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ABSTRACT

Z ?;R Co,(CO)g
TMTU, CO

N=- _N

Herein we describe a novel Co ,(CO)g-catalyzed intramolecular aza-Pauson

[2,3-blindol-2-one ring systems in reasonable yields. This is the first reported Co
bjindol-2-one derivatives into the indole alkaloid, (

reaction. Significantly, the transformation of one of our pyrrolo[2,3-
completed in a highly stereoselective manner.

sl

I'|Me

esermethole: R = Me
physostigmine: R = C(O)NHMe

—Khand-type reaction of alkynecarbodiimide derivatives affords pyrrolo-

2(CO)g successfully applied in the hetero-Pauson  —Khand
+)-physostigmine, was

The intramolecular PauserKhand reactiohis well recog-
nized as one of the most straightforward and powerful
methodologies for the construction of bicyclic carbon
frameworks. This intriguing reaction is a formal metal-
mediated (or catalyzed) [2 2 + 1]-cycloaddition reaction
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of the alkyne m#-bond, the alkener-bond, and carbon
monoxide. The reaction would generally be referred to as
the “hetero-PauserKhand reaction” if more than one carbon
atom of the newly generated cyclopentenone framework was
replaced by an oxygen atom and/or nitrogen functionalities.
Thus, the hetero-PauseKhand reaction would be realized
for the oxa(aza)alkyne and/or an oxa(aza)alkene counterpart
that could take part in the [2 2 + 1]-cycloaddition reaction.
The first hetero-PauserKhand-type reactions were inde-
pendently achieved by Buchwalé@'and Crowe’s grougsn
1996, via the intramolecular titanium-mediated {22 +
1]-cycloaddition of §-unsaturated ketones and aldehydes
(between the alkene-bond and the oxa-alkemebond) with
carbon monoxide, which resulted in the formation of bicyclic

(2) (a) Kablaoui, N. M.; Hicks, F. A.; Buchwald, S. 3. Am. Chem.
Soc.1996 118 5818-5819. (b) Kablaoui, N. M.; Hicks, F. A.; Buchwald,
S. L.J. Am. Chem. S0d.997, 119 4424-4431.

(3) Crowe, W. E.; Vu, A. TJ. Am. Chem. S0d.996 118 1557-1558.



y-lactone species (oxa-Paustikhand-type reaction). Sev-
eral years later, Chatani and Muraliscovered that R
(CO)2 could efficiently catalyze not only the intramolecular
oxa-PausorrKhand reaction but also the aza-Pausiihand
reaction to provider,-unsaturateg-butenolide® from the
ynealdehydes (between alkyne-bond and oxa-alkene
a-bond), and thex,3-unsaturated lactarfisfrom the yne-
imines (between alkyner-bond and aza-alkeng-bond),
respectively. To the best of our knowledge, this@O) -

an isoelectronic alternative to the allenyl moiety in the
Pausor-Khand-type reaction (aza-Pauseikhand-type re-
action), although Saifalready developed the stoichiometric
procedure using Mo(C@)Thus, we focused our efforts on
the development of a newetal-catalyzedntramolecular
aza-PausonKhand-type reaction of thé&l-[2-(1-alkynyl)-
phenyl]N'-phenylcarbodiimide derivativésThis letter de-
scribes the preliminary results of (i) the novel L2O)-
catalyzed intramolecular aza-Pausdthand-type reaction

catalyzed reaction is the first example of the metal-catalyzed of N-[2-(1-alkynyl)phenyl]N'-phenylcarbodiimide deriva-

hetero-PausonKhand reaction. RyCO);, was also found
by Kang to be effective for the intramolecular oxa-Pauson
Khand-type reaction of thé-allenyl carbonyl congeners

tives to obtain the pyrrolo[2,8}indol-2-one framework in
onestep and (ii) a short and reasonably rapid synthesis of
(£)-physostigmin& based on the thus-developed catalytic

(instead of the ynealdehydes) to afford the corresponding aza-PausonKhand-type product. We note, in advance, that

a-methyleney-butyrolactones. Kang's grofiplso reported
that theod-allenyl moiety participated in the intramolecular
aza-PausonKhand-type reaction withl-benzoylhydrazones
(between allener-bond and aza-alkene-bond). A similar
transformation of thé-allenylcarbonyl compounds into the
o-methyleney-butyrolactones under the Mo(C@&nediated
conditions was developed by Yu's grofim addition, Saité
recently reported a new type of aza-Pauskhand reaction,
involving the cyclocarbonylation of the alkyne carbodiimide
substratesl (between alkyner-bond and carbodiimide
mr-bond) to provide the diazabicyclic compourizisnder the
Mo(CO)-mediated conditions (stoichiometric version)
(Scheme 1).

Scheme 1
- - R1
(=gt _Mo(CO) DMSO_~
N, toluene, reflux .7 7 =0
N=-= NZN
‘52 p
1 2

Our recent intere&tin the development of rhodium-
catalyzed intramolecular Pausehand-type reactions be-
tween the alkyner-bond and the allene-bond (instead of

the olefinz-bond) led to an easy preparation of the bicyclo-

this is the first example of the GECO)-catalyzed aza-[2
2 + 1] cycloaddition process ever reported.

The required alkynecarbodiimide substratesor the
cyclocarbonylation were prepared in a straightforward man-
ner from the known 2-alkynylaniline derivativ8sTreatment
of 3 with triphosgene and Bl was followed by exposure
to primary amine¥ afforded the urea derivativesin high
yield. Exposure of4 to carbon tetrabromide and triph-
enylphosphin® effected dehydration to provide the carbo-
diimides5 as shown in Scheme 2.

Scheme 2

RZ R2
R1 Z R1 F
triphosgene, Et;N, 0°C to rt, o
then R3NH, (71~100%) J Re

3 . 4

CBr4, PPh3, Et3N, CH20|2,
0°Ctort, (65~92%)

Our initial evaluation of the metal-catalyzed cyclocarbo-
nylation of an alkynecarbodiimide was carried out using
compound5a (Table 1). Chatani and Murai’s conditions

[4.3.0]nonadienone as well as bicyclo[5._C%.O]decadie_znone (catalytic amounts of RCO):. in toluene at 120C under
frameworks. We have now become very interested in the 10 gtm of COj were first applied to compourfsh to afford

metal-catalyzedcyclocarbonylation between the alkyne
m-bond and the diaza-allemebond (carbodiimide function-

ality) because the carbodiimide group might be regarded as [RhCI(COY],2

(4) (@) Chatani, N.; Morimoto, T.; Fukumoto, Y.; Murai, . Am. Chem.
S0c.1998 120, 5335-5336. (b) Chatani, N.; Motimoto, T.; Kamitani, A.;
Fukumoto, Y.; Mutai, SJ. Organomet. Chen1999 579, 177-181.

(5) Kang, S.-K.; Kim, K.-J.; Hong, Y.-TAngew. Chem., Int. EQ002
41, 1584-1586.

(6) Yu, C.-M.; Hong, Y.-T.; Lee, J.-HJ. Org. Chem2004 69, 8506-
8509.

(7) Saito, T.; Shiotani, M.; Otani, T.; Hasaba,teterocycle003 60,
1045-1048.

(8) (@) Mukai, C.; Nomura, |.; Yamanishi, K.; Hanaoka, Krg. Lett.
2002 4, 1755-1758. (b) Mukai, C.; Nomura, |.; Kitagaki, 3. Org. Chem.
2003 68, 1376-1385. (c) Mukai, C.; Inagaki, F.; Yoshida, T.; Kitagaki, S.
Tetrahedron Lett2004 45, 4117-4121. (d) Mukai, C.; Inagaki, F.; Yoshida,
T.; Yoshitani, K.; Hara, Y.; Kitagaki, SJ. Org. Chem?2005 70, 7159~
7171.
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the desired pyrrolo[2,B]indol-2-one6ain 35% yield along
with the ureada in 27% vyield® (entry 1).

a suitable catalyst for the ring-closing
reaction between the alkyne and allene groups, ave a

(9) The thermal transformation of thé-[2-(1-alkynyl)phenyl]N'-phe-
nylcarbodiimides into the H8-indolo[2,3b]ginolines via the biradical
intermediates and its related reactions were reported; see: (a) Schmittel,
M.; Steffen, J.-P.; Engels, B.; Lennartz, C.; Hanrath, AMhgew. Chem.,
Int. Ed.1998 37, 2371-2373. (b) Shi, C.; Zhang, Q.; Wang, K. K. Org.
Chem.1999 64, 925-932. (c) Zhang, Q.; Shi, C.; Zhang, H.-R.; Wang, K.
K. J. Org. Chem200Q 65, 7977-7983. (d) Schmittel, M.; Rodguez, D.;
Steffen, J.-PAngew. Chem., Int. EQR00Q 39, 2152-2155. (e) Lu, X.;
Petersen, J. L.; Wang, K. K. Org. Chem2002 67, 5412-5415. (f) Lu,
X.; Petersen, J. L.; Wang, K. K. Org. Chem2002 67, 7797-7801. (g)
Li, H.; Petersen, J. L.; Wang, K. Kl. Org. Chem2003 68, 5512-5518.
(h) Li, H.; Yang, H.; Petersen, J. L.; Wang, K. B. Org. Chem2004 69,
4500-4508.,
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Table 1. Aza-PausorrKhand Reaction of Carbodiimidga Table 2. Aza-PausorrKhand Reaction of Carbodiimidgb—k

TMS with Cox(CO)s?
——TMS = R? Rl
_ (@] + 4da R2
=.= N~ TN =R

N=+=N 2
Co,(CO)g, TMTU
AT Ar= pMeOCqH, %’ J =0 + a
5a 6a N=-=N benzene 70 °C, CO N N
‘Rs RS
entry metal solvent temp. time atmosphere 6a 4a 5 6
(%) (%)
1 (F;“gfgoo/lf toluene 120°C 1.5h CO(10atm) 85 27 ety 5 R R? R? 6(%)  4(%)
1 5b H T™S p-PhOCgH,  6b (57) 4b (6)
2 [RhC'(COO)2]2 DCE 80°C 12h CO(1am) 8 b
(10 mol %) 2 5¢ H ™S  p-MeOCgH,CH, 6¢ (37)° 4c (6)
b 4d (15
3 8"5(2?@) MeCN 70°C 1h N, 42 14 3 & H ™S Me 6d (41)> 4d (15)
< €q 4 5e H Pr p-MeOCgH,  6e (66) 4e (10)
a
4 805(233) THF  70°C 1h No 36 5 5f H (CH,),CHCMe, p-MeOC¢H,  6f (44)  4f(13)
CoA(CO)g . 6 5g H (CH,),0TBS pMeOCgH, 6g(48) 49 (8)
5 (1.2 equiv) CHCl, -78°CS 4.5h Oz 66 20 7 5h H CH,OTHP PMeOCgH, 6h(5)  4h (trace)
d . . .
6 g%ﬁ)ol);) CeHs 70°C 1h CO(1am) 69 7 8 5 Me TMS  pMeOCeH, 6i(54) 4i(19)
: 9 5 MeO  TMS p-MeOCeH,  6j(54) 4j(18)
7 ?:'02(22&?\/) toluene 80 °C 10 min Ny 7% 7 10 5k cl T™MS p-MeOCeH, 6k (52) 4k(7)

a A mixture of carbodiimides, Coy(CO) (10 mol %), and TMTU (60
mol %) in benzene (0.1 M) was heated at @ under an atmosphere of
CO. P Cgy(CO)% (20 mol %) and TMTU (120 mol %) were used.

apMSO (6.0 equiv) was used. TMANO (4.0 equiv) was used.
¢ Reaction temperature was warmed to®f@MTU (60 mol %) was used.
¢DMSO (10 equiv) was used.

lecular ring-closing step ddato furnish the pyrrolo[2,3]-
low yield (entry 2). Ce(CO)!* consistently provide®a as indol-2-one frameworl6a
the major product (entries-3). In particular, 6a was
obtained in 69% vyield wheba was exposed to 10 mol %
Coy(CO) and tetramethylthiourea (TMTW¥in benzene at
70 °C under an atmosphere of CO (entry 6). A control

Scheme 3

. . . . TMS
experlment using a comblnathn of Mo(_CeQa)nd DMSO gt MeO 7 1) triphosgene, EtzN, MeO /
80 °C in toluené*® producedbain 76% yield together with CH,Cl,,0 °C to rt, o
a small amount o#la'® (entry 7). Thus, a catalytic amount NH,  2) MeNH,*HCI (91%) J\ -Me
of Co(CO) was found to efficiently accelerate the intramo- . ;
]
(10) For recent total synthesis of physostigmine, see: (a) Node, M.; Hao, MeO
X.; Nishide, K.; Fuji, K. Chem. Pharm. Bull1996 44, 715-719. (b) CBry, PPhg, EtgN, — TMs C0x(CO)g (20 mol %),
Matsuura, T.; Overman, L. E.; Poon, D.Jl.Am. Chem. S0d.998 120, CHxCl,, 0°Ctort TMTU (120 mol %),
6500-6503. (c) Kawahara, M.; Nishida, A.; Nakagawa, ®tg. Lett 200Q (76%) N= =NMe benzene, CO, 70 °C
2, 675-678. (d) ElAzab, A, S.; Taniguchi, T.; Ogasawara, Grg. Lett. 9 (55%) and 7 (10%)
200Q 2, 2757-2759. (e) Tanaka, K.; Taniguchi, T.; Ogasawara, K.
Tetrahedron Lett2001, 42, 1049-1052. (f) M.-Rios, M. S.; S.-Sanchez, MeO,
N. F.; J.-Nathan, PJ. Nat. Prod 2002 65, 136-141. (g) Mekhael, M. K.
G.; Heimgartner, HHelv. Chim. Acta2003 86, 2805-2813. (h) Rage, P. NaCNBHs aqueous HCHO,
D.; Johnson, FJ. Org. Chem 2003 68, 6133-6139. (i) Haung, A,; AcOH, MeCN, 0 °C (79%)
Kodanko, J. J.; Overman, L. B. Am. Chem. SoQ004 126, 14043~
14053. (j) Santos, P. F.; Srinivasan, N.; Almeida, P. S.; Lobo, A. M.;
Prabhakar, STetrahedron2005 61, 9147-9156. 9 10
(11) (a) Majer, P.; Randad, R. $. Org. Chem1994 59, 1937-1938.
(b) Weiberth, F. JTetrahedron Lett1999 40, 2895-2898. MeO MeO

inevitably present in the reaction medium.
(14) (a) Hoye, T. R.; Suriano, J. Al. Org. Chem.1993 58, 1659~
1660. (b) Jiang, B.; Xu, MAngew. Chem., Int. E@004 43, 2543-2546.
(c) Chung, Y. K.; Lee, B. YOrganometallics1993 12, 220-223. (d) Jeong, MeO. MeHNCOO

N.; Chung, Y. K.; Lee, B. Y.; Lee, S. H.; Yoo, S.-Bynlett1991 204— Me
206. (e) Tang, Y.; Deng, L.; Zhang, Y.; Dong, G.; Chen, J.; YandQ&. LAH, THF, _ ref. 21 |
Lett 2005 7, 593-595. reflux (83%)
(15) (a) Jeong, N.; Lee, S. Jetrahedron Lett1993 34, 4027-4030. N-T>N
me! Me

(12) Nishikawa, T.; Ohyabu, N.; Yamamoto, N.; Isobe, Mtrahedron OH . :
1999 55, 4325-4340. TBAF, THF, I, PPhg, imidazole,
(13) The formation of the urea derivativé as a byproduct could rt (96%) %o CHCI;, reflux %O
tentatively be interpreted by hydrolysis with a small amount of water N-T=N (78%) N-T=N
Mt Me I\IAeH Me

(b) Brummond, K. M.; Lu, J.; Petersen, J. Am. Chem. So@00Q 122,

4915-4920. (c) Brummond, K. M.; Kerekes, A. D.; Wan, B.0rg. Chem.

2002 67, 5156-5163. (d) Yu, C.-M.; Hong, Y.-T.; Lee, J.-H. Org. Chem. 13 14
2004 69, 8506-8509.
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We next investigated the scope of this ring-closing reaction
using various substrat&—k under the Cg(CO)-catalyzed
conditions (Table 2). The carbodiimidbb,i—k, having the
phenyl substitutent on the nitrogen aton¥)Rs well as the
TMS group at the alkyne terminus R consistently pro-
duced the corresponding pyrrolo[23indol-2-one skeleta
6b,i—k in reasonable yield (more than 50%) irrespective of
the substituent (B on the benzene ring (entries +,80).The

was achieved by the conventional procedures via the iodo
derivative 12 in high yields. The present synthesis 13
amounts to the synthesis oftf-physostigmine 14),10-21
since the former has already been converted into the latter
(Scheme 3).

In summary, we have developed the novel,(C®)-
catalyzed aza-Pause&hand-type reaction of alkynecarbo-
diimide derivatives to give a range of pyrrolo[2)indol-

carbon appendages at the triple bond terminus, such as &-one skeleta. This is the first demonstration of the use of

propyl (entry 4), aklenyl (entry 5), and siloxyethyl (entry 6)
were stable under the G@O)-catalyzed conditions and
the corresponding cyclocarbonylated produsts-g were
obtained in good yields. However, the benzyl and alkyl
substituents on the nitrogen atom3(Rec,d provided the
cyclized product$c,d in slightly lower yields (entries 2,3).
The propargyl alcohol derivativeéh was shown to be a poor
substrate for this catalytic ring-closing reaction (entry 7).
Our application of the newly developed catalytic aza-
Pauson-Khand-type reaction for the synthesis of natural
products is the next subject. According to the,(@®D)s-
catalyzed cyclocarbonylation conditions, the pyrrolo[B]3-
indol-2-one9 was prepared in 55% yiel@l'” yield from the
carbodiimideB.’® Reductive methylation d with NaCNBH;
in the presence of ag HCHO and AcOH effected the con-
secutive reduction, hydroxymethylation, aNemethylation
to producel('® in 79% vyield as a single stereoisoniér.
Removal of a TMS group fromiO with TBAF gavell in
96% vyield, conversion of which intaH)-esermetholel(3)1-2

(16) C(CO) (20 mol %) was used.

(17) A stoichiomeric amount of Mo(C®@)1.2 equiv) and DMSO (10
equiv) afforded the desiredl in 78% yield along with the ure@ in 8%
yield.

(18) Coumpound was prepared fron3j via 7.

86

Coy(CO) in the hetero-PauserKhand reaction. In addition,
a new synthesis off)-physostigmine, involving a one-step
construction of the core framework, followed by a small
number of chemical modifications, has been achieved.
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