enantioselective iridium-catalyzed allylic substitution. This 
approach allows the use of readily available aqueous solutions of 
various nucleophiles which are otherwise highly volatile or 
unstable when anhydrous. These biphasic conditions rely on a 
robust catalyst system and allow for the synthesis of a broad range 
of synthetically useful chiral intermediates such as hydrazines, 
peroxides, N-hydroxylamines, α-halo-aldehydes, and diols. Their 
use in asymmetric transition-metal catalysis has been largely 
unexplored because of the requirements to use them in anhydrous 
forms for most other catalyst systems. We believe that the concepts 
disclosed in this report will serve as inspiration for other transition 
metal-catalyzed transformations employing these readily available, 
yet rarely used reagents.
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Scheme 3. Iridium-Catalyzed α-Allylation of Glutaraldehyde a
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