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Abstract: Oxidation of (3R)-linalool (2) with tert-butyl hydroper-
oxide (TBHP) occurs at the 6,7-position to selectively afford
linalool oxide cis-1, if catalyzed by vanadium(V) Schiff base com-
plexes 4. Substituted tetrahydrofuran cis-1 and its isomer trans-1
served as starting materials for short concise syntheses of β-car-
bolines cis-3 and trans-3 which are lower homologues of alkaloids
(–)-isocyclocapitelline and (+)-cyclocapitelline.

Key words: tert-butyl hydroperoxide, linalool oxide, oxidation,
Schiff base complex, vanadium

(–)-Isocyclocapitelline (Scheme 1), (+)-cyclocapitelline,
and (+)-chrysotricine are tetrahydrofuran-derived β-car-
boline alkaloids, which have been extracted from far east-
ern medicinal plants.1,2 From a biosynthetic point of view
it seems likely that linalool oxides 1 and therefore linalool
2 serve as precursors for the formation of these alka-
loids.1,3 In organic synthesis, however, the abovemen-
tioned β-carbolines are generally obtained in multistep
transformations that use other precursors than terpenol 2
as starting material for the following reasons.4 Conversion
of substrate 2 into functionalized tetrahydrofurans 1 re-
quires selective oxygenation at the 6,7-π-bond which is
attainable by e.g. peracids5 or the combination of
H3CReO3/H2O2.

6 Unfortunately, the observed diastereo-
selectivities in these reactions are negligible. If oxidized
with tert-butyl hydroperoxide in the presence of an early
transition metal catalyst such as VO(acac)2,

7 a selective
conversion of linalool 1 into the corresponding 1,2-epoxy-
alcohol has been reported.8,9 In view of the significance of
linalool oxides 1 as versatile building blocks,10 and the
contemporary interest in tetrahydrofuran-derived β-car-
boline alkaloids,1,2,4 we have developed a new stereose-
lective access to furanoid linalool oxide cis-1 and disclose
our latest results in this communication as a part of the
synthesis of hitherto unknown β-carbolines cis-3 and
trans-3.

The selected strategy for diastereoselectively oxidizing
substrate 2 at the 6,7-position is based on the use of TBHP
as primary oxidant and vanadium(V) Schiff base com-
plexes 4 as catalysts.11 The latter reagents were chosen for

this purpose, since vanadium compound 4a does not
catalyze the epoxidation of allylic alcohols12 but effi-
ciently mediates diastereoselective formation of function-
alized tetrahydrofurans from bishomoallylic alcohols and
TBHP.11,13,14

In an initial experiment, terpenol 2 was treated with TBHP
and 10 mol% of vanadium(V) catalyst 4a in CHCl3 at
20 °C for 12 hours. Previous optimization studies had
shown that these conditions provide high selectivities for
tetrahydrofuran formation in combination with a satisfac-
tory peroxide efficiency.14 Purification of the reaction
mixture furnished furanoid linalool oxides 1 (62%,
cis:trans = 61:39), 1,2-epoxylinalool oxides 5 (6%,
cis:trans = 56:44), and pyranoid linalool oxides 6 (3%,
cis:trans = 40:60) (Scheme 2).15–17 No 1,2-epoxides of
linalool were detected (1H NMR, GC).8,9 The relative con-
figurations of major isomers of heterocycles 1, 5, and 6
were established by NMR experiments (NOE, HMBC,
HMQC). In a second run, oxidation of substrate 2 with
TBHP was repeated in the presence of (1R,2S)-aminoin-
danol-derived catalyst 4b. The latter reagent had attracted
attention in previous experiments since it generally pro-
vided higher diastereoselectivities for tetrahydrofuran for-
mation compared to 4a. This oxidation, however, only led
to a minor increase in yield of target compound cis-1 with-
out improving its diastereoselectivity. A time dependent
analysis of product formation in the latter run provided
two important results. (i) Formation of epoxide 5 follows
formation of linalool oxide 1. This observation in combi-
nation with the fact that no linalool 1,2-epoxides were

Scheme 1 (3R)-Linalool (2) and derived linalool oxide cis-1 as
building block in synthesis.
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formed is indicative of tetrahydrofuran 1 as starting ma-
terial for epoxide 5. (ii) Cis/trans-ratios of tetrahydrofuran
1, epoxide 5, and tetrahydropyran 6 remained constant
throughout the conversion of substrate 2. These findings
point to an absence of kinetic resolution in this experi-
ment.18 Therefore, the origin of the observed fair prefer-
ence for formation of 2,5-cis-configured tetrahydrofuran
cis-1 in this work is not associated with a mismatched ef-
fect using a chiral auxiliary in 4b and the substrate (3R)-
linalool (2). This explanation is supported by the fact that
approximately the same diastereoselectivities were ob-
tained, if the oxidation of 2 was catalyzed by vanadium re-
agent 4a with an achiral Schiff base auxiliary. Still, a cis/
trans-ratio of 61:39 for formation of trisubstituted tetrahy-
drofuran 1 is slightly superior to results, which have been
reported so far for other transition metal catalyzed oxida-
tions of linalool 2.6,19–21

Scheme 2 Vanadium(V)-catalyzed regio- and stereoselective
oxidation of (3R)-linalool (2).

To continue the synthesis of tetrahydrofuran-derived β-
carbolines 3, linalool oxides, cis-1 and trans-1 were sepa-
rated by column chromatography.16 Conversion of vinyl-
substituted tetrahydrofuran cis-1 into bicyclic lactol 722

was achieved by a RuO4-catalyzed23 oxidation. This reac-
tion furnished after chromatographic purification 56% of
analytically pure material (Scheme 3). Alternative re-
agents, such as OsO4/NaIO4 (in 1,4-dioxane/H2O) or
KMnO4 (in acetone/H2O), failed to provide compound 7.
Therefore, the reagent combination of RuCl3 and NaIO4 in
C2H4Cl2/H2O was also applied for the conversion of
trans-configured tetrahydrofuran trans-1 into aldehyde
822 (47%, Scheme 3).

Finally, lactol 7 was treated with tryptamine in a Pictet–
Spengler-type reaction.4c This transformation was per-
formed in CH2Cl2 at room temperature and afforded an
imine (not shown in Scheme 4), which was treated at
–78 °C with CF3CO2H. The reaction time was limited to 1
hour since, according to TLC analysis, formation of addi-
tional products started, if this period was extended. Work
up of the reaction mixture furnished a tetrahydro-β-carbo-
line (27%),24 which was treated with Pd on charcoal in

hot xylenes in order to provide target compound cis-3 as
colorless crystals25 (90%, Scheme 4). In a similar se-
quence, formyl-substituted tetrahydrofuran 8 was treated
at 20 °C with tryptamine and subsequently at –78 °C with
CF3CO2H to yield 88% of a tetrahydro-β-carboline24 (not
shown in Scheme 4) which upon  dehydrogenation afford-
ed target compound trans-325 in 51% yield (Scheme 4).

Scheme 4 Preparation of β-carbolines cis-3 and trans-3 from lactol
7 and aldehyde 8. Reagents and conditions: (a) Tryptamine, CH2Cl2,
20 °C; (b) CF3CO2H, CH2Cl2, –78 °C → 20 °C; (c) Pd/C, xylenes,
reflux.

In summary, we have devised a new synthesis of linalool
oxides 1 via a vanadium-catalyzed selective oxygenation
of linalool 2 at the 6,7-position. This oxidation provides
tetrahydrofuran cis-1 as major product. Functionalized
heterocycles 1 served as building blocks for the synthesis
of hitherto unknown 1-substituted β-carbolines cis-3 and
trans-3, which will be subjected to pharmacological test-
ing.
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Scheme 3 Ruthenium-catalyzed oxidation of linalool oxides cis-1
and trans-2 into lactol 7 and aldehyde 8.
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+], 143 (6) [C8H15O2
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[C5H8O
+], 43 (10) [C3H6

+]. UV/Vis (EtOH): λmax (lg ε): 232 
nm (3.76), 282 (3.81), 373 (2.46). C19H26N2O2 (314.4): 
Calcd C, 72.58; H, 8.33; N, 8.91. Found: C, 67.25; H, 8.26; 
N, 7.99. trans-1-[5-(1-Hydroxy-1-methylethyl)-2-
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CHCl3). 

1H NMR (250 MHz, CDCl3): δ = 1.08 (s, 3 H), 1.22 
(s, 3 H), 1.40 (s, 3 H), 1.89–2.22 (m, 4 H), 2.68–2.90 (m, 2 
H), 3.22 (ddd, J = 15.0, 9.8, 5.2 Hz, 2 H), 3.99 (dd, J = 8.2, 
5.4 Hz, 1 H), 4.08–4.12 (m, 1 H), 7.05–7.20 (m, 2 H), 7.33 
(mc, 1 H), 7.50 (mc, 1 H), 8.60 (s, 1 H). 13C NMR (63 MHz, 
CDCl3): δ = 21.6, 22.6, 24.6, 26.1, 28.8, 36.8, 43.0, 60.6, 
70.4, 77.0, 86.6, 110.1, 110.9, 118.0, 119.0, 121.5, 142.3, 
153.4, 174.1. MS (EI, 70 eV): m/z (%) = 314(3) [M+], 
171(100) [C11H11N2

+], 143(6) [C8H15O2
+], 84(11) [C5H8O

+], 
43(10) [C3H6

+]. UV/Vis (EtOH): λmax (lg ε): 242 nm (4.52), 
282 (3.85), 371 (2.57). C19H22N2O2 (314.4): Calcd C, 72.58; 
H, 8.33; N, 8.91. Found: C, 67.94; H, 8.06; N, 7.78.

(25) cis-1-[5-(1-Hydroxy-1-methylethyl)-2-methyltetrahydro-
furan-2-yl]-9H-β-carboline cis-3: colorless solid, mp 
161 °C. [α]D

25 –32.9 (c 0.57, CHCl3). 
1H NMR (250 MHz, 

CDCl3): δ = 1.23 (s, 3 H), 1.45 (s, 3 H), 1.78 (s, 3 H), 1.75–
3.08 (m, 4 H), 4.15 (t, J = 7.3 Hz, 1 H), 7.24 (ddd, J = 7.8, 
6.1, 1.8 Hz, 1 H), 7.52 (mc, 2 H), 7.86 (d, J = 5.5 Hz, 1 H), 
8.13 (d, J = 7.9 Hz, 1 H), 8.39 (d, J = 5.5 Hz, 1 H), 9.53 (s, 
1 H). 13C NMR (63 MHz, CDCl3): δ = 24.2, 26.2, 27.6, 27.9, 
37.3, 73.3, 88.4, 90.2, 111.5, 113.4, 119.7, 121.6, 121.7, 
128.3, 133.2, 136.1, 138.0, 143.2, 148.0. MS (EI, 70 eV):
m/z (%) = 310(17) [M+], 151(24) [C16H15N2O

+], 209 (100) 
[C14H12N2

+], 182 (11) [C10H16NO2
+], 43 (9) [C2H4O

+]. UV/
Vis (EtOH): λmax (lg ε): 242 nm (4.52), 288 (4.26), 348 
(3.77). C19H22N2O2 (310.4): Calcd C, 73.52; H, 7.14; N, 
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9.03. Found: C, 72.86; H, 7.11; N, 8.68. trans-1-[5-(1-
Hydroxy-1-methylethyl)-2-methyltetrahydrofuran-2-yl]-
9H-β-carboline trans-3: colorless solid, mp 158 °C. [α]D

25 
–50.5 (c 0.5, CHCl3). 

1H NMR (250 MHz, CDCl3): δ = 1.25 
(s, 3 H), 1.38 (s, 3 H), 1.72 (s, 3 H), 1.75–2.10 (m, 4 H), 4.15 
(t, J = 7.6 Hz, 1 H), 7.22 (ddd, J = 7.9, 6.4, 1.5 Hz, 1 H), 7.48 
(mc, 2 H), 7.86 (d, J = 5.2 Hz, 1 H), 8.11 (d, J = 7.5 Hz, 1 H), 
8.36 (d, J = 5.2 Hz, 1 H), 10.48 (s, 1 H). 13C NMR (63 MHz, 

CDCl3): δ = 26.2, 26.7, 26.8, 28.4, 38.6, 72.6, 86.0, 88.2, 
111.9, 114.1, 119.7, 121.5, 121.9, 128.4, 132.6, 133.0, 
137.7, 142.9, 148.9. MS (EI, 70 eV): m/z (%) = 310 (17) 
[M+], 151 (24) [C16H15N2O

+], 209 (100) [C14H12N2
+], 182 

(11) [C10H16NO2
+], 43(9) [C2H4O

+]. UV/Vis (EtOH): λmax 
(lg ε): 227 nm (4.09), 289 (4.03), 340 (3.57). C19H22N2O2 
(310.4): Calcd C, 73.52; H, 7.14; N, 9.03. Found: C, 72.86; 
H, 7.11; N, 8.68.
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