Tetrahedron 68 (2012) 1407-1416

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Asymmetric *ortho*-lithiation of 1,*n*-dioxa[*n*]paracyclophane derivatives for the generation of planar chirality

Kazumasa Kanda^a, Risa Hamanaka^a, Kohei Endo^b, Takanori Shibata^{a,*}

^a Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 65-504, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555, Japan ^b Waseda Institute for Advanced Study, 1-6-1, Nishiwaseda, Shinjuku, Tokyo 169-8050, Japan

ARTICLE INFO

Article history: Received 21 November 2011 Received in revised form 12 December 2011 Accepted 12 December 2011 Available online 19 December 2011

Keywords: Enantioselective ortho-Lithiation Planar chirality Paracyclophane

ABSTRACT

The asymmetric induction of planar chirality in 1,*n*-dioxa[*n*]paracyclophane derivatives via asymmetric *ortho*-lithiation is described. Enantioselective *ortho*-lithiation of unflippable 1,*n*-dioxa[*n*]paracyclophanes ($n \le 11$) using *sec*-BuLi-(–)-sparteine at -78 °C and subsequent treatment with electrophiles gave the corresponding planar-chiral monosubstituted paracyclophanes with excellent ee. Further lithiation of these compounds and treatment with electrophiles gave planar-chiral paracyclophanes with two different substituents. Dilithiation of unflippable 1,*n*-dioxa[*n*]paracyclophanes gave the corresponding *C*₂-symmetrical disubstituted products with almost perfect ee. In the case of flippable 1,*n*-dioxa[*n*]paracyclophanes ($n \ge 12$), a stepwise reaction was required for the highly enantioselective formation of disubstituted products.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Paracyclophane consists of a benzene ring with an ansa chain connecting the *para* positions.^{1a,b,2} Unsubstituted paracyclophanes are symmetrical and achiral. In contrast, monosubstituted [n]paracvclophanes (n < 11) have planar chirality, and the enantiomers can be resolved at rt based on sterically hindered rotation of the ansa chain around the benzene ring.^{2a-c} In the case of [n]para-cyclophanes with longer ansa chains $(n \ge 12)$, the enantiomers of monosubstituted compounds interconvert to each other at rt. However, disubstituted [n]paracyclophanes can be resolved into enantiomers when the ansa chain cannot be flipped.^{2d} Due to their unique bridged structure, planar-chiral paracyclophanes have been widely applied as chiral motifs in functional materials and chiral reagents.^{3a,b,4} Miyano used a planar-chiral paracyclophane as a chiral stationary phase for HPLC and a chiral auxiliary.^{4a,b} They also reported the stereospecific conversion of planar-chiral naphthalenophane into axial-chiral binaphthyl.4c Scherf synthesized chiral poly(para-phenylene) polymers containing planar-chiral paracyclophane moieties and investigated their chiroptical properties.^{4d,e} Kanomata used planar-chiral pyridinophanes as coenzyme NADH models,^{4f,g} and their planar-chiral pyridinium ylides in an enantioselective cyclopropanation.^{4h} Recently, Inoue and Kanomata reported the enantiodifferentiating photoisomerization

of cyclooctenes sensitized by planar-chiral paracyclophane.⁴ⁱ In these cases, enantiomerically enriched compounds were generally prepared by the optical resolution of a racemic mixture or the asymmetric crystallization of diastereomers. For example, Kanomata achieved efficient stereocontrol of the planar chirality of [10] pyridinophanes and [11]paracyclophanes with a thermodynamically flexible ansa chain by the crystallization-induced or adsorption-induced dynamic resolution of diastereomeric mixtures.^{5a-c}

On the other hand, a more straightforward approach to the synthesis of planar-chiral paracyclophanes is an enantioselective reaction.⁶ A pioneering study by Zhu described an intramolecular S_NAr etherification using a stoichiometric amount of chiral quaternary ammonium salt (up to 20% ee).^{6a} The chiral Rh- or Pdcatalyzed coupling of dithiol with dibromide has been reported as another protocol by Tanaka (up to 60% ee).^{6b,c} We previously reported a dynamic kinetic resolution of diiodoparacyclophanes possessing a flippable ansa chain through the use of asymmetric consecutive Sonogashira coupling (up to 79% ee).⁷ Recently, the Rh-catalyzed [2+2+2] cycloaddition of alkynes was reported for the synthesis of [n] paracyclophanes with short ansa chain (n < 9)by Tanaka (up to 75% ee).^{6d} Among these previous examples, our protocol gave the best enantioselectivity,⁷ but it was not excellent. Therefore, the development of a highly enantioselective and widely convertible synthesis of planar-chiral paracyclophanes is still a challenging topic.^{8,9} In this report, we describe an asymmetric *ortho*-lithiation for the highly enantioselective synthesis of various paracyclophanes.^{10a-c,11a-d} The asymmetric *ortho*-

^{*} Corresponding author. Tel./fax: +81 3 5286 8098; e-mail address: tshibata@ waseda.jp (T. Shibata).

^{0040-4020/\$ –} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2011.12.031

lithiation of an achiral [*n*]paracyclophane with directed moieties at the 1 and *n* positions of its ansa chain would proceed with a chiral lithium reagent. Furthermore, the second lithiation would give a C_2 -symmetric dilithio paracyclophane. Subsequent treatment of these aryllithiums with various electrophiles would afford monoand disubstituted planar-chiral paracyclophanes, respectively (Scheme 1).¹²

Scheme 1. Concept of asymmetric ortho-lithiation of paracyclophane.

2. Results and discussion

2.1. Enantioselective monosubstitution of 1,*n*-dioxa[*n*] paracyclophanes

First, we chose 1,11-dioxa[11]paracyclophane **1a** as a substrate for enantioselective *ortho*-lithiation. This paracyclophane has oxygen atoms as directed moieties, and the ansa chain is unflippable at rt.^{2a-c} We examined the *ortho*-lithiation of **1a** using 2 equiv of *sec*-butyllithium at -78 °C in Et₂O along with the addition of iodine as an electrophile. As a result, the corresponding mono-iodoparacyclophane **2aa** was obtained in moderate yield, and the enantiomers were resolved by HPLC analysis using a chiral column as expected (Table 1, entry 1). We next examined an enantiose-lective lithiation using 2 equiv of (–)-sparteine **L1** under the same

Table 1

Investigation of reaction conditions

1	None	_	5	57	_
2	L1	2	1	91	98 (+)
3	L1	1	2	89	97 (+)
4	L1	0.5	3	87	93 (+)
5	L1	0.2	5	84	76 (+)
6	L2	2	1	82	91 (-)
7	L2	0.2	4	79	74 (-)

^a Signs of optical rotation are shown in the parentheses.

reaction conditions, and planar-chiral (+)-**2aa** was obtained in high yield with excellent ee (entry 2). An equivalent amount of **L1** was sufficient to achieve high yield and excellent ee (entry 3). Even a catalytic amount of **L1** was enough to realize good enantiose-lectivity (entries 4 and 5).^{13a-c,14a-k} (+)-Sparteine surrogate **L2**^{15a,b} achieved the opposite enantioinduction to give (-)-**2aa** (entries 6 and 7).

We next examined various electrophiles (El) other than iodine (Table 2). Treatment of the monolithiated compound with chlorotrimethylsilane, chlorodiphenylphosphine, iodomethane, *N*,*N*dimethylformamide (DMF), or benzophenone gave the corresponding planar-chiral silane **2ab**, phosphine **2ac**, methylated product **2ad**, aldehyde **2ae**, or tertiary alcohol **2af** with excellent ee (entries 1–5).¹⁶ Enantioselective *ortho*-lithiation of 1,10-dioxa[10] paracyclophane **1b** with a shorter ansa chain also proceeded, and treatment of the aryllithium with iodine, chlorotrimethylsilane, or chlorodiphenylphosphine gave the corresponding iodinated product **2ba**, silylated product **2bb**, or phosphinated product **2bc** with excellent ee (entries 6–8).¹⁷

Table 2

Reaction of ortho-lithiated 1,n-dioxa[n]paracyclophane with various electrophiles

Entry	n	x (equiv)	Electrophiles	R	Yield (%)	ee (%)
1 ^a	11 (1a)	2	Me ₃ SiCl	SiMe ₃	75 (2ab)	97 ^a
2	11 (1a)	2	Ph ₂ PCl	PPh ₂	58 (2ac)	98
3	11 (1a)	2	MeI	Me	74 (2ad)	95
4	11 (1a)	2	DMF	CHO	70 (2ae)	97
5	11 (1a)	2	Benzophenone	C(OH)Ph ₂	84 (2af)	95
6	10 (1b)	1.2	I ₂	Ι	81 (2ba)	97
7	10 (1b)	1.2	Me ₃ SiCl	SiMe ₃	75 (2bb)	97 ^a
8	10 (1b)	1.2	Ph ₂ PCl	PPh ₂	35 (2bc)	98

^a ee was determined as **2aa** and **2ba** by the conversion of trimethylsilyl group into iodo one using *N*-iodosuccinimde.

We further investigated the reaction of achiral 1,*n*-dioxa[*n*](1,4) naphthalenophanes (Table 3). The enantioselective lithiation of 1,11-dioxa[11](1,4)naphthalenophane **3a** along with the addition of iodine gave the corresponding planar-chiral 2'-iodo product **4a** in high yield with excellent ee (entry 1). The catalytic reaction of **3a** also proceeded, and **4a** was obtained with good ee (entry 2). Enantioselective lithiation of [*n*](1,4)naphthalenophanes **3b** (*n*=12), **3c** (*n*=14), and **3d** (*n*=16) was also possible, and treatment of the resulting aryllithiums with iodine gave the corresponding

Enantioselective ortho-lithiation of 1,n-dioxa[n](1,4)naphthalenophanes

Entry	п	x (equiv)	Time (h)	Yield (%)	ee (%)
1	11 (3a)	1	2	95 (4a)	97
2	11 (3a)	0.2	5	93 (4a)	81
3	12 (3b)	1	10	88 (4b)	93
4	12 (3b)	0.2	10	17 (4b)	ND ^a
5	14 (3c)	2	24	82 (4c)	94
6	16 (3d)	2	72	76 (4d)	92

^a Not determined.

planar-chiral 2'-iodo products **4b**, **4c**, and **4d**¹⁸ with more than 90% ee (entries 3, 5, and 6). However, the lithiation of [n](1,4)naph-thalenophanes with longer ansa chains $(n \ge 12)$ was sluggish, and a catalytic reaction gave the product **4b** in low yield (entry 4).

2.2. Enantioselective disubstitution via dilithiation

We next investigated dilithiation for the synthesis of planarchiral disubstituted [*n*]paracyclophanes (n=10 or 11) with C_2 symmetry (Table 4). After the first lithiation at -78 °C, the second lithiation was examined by the addition of 2 equiv of *sec*-butyllithium at -20 °C along with treatment with iodine. The reaction of **1b** gave C_2 -symmetrical planar-chiral diiododioxa[10]paracyclophane **5ba** in high yield with excellent ee with the use of a stoichiometric amount of sparteine (entry 1). The reaction of diiododioxa[11]paracyclophane **5aa** realized almost perfect enantioselectivity (entry 3). Moreover, its recrystallization yielded a single crystal, and the absolute configuration was determined to be *S* by X-ray diffraction analysis (Fig. 1).

In the case of enantioselective dilithiation, a catalytic amount of L1 achieved higher ee (around 90%) than that in monolithiation (entries 2 and 4), since kinetic resolution occurred at the second lithiation. In fact, the ee of the monoiodo products 2ba and 2aa, which were obtained as by-products, was low (2ba: 11% ee in entry 2, 2aa: 53% ee in entry 4). We also examined the enantioselective disubstitution of **1a** by using various electrophiles under the same reaction conditions: C_2 symmetrical diphosphine 5ac, para-xylene derivative 5ad, dialdehyde 5ae, and diol 5af were obtained with almost perfect enantioselectivity (entries 5-8). Next, we investigated the dilithiation of 1,*n*-dioxa[*n*]paracyclophane with a longer ansa chain (n>12). In these cases, the reactivity and enantioselectivity of lithiation were lower than those with 1,*n*-dioxa[*n*]paracyclophane ($n \le 11$). When 1,12-dioxa[12]paracyclophane **1c** was used, the ee was still high (82%) but the yield was low (38%) in the presence of 1 equiv of (-)-sparteine for 12 h (entry 9). The use of 4 equiv of (-)-sparteine with a longer reaction time drastically improved the yield and slightly increased the ee

Table 4

Enantioselective dilithiation of 1,n-dioxa[n]paracyclophanes

Entry	n	x (equiv)	Time (h)	El	R	Yield (%)	ee (%)
1	10 (1b)	1	12	I ₂	Ι	91 (5ba)	98
2	10 (1b)	0.2	24	I ₂	Ι	82 (5ba)	87
3	11 (1a)	1	12	I ₂	Ι	79 (5aa)	99
4	11 (1a)	0.2	24	I ₂	Ι	53 (5aa)	89
5	11 (1a)	1	12	Ph ₂ PCl	PPh ₂	55 (5ac)	99 ^a
6	11 (1a)	1	12	MeI	Me	76 (5ad)	99
7	11 (1a)	1	12	DMF	CHO	73 (5ae)	99
8	11 (1a)	1	12	benzophenone	C(OH)Ph ₂	84 (5af)	99
9	12 (1c)	1	12	I ₂	Ι	38 (5ca)	82
10	12 (1c)	4	24	I ₂	Ι	60 (5ca)	88
11	13 (1d)	4	48	I ₂	Ι	62 (5da)	89
12	14 (1e)	4	48	I ₂	Ι	65 (5ea)	86
13	15 (1f)	4	48	I ₂	Ι	48 (5fa)	84
14	16 (1g)	4	48	I ₂	Ι	50 (5ga)	77
15	17 (1h)	4	72	I ₂	Ι	53 (5ha)	b
16	17 (1h)	4	72	Ph ₂ PCl	PPh ₂	73 (5hc)	55 ^a

^a The obtained diphosphine were oxidized by hydrogen peroxide, and their ee was determined as the corresponding diphosphine oxides.

^b HPLC analyses of racemic **5ha** using various chiral columns showed a single peak, and the value of optical rotation of the obtained **5ha** in entry 15 was almost zero.

Fig. 1. ORTEP diagram of (S)-5aa.

(entry 10). The enantioselectivity gradually decreased along with the elongation of the ansa chain (entries 11–13). In particular, in the reaction of 1,16-dioxa[16]paracyclophane 1g, the ee of the obtained product 5ga was significantly decreased (entry 14). This difference in enantioselectivity depending on the length of the ansa chain can be explained as follows: monolithiated product with a short ansa chain $(n \le 11)$ is unflippable, and planar chirality was induced at the first lithiation at low temperature in a highly enantioselective manner. Therefore the subsequent second lithiation gave dilithiated product with excellent ee with the aid of kinetic resolution. On the other hand, monolithiated product with a longer ansa chain $(n \ge 12)$ is considered to be flippable^{2d} and chirality was not induced. Therefore, planar chirality was induced at the second lithiation at higher temperature only by dynamic kinetic resolution, which could not achieve excellent enantioselectivity (Scheme 2). Therefore, lithiation at low temperature is crucial for the induction of high enantioselectivity.

Scheme 2. Different asymmetric induction dependent on the length of ansa chains.

In the case of [17]paracyclophane, diiodo product **5ha** was probably flippable, and we did not observe planar chirality (entry 15). Therefore, we introduced diphenylphosphinyl groups as bulkier substituents than iodo groups. As a result, the induction of planar chirality was ascertained, and diphosphine **5hc** was obtained in 55% ee (entry 16). These results mean that dilithium complex derived from [17]paracyclophane could induce planar chirality.

2.3. Enantioselective disubstitution via stepwise monolithiation

We focused on the enantioselective disubstitution of 1,*n*-dioxa [*n*]paracyclophane with a flippable ansa chain ($n \ge 12$) via stepwise monolithiation (Table 5). *ortho*-Lithiation of **1c**–**g** using *sec*-butyl-lithium and *N*,*N*,*N'*,*N'*-tetramethylethylenediamine (TMEDA) as an achiral amine at -78 °C along with treatment with

Table 5

Stepwise monolithiation of 1,n-dioxa[n]paracyclophane with a flippable ansa chair

gave chlorotrimethylsilane monosilvlated paracyclophanes 2cb-gb. Next, we examined the second ortho-lithiation of these silyl paracyclophanes using sec-butyllithium and (-)-sparteine as a chiral amine, and subsequent treatment with chlorotrimethylsilane gave a C_2 -symmetrical disilylated product. In the case of [12]paracyclophane **2cb**. the enantioselective induction in the obtained disilvlated product **5cb** was ascertained (18% ee).¹⁹ but the ee was much lower than that of the dijodo product via dilithiation (entry 1). The reason for the low selectivity is that the ansa chain of **2cb** flips slowly at -78 °C, and dynamic kinetic resolution of **2cb** did not proceed selectively. On the other hand, the lithiation of monosilylated paracyclophane with a longer ansa chain, such as 2db, 2eb, 2fb, and 2gb, proceeded with excellent enantioselectivity, and C₂-symmetric disubstituted paracyclophanes were obtained (entries 2-5).

2.4. Enantioselective disubstitution using different electrophiles via stepwise monolithiation

Finally, we demonstrated disubstitution by stepwise monolithiation for the enantioselective synthesis of unsymmetrical paracyclophanes with two different substituents (Table 6). We synthesized chiral silylated paracyclophanes **2ab** and **2bb** under the conditions in Table 2. We next examined the *ortho*-lithiation of **2ab** and **2bb** using *sec*-butyllithium and TMEDA at -20 °C and treatment with various electrophiles, such as iodine, iodomethane, dimethylformamide, and benzophenone (entries 1–5). As a result, chiral paracyclophanes with iodo, methyl, formyl, and diphenylhydroxymethyl groups in addition to a silyl group were obtained without any loss of enantiopurity.

stepwise monontinution of the aloxali/liperacyclophane with a impraste ansa chain								
	$(CH_2)_{n-2}$	1) <i>sec</i> -BuLi (2 equiv) TMEDA (1 equiv) Et ₂ O, -78 °C, 3 h 2) Me ₃ SiCl (3 equiv), -78 °C-rt	(CH ₂) _{n-2} 0 SiMe ₃ 2cb-2gb (CH ₂) _{n-2} 1) <i>sec</i> -BuLi (2 equiv) L1 (2 equiv) Et ₂ O, -78 °C, Time 2) Me ₃ SiCl (3 equiv), -78 °C-rt	Me ₃ Si O SiMe ₃ 5cb-5gb				
Entry	n	Yield of 2 %	Time (h)	Yield of 5 (%)	ee of 5 (%)			
1	12 (1c)	76 (2cb)	72	66 (5cb)	18 ^a			
2	13 (1d)	57 (2db)	48	73 (5db)	95 ^a			
3	14 (1e)	92 (2eb)	48	84 (5eb)	93 ^a			
4	15 (1f)	53 (2fb)	48	95 (5fb)	93 ^b			
5	16 (1g)	27 (2gb)	48	64 (5gb)	91 ^b			

^a The disilylparacyclophanes were treated with NBS, and their ee was determined as the corresponding dibrominated products.

^b The disilylparacyclophanes were treated with NIS, and their ee was determined as the corresponding diiodinated products.

Table 6

Stepwise lithiation for asymmetric synthesis of planar-chiral 1,n-dioxa[n]paracyclophane with two different substituents

(CH ₂) _{n-2}	1) <i>sec-</i> BuLi (1.2 equiv) L1 (1 equiv) Et₂O, -78 °C	(CH ₂) _{n-2}	1) <i>sec</i> -BuLi (2 equiv) TMEDA (1 equiv) Et ₂ O, -20 °C	(CH ₂) _{n-2}
$\sim \sim $	2) Me ₃ SiCl (3 equiv) -78 °C-rt		2) El (3 equiv) -78 °C-rt	o
1a, 1b (n ≤ 11)	(The same as Table 2.)	2ab, 2cb (97% ee)		6

Entry	n	Electrophile (El)	R	Yield of 6 (%)	ee of 6 (%)
1	10 (2bb)	I ₂	I	71 (6ba)	97
2	11 (2ab)	I ₂	I	70 (6aa)	97
3	11 (2ab)	Mel	Me	78 (6ad)	96
4	11 (2ab)	DMF	СНО	73 (6ae)	97
5	11 (2ab)	Benzophenone	C(OH)Ph ₂	82 (6af)	97

2.5. Use of obtained phosphines as chiral ligands

As a preliminary application of the obtained planar-chiral paracyclophanes as chiral ligands, we used monophosphines **2ac** and **2bc** in silver-catalyzed allylation of imine (Scheme 3).²⁰ As a result, moderate enantioselectivity was achieved by both of them.

89%, 57% ee by **2ac** 97%, 51% ee by **2bc**

Scheme 3. Ag-catalyzed enantioselective allylation of imine using monophosphines 2ac and 2bc as chiral ligands.

3. Conclusions

We have developed a highly enantioselective synthesis of planar-chiral 1,n-dioxa[n]paracyclophanes via asymmetric ortholithiation and dilithiation. In the case of paracyclophane with a short ansa chain (n < 11), which is unflippable, enantioselective ortho-lithiation using sec-butyllithium and sparteine at -78 °C and further lithiation at -20 °C gave planar-chiral monolithiated and C₂-symmetric dilithiated paracyclophanes, respectively, with excellent ee. Subsequent treatment of these lithium salts with various electrophiles gave planar-chiral mono- and disubstituted paracyclophanes. In the case of paracyclophane with a long ansa chain (n>12), which is flippable, disubstitution by stepwise lithiation is required for high enantioselectivity: monosubstituted paracyclophanes were lithiated at -78 °C in the presence of sparteine and treated with various electrophiles to give disubstituted paracyclophanes with high ee. These protocols gave various planarchiral 1,*n*-dioxa[*n*]paracyclophane derivatives with excellent ee, which could undergo further transformation.

4. Experimental section

4.1. General

All reactions were examined under an argon atmosphere in oven-dried glassware with a magnetic stirring bar. Hexane and cyclohexane solution of sec-butyllithium (1.0 M) were purchased from Kanto Chemical Co., Inc. Dehydrated diethyl ether, tetrahydrofuran (THF), and dichloromethane were purchased from Wako Pure Chemical Industries Ltd. (Wako), and purified by the method by Grubbs²¹ before use. Other dehydrated solvents were purchased from Kanto or Wako, and dried over activated molecular sieves 3 Å or 4 Å. (–)-Sparteine L1 was purchased from Tokyo Chemical Industry Co., Ltd. (TCI) and distilled from CaH₂ before use. Chiral diamine ligands **L2** was prepared according to the literature.¹⁵ Other reagents were purchased from Wako, Kanto, TCI, or Aldrich and were used without further purification. Flash column chromatography was performed with silica gel (Kanto Chemical Co., Inc. 60 N $40-50 \mu m$). Preparative thin-layer chromatography (PTLC) was performed with silica gel-precoated glass plates (Merck 60 GF₂₅₄) prepared in our laboratory. Gel permeation chromatography (GPC) was performed on JAI LC-908. IR spectra were recorded with Horiba FT730 spectrophotometer. NMR spectra were measured with JEOL AL-400 (400 MHz), JEOL ECS400 (400 MHz), JEOL ECX500 (500 MHz), or JEOL Lambda 500 (500 MHz) using TMS as an internal standard and CDCl₃ was used as a solvent. High-resolution mass spectra (HRMS) were measured on a JEOL JMS-SX102A with FAB (Fast Atomic Bombardment) method or JMS-T100CS with ESI (Electro Spray Ionization) method, and elemental analyses with Perkin–Elmer PE2400II. Optical rotations were measured with Jasco DIP-1000 polarimeter. X-ray crystallographic analyses were measured on a Rigaku R-AXIS RAPID diffractometer using graphite monochromated Mo K α radiation. Physical properties of the compounds, which were already listed in the precedent communication,¹² were omitted.

4.2. Syntheses of 1,n-dioxa[n]paracyclophanes and 1,n-dioxa[n](1,4)naphthalenophanes 1

Hydroquinone or 1,4-dihydroxynaphthalene (5.0 mmol) and the corresponding dibromide (5.0 mmol) in dehydrated DMF (30 mL) were added dropwise over 12 h to a suspension of K_2CO_3 (12.5 mmol) in dehydrated DMF (50 mL) at 140 °C. The reaction mixture was cooled to rt and filtered with Celite. The filtrate was treated with saturated NH₄Cl aqueous solution and extracted with ethyl acetate. The organic layer was washed with water and brine. The extract was dried over Na₂SO₄ and evaporated under reduced pressure. The residue was filtered through a short plug of silica gel with dichloromethane and the filtrate was evaporated under reduced pressure. The crude products were purified by flash column chromatography (hexane/AcOEt= $30/1 \sim 20/1$) and GPC (1,2-dichloroethane) to give dioxaparacyclophanes **1**.

4.2.1. 1,12-Dioxa[12]paracyclophane (**1c**). White solid. Mp 60 °C; IR (KBr) 2929, 2854, 1504, 1200, 843 cm⁻¹; ¹H NMR (400 MHz) δ 0.71–0.83 (m, 4H), 0.90–1.02 (m, 4H), 1.12–1.24 (m, 4H), 1.58–1.69 (m, 4H), 4.16–4.28 (t, *J*=5.6 Hz, 4H), 6.93 (s, 4H); ¹³C NMR (100 MHz) δ 23.8, 27.0, 27.3, 28.2, 69.5, 119.5, 153.4; HRMS (FAB⁺) for M⁺ found *m*/*z* 248.1770, calcd for C₁₆H₂₄O₂ 248.1776.

4.2.2. 1,13-Dioxa[13]paracyclophane (**1d**). White solid. Mp 68 °C; IR (KBr) 2925, 2858, 1506, 1045, 837 cm⁻¹; ¹H NMR (400 MHz) δ 0.66–0.78 (m, 2H), 0.88–1.01 (m, 4H), 1.02–1.14 (m, 4H), 1.16–1.29 (m, 4H), 1.55–1.67 (m, 4H), 4.21 (t, *J*=5.6 Hz, 4H), 6.90 (s, 4H); ¹³C NMR (100 MHz) δ 24.1, 26.8, 27.3, 28.0, 28.4, 68.9, 118.5, 152.9; HRMS (FAB⁺) for M⁺ found *m*/*z* 262.1940, calcd for C₁₇H₂₆O₂: 262.1933.

4.2.3. 1,14-Dioxa[14]paracyclophane (**1e**). White solid. Mp 47 °C; IR (KBr) 2927, 2854, 1506, 1460, 1241, 1224, 1205, 1011, 831 cm⁻¹; ¹H NMR (400 MHz) δ 0.89–1.01 (br s, 8H), 1.08–1.20 (m, 4H), 1.27–1.38 (m, 4H), 1.59–1.68 (m, 4H), 4.17 (t, *J*=5.7 Hz, 4H), 6.87 (s, 4H); ¹³C NMR (100 MHz) δ 23.9, 27.2, 27.5, 27.8, 28.4, 68.4, 117.7, 152.4; HRMS (FAB⁺) for M⁺ found *m*/*z* 276.2082, calcd for C₁₈H₂₈O₂: 276.2089.

4.2.4. 1,15-Dioxa[15]paracyclophane (**1f**). Colorless oil; IR (neat) 2925, 2854, 1504, 1205, 827 cm⁻¹; ¹H NMR (400 MHz) δ 0.88–1.13 (m, 10H), 1.15–1.28 (m, 4H), 1.32–1.42 (m, 4H), 1.58–1.69 (m, 4H), 4.14 (t, *J*=5.6 Hz, 4H), 6.85 (s, 4H); ¹³C NMR (100 MHz) δ 23.8, 27.4, 27.4, 28.0, 28.1, 29.5, 68.0, 117.2, 152.4; HRMS (FAB⁺) for M⁺ found *m*/*z* 290.2248, calcd for C₁₉H₃₀O₂: 290.2246.

4.2.5. 1,16-Dioxa[16]paracyclophane (**1g**). White solid. Mp 49 °C; IR (KBr) 2924, 2854, 1508, 1211, 1059, 820 cm⁻¹; ¹H NMR (400 MHz) δ 0.97–1.19 (m, 12H), 1.19–1.32 (m, 4H), 1.34–1.64 (m, 4H), 1.60–1.71 (m, 4H), 4.10 (t, *J*=5.9 Hz, 4H), 6.84 (s, 4H); ¹³C NMR (100 MHz) δ 24.0, 27.1, 27.4, 27.9, 28.3, 28.8, 67.9, 116.6, 152.4; HRMS (FAB⁺) for M⁺ found *m*/*z* 304.2416, calcd for C₂₀H₃₂O₂: 304.2402.

4.2.6. 1,17-Dioxa[17]paracyclophane (**1h**). Colorless oil; IR (neat) 2925, 2854, 1506, 1236, 1207, 835 cm⁻¹; ¹H NMR (400 MHz) δ 1.01–1.23 (m, 14H), 1.23–1.34 (m, 4H), 1.37–1.48 (m, 4H), 1.62–1.73 (m, 4H), 4.07 (t, *J*=6.1 Hz, 4H), 6.83 (s, 4H); ¹³C NMR (100 MHz) δ 24.1, 27.3, 27.7, 28.1, 28.3, 28.8, 29.2, 68.0, 116.4, 152.7;

HRMS (FAB⁺) for M⁺ found m/z 318.2574, calcd for C₂₁H₃₄O₂: 318.2559.

4.2.7. 1,16-Dioxa[16](1.4)naphthalenophane (**3e**). Colorless oil; IR (neat) 2925, 2854, 1595, 1460, 1269, 1234, 1093, 764 cm⁻¹; ¹H NMR (400 MHz) δ 0.67–0.78 (m, 4H), 0.80–0.92 (m, 4H), 0.93–1.04 (m, 4H), 1.16–1.27 (m, 4H), 1.41–1.51 (m, 4H), 1.73–1.83 (m, 4H), 4.23 (t, *J*=6.0 Hz, 4H), 6.77 (s, 2H), 7.48 (dd, *J*=3.2, 6.4 Hz, 2H), 8.23 (dd, *J*=3.2, 6.4 Hz, 2H); ¹³C NMR (100 MHz) δ 24.6, 27.1, 27.3, 27.9, 28.3, 28.5, 68.1, 106.0, 122.0, 125.5, 127.4, 148.1 HRMS (FAB⁺) for M⁺ found *m/z* 354.2569, calcd for C₂₄H₃₄O₂: 354.2559.

4.3. Experimental procedure for enantioselective monolithiation

A cyclohexane/hexane solution of *sec*-butyllithium (1.0 M, 0.2 mL, 0.2 mmol) was added dropwise to an ether solution (0.5 mL) of 1,*n*-dioxa[*n*]paracyclophane **1** (0.1 mmol) and (–)-sparteine **L1** (23 μ L, 0.1 mmol) at -78 °C and the reaction mixture was stirred for the hours cited in Tables 2 and 3 at -78 °C. To the mixture was added dropwise iodine (76.1 mg, 0.3 mmol) in Et₂O (0.6 mL) at -78 °C, and the reaction mixture stirred for 2 h at rt. It was treated with saturated Na₂S₂O₃ aqueous solution, and extracted with ethyl acetate. The organic layer was washed with water and brine. The extract was dried over Na₂SO₄ and evaporated under reduced pressure. The resulting residue was purified by PTLC to give a monoiodo-1,*n*-dioxa[*n*]paracyclophane **2**.

4.3.1. 12-(Diphenylphosphino)-1,10-dioxa/10/paracyclophane (**2bc**). After monolithiation of **1b**, chlorodiphenylphosphine (56 µL, 0.3 mmol) was added at -78 °C. Then the mixture was stirred for 2 h at rt. It was filtered through a short plug of silica gel with dichloromethane and the filtrate was evaporated under reduced pressure. The crude products were purified by PTLC (hexane/ dichloromethane=3/1) to give **2bc**. White solid. Mp 110 °C; IR (KBr) 3052, 2925, 2866, 1473, 1456, 1192, 1028, 742, 696 cm⁻¹; ¹H NMR (400 MHz) δ 0.32–0.50 (m, 1H), 0.55–1.08 (m, 6H), 1.28–1.66 (m, 4H), 1.67-1.83 (m, 1H), 3.71-3.86 (m, 1H), 3.99-4.12 (m, 1H), 4.19-4.37 (m, 2H), 6.35-5.39 (m, 1H), 6.95-7.01 (m, 2H), 7.26-7.39 (m, 10H); 13 C NMR (100 MHz) δ 24.0 (d, J=2.9 Hz), 24.1, 26.3, 26.6, 27.5 (d, J=2.9 Hz), 28.0, 71.7 (d, J=2.9 Hz), 72.0, 120.6 (d, J=2.9 Hz), 123.0, 125.7, 128.3 (d, J=6.7 Hz), 128.5, 128.5 (d, J=6.7 Hz), 129.0, 131.8 (d, J=13.4 Hz), 133.0 (d, J=19.2 Hz), 134.6 (d, J=21.1 Hz), 136.5 (d, *J*=45.1 Hz), 136.6 (d, *J*=47.9 Hz), 153.2, 155.2 (d, *J*=16.6 Hz); ³¹P NMR (160 MHz) δ –20.2; HRMS (FAB⁺) for M⁺ found *m*/*z* 404.1906, calcd for C₂₆H₂₉O₂P: 404.1905. [α]_D²⁷ +7.1 (*c* 1.13, CHCl₃, 98% ee). ee was determined by HPLC analysis using a chiral column (Daicel Chiralpak IA: 4×250 mm, 254 nm UV detector, rt, eluent: 20% dichloromethane in hexane, flow rate: 0.5 mL/min, retention time: 8.9 min for minor isomer and 9.5 min for major isomer).

4.3.2. 18-Iodo-1,16-dioxa[16](1.4)naphthalenophane (**4d**). Pale yellow viscous oil; IR (neat) 2925, 2854, 1572, 1458, 1444, 1321, 1269, 1259, 1097, 960, 765, 709 cm⁻¹; ¹H NMR (400 MHz) δ 0.60–1.50 (m, 20H), 1.59–1.83 (m, 3H), 1.90–2.07 (m, 1H) 4.14–4.45 (m, 4H), 7.11 (s, 1H), 7.43–7.55 (m, 2H), 8.06–8.14 (m, 1H), 8.18–8.26 (m, 1H); ¹³C NMR (100 MHz) δ 24.6, 26.4, 27.3, 27.4, 27.7, 27.9, 28.0, 28.2, 28.4, 28.7, 31.6, 67.7, 74.3, 85.9, 115.0, 122.4, 122.6, 125.7, 126.6, 126.8, 129.4, 148.9, 151.1; HRMS (FAB⁺) for M⁺ found *m*/*z* 480.1519, calcd for C₂₄H₃₃IO₂: 480.1525. [α]_D²⁶ 6.6 (*c* 1.82, CHCl₃, 92% ee). ee was determined by HPLC analysis using a chiral column (Daicel Chiralpak IB: 4×250 mm, 254 nm UV detector, rt, eluent: 20% dichloromethane in hexane, flow rate: 1.0 mL/min, retention time: 6.3 min for minor isomer and 9.1 min for major isomer).

4.4. Enantioselective synthesis of 12-trimethylsilyl-1,10-dioxa [10]paracyclophane and 13-trimethylsilyl-1,11-dioxa[11] paracyclophane

A cyclohexane/hexane solution of *sec*-butyllithium (1.0 M, 1.2 mL, 1.2 mmol) was added dropwise to an Et₂O solution (5.0 mL) of a 1,*n*-dioxa[*n*]paracyclophane **1** (*n*=8 or 9, 1.0 mmol) and (–)-sparteine **L1** (0.23 mL, 1.0 mmol) at -78 °C, and the reaction mixture was stirred for 3 h at -78 °C. To the mixture was added dropwise chlorotrimethylsilane (76.1 mL, 2.0 mmol) at -78 °C and the mixture stirred for overnight at rt. It was treated with saturated NH₄Cl aqueous solution, and extracted with ethyl acetate. The organic layer was washed with water and brine. The extract was dried over Na₂SO₄ and evaporated under reduced pressure. The resulting residue was purified by flash column chromatography (hexane/dichloromethane=3/1) to give trimethylsilyl-1,*n*-dioxa[*n*]paracyclophane **2**.

4.4.1. 13-(Trimethylsilyl)-1,11-dioxa[11]paracyclophane (**2ab**). Color less oil; IR (neat) 2952, 2925, 2856, 1567, 1473, 1475, 1390, 1373, 1254, 1246, 1194, 1130, 1063, 1037, 1012, 1007, 893, 883, 839, 766, 700, 625 cm⁻¹; ¹H NMR (400 MHz) δ 0.30 (s, 9H), 0.58–0.75 (m, 1H), 0.75–1.11 (m, 9H), 1.49–1.78 (m, 4H), 4.09–4.27 (m, 3H), 4.30–4.43 (m, 1H), 6.94 (d, *J*=8.5 Hz, 1H), 7.00–7.09 (m, 2H); ¹³C NMR (100 MHz) δ –0.3, 25.4, 26.1, 26.3, 26.8, 27.8, 29.3, 29.9, 69.9, 72.1, 117.3, 121.9, 127.0, 131.6, 153.5, 159.2; HRMS (FAB⁺) for M⁺ found *m/z* 306.2028, calcd for C₁₈H₃₀O₂Si: 306.2015. [α]²³_D –23.2 (*c* 1.39, CHCl₃, 97% ee). Compound **2ab** was treated with NIS, and the ee was determined as the corresponding iodinated products **2aa**. (Daicel Chiralpak IB: 4×250 mm, 254 nm UV detector, rt, eluent: 20% dichloromethane in hexane, flow rate: 1.0 mL/min, retention time: 5.1 min for minor isomer and 6.3 min for major isomer).

4.4.2. 12-(Trimethylsilyl)-1,10-dioxa[10]paracyclophane (2bb). Colorless oil; IR (neat) 2954, 2925, 2856, 1567, 1473, 1244, 1390, 1365, 1190, 1126, 1033, 839, 767, 700, 625 cm⁻¹; ¹H NMR (400 MHz) δ 0.08–0.25 (m, 1H), 0.29 (s, 9H), 0.53–0.71 (m, 1H), 0.71–1.07 (m, 6H), 1.18-1.34 (m, 1H), 1.35-1.49 (m, 1H), 1.51-1.64 (m, 1H), 1.82-1.98 (m, 1H), 3.95-4.04 (m, 1H), 4.09-4.25 (m, 2H), 4.32-4.41 (m, 1H), 6.85 (d, J=8.2 Hz, 1H), 6.98 (dd, J=3.7, 8.2 Hz, 1H), 7.09 (d, J=3.7 Hz, 1H); ¹³C NMR (100 MHz) δ -0.53, 22.8, 24.8, 26.0, 26.5, 26.7, 29.4, 69.7, 73.1, 118.3, 123.0, 127.5, 132.6, 152.3, 158.1; HRMS (FAB⁺) for M⁺ found *m*/*z* 202.1849, calcd for C₁₇H₂₈O₂Si: 292.1859. $[\alpha]_{D}^{33}$ – 22.3 (*c* 1.03, CHCl₃, 97% ee). Compound **2bb** was treated with NIS, and the ee was determined as the corresponding iodinated products 2ba. (Daicel Chiralpak IB: 4×250 mm, 254 nm UV detector, rt, eluent: 20% dichloromethane in hexane, flow rate: 1.0 mL/ min, retention time: 5.2 min for minor isomer and 6.0 min for major isomer).

4.5. Synthesis of trimethylsilyl-1,*n*-dioxa[*n*]paracyclophane (*n*≥12)

A cyclohexane/hexane solution of *sec*-butyllithium (1.0 M, 2.0 mL, 2.0 mmol) was added dropwise to an Et₂O solution (5.0 mL) of 1,*n*-dioxa[*n*]paracyclophane **1** (1.0 mmol) and TMEDA (0.23 mL, 1.0 mmol) at -78 °C, and the reaction mixture was stirred for 3 h at -78 °C. To the mixture was added dropwise chlorotrimethylsilane (76 µL, 0.3 mmol) at -78 °C and the mixture stirred for overnight at rt. It was treated with saturated NH₄Cl aqueous solution, and extracted with ethyl acetate. The organic layer was washed with water and brine. The extract was dried over Na₂SO₄ and evaporated under reduced pressure. The resulting residue was purified by flash column chromatography (hexane/dichloromethane=3/1) to give a trimethylsilyl-1,*n*-dioxa[*n*] paracyclophane **2**.

4.5.1. 14-(*Trimethylsilyl*)-1,12-*dioxa*[12]*paracyclophane* (**2cb**). Colorless oil; IR (neat) 2949, 2929, 2898, 2856, 1573, 1473, 1259, 1246, 1196, 1136, 1072, 1045, 1022, 1004, 860, 837, 764, 704, 625 cm⁻¹; ¹H NMR (400 MHz) δ 0.27 (s, 9H), 0.48–0.65 (m, 1H), 0.70–1.23 (m, 11H), 1.45–1.62 (m, 2H), 1.62–1.75 (m, 1H), 1.75–1.89 (m, 1H), 4.06–4.16 (m, 1H), 4.20 (t, *J*=5.7 Hz, 2H), 4.37–4.47 (m, 1H), 6.83 (d, *J*=8.7 Hz, 1H), 6.95 (dd, *J*=2.7, 8.7 Hz, 1H), 7.01 (d, *J*=2.7 Hz, 1H); ¹³C NMR (100 MHz) δ –0.5, 23.5, 24.2, 27.2, 27.3, 27.3, 27.5, 28.4, 67.6, 69.7, 114.6, 119.8, 125.8, 130.0, 152.4, 157.6 (A pair of peaks at the aliphatic region is overlapped.); HRMS (FAB⁺) for M⁺ found *m*/*z* 320.2184, calcd for C₁₉H₃₂O₂Si: 320.2172.

4.5.2. 15-(Trimethylsilyl)-1,13-dioxa[13]paracyclophane (**2db**). Colorless oil; IR (neat) 2925, 2900, 2856, 1576, 1473, 1259, 1244, 1200, 1138, 1061, 1045, 1002, 870, 837, 764, 704, 625 cm⁻¹; ¹H NMR (400 MHz) δ 0.27 (s, 9H), 0.61–0.76 (m, 2H), 0.87–1.26 (m, 12H), 1.49–1.74 (br s, 4H), 4.12–4.33 (m, 4H), 6.72 (d, *J*=9.0 Hz, 1H), 6.90 (dd, *J*=3.2, 9.0 Hz, 1H), 6.99 (d, *J*=3.2 Hz, 1H); ¹³C NMR (100 MHz) δ –0.5, 24.3, 26.7, 27.4, 27.6, 27.8, 28.3, 28.3, 28.5, 67.1, 69.3, 112.9, 119.0, 124.8, 129.7, 151.8, 157.2 (A pair of peaks at the aliphatic region is overlapped.); HRMS (FAB⁺) for M⁺ found *m*/*z* 334.2321, calcd for C₂₀H₃₄O₂Si: 334.2328.

4.5.3. 16-(Trimethylsilyl)-1,14-dioxa[14]paracyclophane (**2eb**). Colorless oil; IR (neat) 2925, 2854, 1576, 1475, 1396, 1268, 1257, 1243, 1200, 1140, 1072, 1051, 1007, 883, 839, 763, 706, 627 cm⁻¹; ¹H NMR (400 MHz) δ 0.27 (s, 9H), 0.84–0.97 (m, 6H), 0.97–1.06 (m, 2H), 1.06–1.15 (m, 2H), 1.15–1.23 (m, 2H), 1.23–1.39 (m, 4H), 1.54–1.76 (m, 4H), 4.11–4.25 (m, 4H), 6.76 (d, *J*=8.3 Hz, 1H), 6.88 (dd, *J*=3.2, 8.3 Hz, 1H), 6.97 (d, *J*=3.2 Hz, 1H); ¹³C NMR (100 MHz) δ –0.6, 23.9, 24.2, 27.1, 27.4, 27.5, 27.6, 27.7, 28.1, 28.3, 28.5, 66.5, 68.7, 111.8, 118.5, 124.1, 129.1, 151.4, 156.9; HRMS (FAB⁺) for M⁺ found *m/z* 348.2474, calcd for C₂₁H₃₆O₂Si: 348.2485.

4.5.4. 17-(*Trimethylsilyl*)-1,15-*dioxa*[15]*paracyclophane* (**2fb**). Colorless oil; IR (neat) 2925, 2854, 1577, 1473, 1396, 1269, 1244, 1203, 1147, 1068, 1045, 1005, 881, 839, 764, 710, 627 cm⁻¹; ¹H NMR (400 MHz) δ 0.26 (s, 9H), 0.85–1.47 (m, 18H), 1.54–1.81 (m, 4H), 4.14 (t, *J*=5.9 Hz, 4H), 6.74 (d, *J*=9.0 Hz, 1H), 6.85 (dd, *J*=2.9, 9.0 Hz, 1H), 6.96 (d, *J*=2.9 Hz, 1H); ¹³C NMR (100 MHz) δ –0.61, 23.9, 24.0, 27.4, 27.4, 27.6, 27.6, 27.8, 28.1, 28.2, 28.2, 29.6, 66.3, 68.4, 111.0, 117.4, 124.0, 1129.2, 151.5, 157.0; HRMS (FAB⁺) for M⁺ found *m*/*z* 362.2649, calcd for C₂₂H₃₈O₂Si: 362.2641.

4.5.5. 18-(Trimethylsilyl)-1,16-dioxa[16]paracyclophane (**2gb**). Colorless oil; IR (neat) 2925, 2854, 1577, 1468, 1396, 1271, 1244, 1205, 1142, 1058, 1045, 883, 839, 763, 713, 686, 627 cm⁻¹; ¹H NMR (400 MHz) δ 0.27 (s, 9H), 0.95–1.50 (m, 20H), 1.57–1.80 (m, 4H), 4.08 (t, *J*=5.9 Hz, 2H), 4.13 (t, *J*=5.9 Hz, 2H), 6.74 (d, *J*=9.0 Hz, 1H), 6.85 (dd, *J*=3.4, 9.0 Hz, 1H), 6.95 (d, *J*=3.4 Hz, 1H); ¹³C NMR (100 MHz) δ –0.65, 23.7, 24.1, 26.6, 27.2, 27.4, 27.4, 27.8, 28.0, 28.0, 28.6, 28.6, 29.2, 65.9, 68.0, 110.6, 117.2, 123.3, 128.9, 151.4, 157.2; HRMS (FAB⁺) for M⁺ found *m*/*z* 376.2809, calcd for C₂₃H₄₀O₂Si: 376.2798.

4.6. Typical experimental procedure for enantioselective dilithiation

To an Et₂O solution (0.5 mL) of a 1,*n*-dioxa[*n*]paracyclophane **1** (0.1 mmol) and **L1** (23 μ L, 0.1 mmol) was added dropwise a cyclohexane/hexane solution of *sec*-butyllithium (1.0 M, 0.2 mL, 0.2 mmol) at -78 °C and stirred for 2 h at -78 °C Then a cyclohexane/hexane solution of *sec*-butyllithium (1.0 M, 0.2 mL, 0.2 mmol) was added dropwise to the mixture at -78 °C and stirred for the hours cited in Table 4 at -20 °C. Iodine (152.3 mg, 0.6 mmol) in Et₂O (1.2 mL) was added dropwise at -78 °C and the mixture stirred for

2 h at rt. It was treated with $Na_2S_2O_3$ aqueous solution, and extracted with ethyl acetate. The organic layer was washed with water and brine. The extract was dried over Na_2SO_4 and evaporated under reduced pressure. The resulting residue was purified by thin-layer chromatography to give a diiodo-1,*n*-dioxa[*n*]paracyclophane **5**.

4.6.1. (S)-13.16-Diiodo-1.11-dioxal11 paracvclophane (**5aa**). White solid. Mp 70 °C: IR (KBr) 2924, 2854, 1471, 1448, 1335, 1187, 1043 cm⁻¹; ¹H NMR (400 MHz) δ 0.69–0.85 (m, 2H), 0.86–1.08 (m, 8H), 1.47-1.64 (m, 2H), 1.74-1.90 (m, 2H), 4.16-4.25 (m, 2H), 4.31–4.40 (m, 2H), 7.37 (s, 2H); 13 C NMR (100 MHz) δ 25.3, 25.9, 28.0, 29.7, 72.7, 90.5, 129.6, 154.6; Anal. Calcd for C15H20I2O2: C, 37.06; H, 4.15. found: C, 37.23; H, 4.04.; HRMS (FAB⁺) for M⁺ found m/z 485.9557, calcd for C₁₅H₂₀I₂O₂: 485.9553. [α]_D²⁵ +58.9 (*c* 1.87, Clicit - 2027) CHCl₃, 99% ee). ee was determined by HPLC analysis using a chiral column (Daicel Chiralpak IA: 4×250 mm, 254 nm UV detector, rt, eluent: 20% dichloromethane in hexane, flow rate: 1.0 mL/min, retention time: 4.5 min for minor isomer and 5.8 min for major isomer). Crystal data for C₁₅H₂₀I₂O₂, M=486.13, orthorhombic, space group $P2_12_12_1$ (no. 19), a=10.2806(9) Å, b=10.712(1) Å, c=14.605(2) Å, V=1608.4(3) Å³, T=173 K, Z=4, μ (Mo K α)= 39.085 cm⁻¹; number of reflections measured: total 25,616 and unique 3682, R1=0.0785, wR2=0.2027, Flack parameter (Friedel pairs=1579) 0.02(8). CCDC 852454.

4.6.2. 14,17-Diiodo-1,12-dioxa[12]paracyclophane (**5ca**). White solid. Mp 98 °C; IR (KBr) 2927, 2854, 1471, 1456, 1336, 1263, 1192, 1045, 981, 872, 804, 739 cm⁻¹; ¹H NMR (400 MHz) δ 0.63–0.83 (br s, 4H), 0.83–1.04 (m, 2H), 1.04–1.35 (m, 6H), 1.57–1.77 (m, 4H), 4.17–4.30 (m, 2H), 4.30–4.43 (m, 2H), 7.30 (s, 2H); ¹³C NMR (100 MHz) δ 23.8, 27.4, 27.4, 27.6, 70.6, 89.1, 127.0, 152.7; HRMS (FAB⁺) for M⁺ found *m*/*z* 499.9710, calcd for C₁₆H₂₂I₂O₂: 499.9709. [α]₂²⁴ +54.6 (*c* 1.40, CHCl₃, 88% ee). ee was determined by HPLC analysis using a chiral column (Daicel Chiralpak IA: 4×250 mm, 254 nm UV detector, rt, eluent: 20% CH₂Cl₂ in hexane, flow rate: 1.0 mL/min, retention time: 4.8 min for minor isomer and 7.3 min for major isomer).

4.6.3. 15,18-Diiodo-1,13-dioxa[13]paracyclophane (**5da**). White solid. Mp 115 °C; IR (KBr) 2924, 2852, 1473, 1456, 1338, 1196, 1045, 839, 744 cm⁻¹; ¹H NMR (400 MHz) δ 0.67–0.84 (m, 2H), 0.84–1.12 (m, 6H), 1.12–1.34 (m, 6H), 1.52–1.67 (m, 2H), 1.67–1.83 (m 2H), 4.29 (t, *J*=5.4 Hz, 4H), 7.30 (m, 2H); ¹³C NMR (100 MHz) δ 24.1, 27.1, 27.1, 28.4, 28.6, 70.5, 88.3, 125.8, 153.0; HRMS (FAB⁺) for M⁺ found *m*/*z* 513.9885, calcd for C₁₇H₂₄I₂O₂: 513.9866. [α]_D²⁴ +54.1 (*c* 1.46, CHCl₃, 95% ee). ee was determined by HPLC analysis using a chiral column (Daicel Chiralpak IA: 4×250 mm, 254 nm UV detector, rt, eluent: 20% CH₂Cl₂ in hexane, flow rate: 1.0 mL/min, retention time: 4.4 min for minor isomer and 6.4 min for major isomer).

4.6.4. 16,19-Diiodo-1,14-dioxa[14]paracyclophane (**5ea**). White solid. Mp 101 °C; IR (KBr) 2924, 2852, 1473, 1460, 1338, 1261, 1200, 1047, 862, 800, 736 cm⁻¹; ¹H NMR (400 MHz) δ 0.85–1.03 (br, 8H), 1.03–1.46 (m, 8H), 1.49–1.67 (m, 2H), 1.67–1.83 (m, 2H), 4.13–4.35 (m, 4H), 7.26 (s, 2H); ¹³C NMR (100 MHz) δ 24.0, 26.8, 27.5, 28.0, 28.6, 69.6, 87.3, 124.6, 151.8; HRMS (FAB⁺) for M⁺ found *m*/*z* 528.0014, calcd for C₁₈H₂₆I₂O₂: 528.0022. [α]₂^D²+59.4 (*c* 1.41, CHCI₃, 93% ee). ee was determined by HPLC analysis using a chiral column (Daicel Chiralpak IA: 4×250 mm, 254 nm UV detector, rt, eluent: 20% CH₂Cl₂ in hexane, flow rate: 1.0 mL/min, retention time: 4.4 min for minor isomer and 6.4 min for major isomer).

4.6.5. 17,20-Diiodo-1,15-dioxa[15]paracyclophane (**5fa**). White solid. Mp 84 °C; IR (KBr) 2924, 2852, 1475, 1460, 1340, 1201, 1049, 987, 858, 733 cm⁻¹; ¹H NMR (400 MHz) δ 0.91–1.20 (m, 10H), 1.20–1.55 (m, 8H), 1.59–1.74 (m, 4H), 4.20 (t, *J*=5.5 Hz, 4H), 7.24 (s, 2H); ¹³C NMR (100 MHz) δ 24.0, 27.2, 27.5, 28.1, 28.3, 29.4, 69.4, 87.2, 124.0, 152.2;

HRMS (FAB⁺) for M⁺ found *m*/*z* 542.0179, calcd for C₁₉H₂₈I₂O₂: 542.0179. [α]_D²⁴ +58.9 (*c* 0.70, CHCI₃, 91% ee). ee was determined by HPLC analysis using a chiral column (Daicel Chiralpak IA: 4×250 mm, 254 nm UV detector, rt, eluent: 20% CH₂Cl₂ in hexane, flow rate: 1.0 mL/min, retention time: 4.4 min for minor isomer and 6.9 min for major isomer).

4.6.6. 18,21-Diiodo-1,16-dioxa[16]paracyclophane (**5ga**). White solid. Mp 74 °C; IR (KBr) 2924, 2852, 1483, 1462, 1340, 1205, 1051, 860, 746 cm⁻¹; ¹H NMR (400 MHz) δ 0.90–1.45 (m, 16H), 1.45–1.95 (m, 8H), 4.05–4.28 (m, 4H), 7.21 (s, 2H); ¹³C NMR (100 MHz) δ 23.7, 26.7, 27.2, 27.9, 28.3, 29.0, 68.9, 86.5, 123.3, 151.9; HRMS (FAB⁺) for M⁺ found *m*/*z* 556.0309, calcd for C₂₀H₃₀I₂O₂: 556.0335. [α]_D²⁶ +43.4 (*c* 1.00, CHCl₃, 91% ee). ee was determined by HPLC analysis using a chiral column (Daicel Chiralpak IA: 4×250 mm, 254 nm UV detector, rt, eluent: 20% CH₂Cl₂ in hexane, flow rate: 1.0 mL/min, retention time: 4.0 min for minor isomer and 6.0 min for major isomer).

4.6.7. 19,22-Diiodo-1,17-dioxa[17]paracyclophane (**5ha**). Yellowish viscous oil; IR (KBr) 2924, 2852, 1483, 1460, 1342, 1205, 1051, 1002, 856 cm⁻¹; ¹H NMR (400 MHz) δ 1.00–1.45 (m, 20H), 1.47–1.71 (m, 4H), 1.71–1.91 (m, 2H), 4.04–4.21 (m, 4H), 7.21 (s, 2H); ¹³C NMR (100 MHz) δ 24.3, 27.1, 27.8, 28.2, 28.3, 28.9, 29.2, 69.2, 86.6, 123.3, 152.3; HRMS (FAB⁺) for M⁺ found *m*/*z* 570.0484, calcd for C₂₁H₃₂I₂O₂: 570.0492.

4.6.8. 19,22-Bis(diphenylphosphino)-1,17-dioxa[17]paracyclophane (**5hc**). After dilithiation of **1g**. chlorodiphenvlphosphine (112 µL. 0.6 mmol) was added at -78 °C. Then the mixture was stirred for 2 h at rt. It was filtered through a short plug of silica gel with dichloromethane and the filtrate was evaporated under reduced pressure. The crude products were purified by PTLC (hexane/ dichloromethane=3/2) to give **5hc**. White solid. 50 °C; IR (KBr) 2925, 2852, 1463, 1434, 1344, 1196, 724, 696 $\rm cm^{-1}; \ ^1H \ NMR$ $(400 \text{ MHz}) \delta 0.99-1.44 \text{ (m, 26H)}, 3.60-3.84 \text{ (m, 4H)}, 6.22 \text{ (t,}$ J=4.6 Hz, 2H), 7.22–7.44 (m, 20H); ¹³C NMR (100 MHz) δ 24.3, 27.5, 27.7, 28.0, 28.5, 28.8, 29.2, 67.9, 117.4, 128.1 (d, *J*=14.4 Hz), 128.3, 128.4, 128.4, 128.6 (d, J=13.4 Hz), 133.7 (d, J=20.1 Hz), 134.1 (d, J=20.1 Hz), 136.6 (d, J=12.5 Hz), 137.3 (d, J=11.5 Hz), 153.8 (d, J=16.3 Hz); ³¹P NMR (160 MHz) δ –16.3: HRMS (FAB⁺) for M⁺ found m/z 686.3441, calcd for C₄₅H₅₂O₂P₂: 686.3443. [α]_D²⁷ +8.2 (*c* 1.03, CHCl₃, 55% ee). Compound **5hc** was treated with hydrogen peroxide, and the ee was determined as the corresponding phosphine oxide. (Daicel Chiralpak IA: 4×250 mm, 254 nm UV detector, rt, eluent: 70% 2-propanol in hexane, flow rate: 1.0 mL/min. retention time: 15.2 min for major isomer and 21.5 min for minor isomer).

4.7. Asymmetric lithiation of trimethylsilyl-1,*n*-dioxa[*n*] paracyclophanes (*n*≥12)

To a solution of trimethylsilyl-1,*n*-dioxa[*n*]paracyclophanes **2** (0.2 mmol) and **L1** (92 μ L, 0.4 mmol) in Et₂O (1.0 mL) was added dropwise a cyclohexane/hexane solution of *sec*-butyllithium (1.0 M, 0.4 mL, 0.4 mmol) at -78 °C and stirred for the hours cited in Table 5 at -78 °C. Then to the mixture was added dropwise trimethylsilyl-chloride (76 μ L, 0.6 mmol) at -78 °C and stirred for 1 h at rt. The mixture was added NH₄Cl solution, and extracted with ethyl acetate. The organic layer was removed under reduced pressure, and the crude products were purified by PTLC to give bis(trimethylsilyl) 1,*n*-dioxa[*n*]paracyclophanes **5**.

4.7.1. 14,17-Bis(trimethylsilyl)-1,12-dioxa[12]paracyclophane (**5cb**). Colorless oil; IR (neat) 2952, 2925, 2900, 2854, 1468, 1333, 1246, 1184, 1107, 1049, 839, 761, 633 cm⁻¹; ¹H NMR (400 MHz) δ 0.29 (s, 18H),

0.54–0.72 (m, 2H), 0.74–0.90 (m, 2H), 0.90–1.20 (m, 8H), 1.37–1.56 (m, 2H), 1.69–1.88 (m, 2H), 4.00–4.17 (m, 2H), 4.36–4.53 (m, 2H), 6.92 (s, 2H); ¹³C NMR (100 MHz) δ –0.4, 24.5, 27.3, 27.6, 28.0, 68.4, 120.9, 130.6, 156.3; HRMS (FAB⁺) for M⁺ found *m*/*z* 392.2574, calcd for C₂₂H₄₀O₂Si₂: 392.2567. [α]²⁴_{Hg435}–6.3 (*c* 1.33, CHCl₃, 18% ee). Compound **5cb** was treated with NBS, and the ee was determined as the corresponding dibrominated product. (Daicel Chiralpak IA: 4×250 mm, 254 nm UV detector, rt, eluent: 20% dichloromethane in hexane, flow rate: 1.0 mL/min, retention time: 4.8 min for minor isomer and 5.9 min for major isomer).

4.7.2. 15,18-Bis(trimethylsilyl)-1,13-dioxa[13]paracyclophane (**5db**). Colorless oil; IR (neat) 2952, 2925, 2900, 2854, 1465, 1335, 1246, 1186, 1107, 1057, 837, 762, 633 cm⁻¹; ¹H NMR (400 MHz) δ 0.27 (s, 18H) 0.59–0.76 (m, 2H), 0.84–1.27 (m, 12H), 1.43–1.61 (m, 2H), 1.61–1.77 (m, 2H), 4.03–4.16 (m, 2H), 4.33–4.45 (m, 2H), 6.91 (s, 2H); ¹³C NMR (100 MHz) δ –0.34, 24.8, 26.6, 27.8, 28.6, 28.8, 67.8, 119.7, 130.4, 156.7; HRMS (FAB⁺) for M⁺ found *m*/*z* 406.2704, calcd for C₂₃H₄₂O₂Si₂: 406.2723. [α]₂^{D3} –11.0 (*c* 1.29, benzene, 89% ee). Compound **5db** was treated with NBS, and the ee was determined as the corresponding dibrominated product. (Daicel Chiralpak IA: 4×250 mm, 254 nm UV detector, rt, eluent: 20% dichloromethane in hexane, flow rate: 1.0 mL/min, retention time: 4.3 min for minor isomer and 5.2 min for major isomer).

4.7.3. 16,19-*Bis*(*trimethylsilyl*)-1,14-*dioxa*[14]*paracyclophane* (**5eb**). Colorless oil; IR (neat) 2952, 2925, 2900, 2856, 1468, 1336, 1244, 1192, 1107, 1055, 837, 762, 633 cm⁻¹; ¹H NMR (400 MHz) δ 0.27 (s, 18H), 0.64–1.53 (m, 18H), 1.80–1.97 (m, 2H), 3.98–4.10 (m, 2H), 4.34–4.45 (m, 2H), 6.85 (s, 2H); ¹³C NMR (100 MHz) δ –0.2, 23.9, 27.1, 27.8, 28.0, 28.4, 66.6, 118.1, 129.3, 155.5; HRMS (FAB⁺) for M⁺ found *m*/*z* 420.2862, calcd for C₂₄H₄₄O₂Si₂: 420.2880. [α]_D²⁸ +22.6 (*c* 1.33, CHCl₃, 93% ee). Compound **5eb** was treated with NBS, and the ee was determined as the corresponding dibrominated product. (Daicel Chiralpak IA: 4×250 mm, 254 nm UV detector, rt, eluent: 20% dichloromethane in hexane, flow rate: 1.0 mL/min, retention time: 4.1 min for minor isomer and 5.3 min for major isomer).

4.7.4. 17,20-Bis(trimethylsilyl)-1,15-dioxa[15]paracyclophane (**5fb**). Colorless oil; IR (neat) 2951, 2925, 2902, 2854, 1466, 1338, 1244, 1194, 1107, 1057, 839, 762, 633 cm⁻¹; ¹H NMR (400 MHz) δ 0.28 (s, 18H), 0.76–1.20 (m, 12H), 1.20–1.42 (m, 6H), 1.48–1.65 (m, 2H), 1.66–1.83 (m, 2H), 3.96–4.10 (m, 2H), 4.26–4.39 (m, 2H), 6.87 (m, 2H); ¹³C NMR (100 MHz) δ –0.40, 24.4, 27.7, 28.0, 28.2, 28.3, 29.5, 66.7, 117.7, 129.6, 156.2; HRMS (FAB⁺) for M⁺ found *m*/*z* 434.3021, calcd for C₂₅H₄₆O₂Si₂: 434.3036. [α]²⁴_{Hg435} +30.0 (*c* 1.38, CHCl₃, 93% ee). Compound **5fb** was treated with NIS, and the ee was determined as the corresponding diiodinated product **5fa**.

4.7.5. 18,21-Bis(trimethylsilyl)-1,16-dioxa[16]paracyclophane (**5gb**). Colorless oil; IR (neat) 2949, 2925, 2902, 2856, 1464, 1338, 1244, 1196, 1107, 837, 762, 633 cm⁻¹; ¹H NMR (400 MHz) δ 0.27 (s, 18H), 0.80–1.02 (m, 8H), 1.05–1.32 (m, 10H); 1.37–1.53 (m, 2H), 1.56–1.69 (m, 2H), 1.70–1.84 (m, 2H), 3.94–4.03 (m, 2H), 4.23–4.32 (m, 2H), 6.84 (s, 2H); ¹³C NMR (100 MHz) δ –0.5, 23.5, 26.7, 27.5, 27.8, 27.9, 29.2, 65.7, 116.8, 129.1, 156.0; HRMS (FAB⁺) for M⁺ found *m*/*z* 448.3201, calcd for C₂₆H₄₈O₂Si₂: 448.3193. [α]_D²⁸ +13.0 (*c* 1.44, CHCl₃, 91% ee). Compound **5gb** was treated with NIS, and the ee was determined as the corresponding diiodinated product **5ga**.

4.8. Asymmetric lithiation of planar-chiral trimethylsilyl-1,*n*-dioxa[n]paracyclophanes ($n \le 11$)

To a solution of trimethylsilyl-1,n-dioxa[n]paracyclophanes **2** (0.1 mmol) and TMEDA (15 μ L, 0.1 mmol) in Et₂O (1.0 mL) was

added dropwise a cyclohexane/hexane solution of *sec*-butyllithium (1.0 M, 0.2 mL, 0.2 mmol) at -78 °C and stirred for 2 h at -20 °C.

4.8.1. 12-Iodo-15-trimethylsilyl-1,10-dioxa[10]paracyclophane (6ba). After lithiation of 2bb. iodine (76.1 mg, 0.3 mmol) in Et₂O (0.6 mL) was added dropwise at $-78 \degree$ C and stirred for 1 h at rt. The mixture was treated with Na₂S₂O₃ aqueous solution, and extracted with ethyl acetate. The organic layer was washed with water and brine. The extract was dried over Na₂SO₄ and evaporated under reduced pressure. The resulting residue was purified by thin-layer chromatography to give 6ba. Yellowish viscous oil; IR (neat) 2954, 2925, 2873, 2856, 1566, 1537, 1471, 1450, 1324, 1244, 1174, 839, 764, 690, 628 cm⁻¹; ¹H NMR (400 MHz) δ 0.11–0.37 (m, 1H), 0.27 (s, 9H), 0.53-0.72 (m, 1H), 0.72-1.13 (m, 6H), 1.18-1.36 (m, 1H), 1.49-1.70 (m, 2H), 1.83-2.04 (m, 1H), 4.00-4.25 (m, 2H), 4.28–4.45 (m, 2H), 7.03 (s, 1H), 7.27 (s, 1H); ¹³C NMR (100 MHz) δ -0.7, 22.5, 25.0, 26.0, 26.1, 26.6, 29.1, 70.1, 74.3, 92.8, 126.8, 128.2, 133.1, 152, 3, 158.3; HRMS (FAB⁺) for M⁺ found *m*/*z* 418.0840, calcd for C₁₇H₂₇IO₂Si: 418.0825. $[\alpha]_D^{23}$ +42.5 (*c* 1.69, CHCl₃, 97% ee). ee was determined by HPLC analysis using a chiral column (Daicel Chiralpak IA: 4×250 mm, 254 nm UV detector, rt, eluent: 10% CH₂Cl₂ in hexane, flow rate: 0.5 mL/min, retention time: 10.9 min for minor isomer and 12.1 min for major isomer).

4.8.2. 13-Iodo-16-trimethylsilyl-1,11-dioxa[11]paracyclophane (6aa). After lithiation of 2ab, iodine (76.1 mg, 0.3 mmol) in Et₂O (0.6 mL) was added dropwise at $-78 \degree$ C and stirred for 1 h at rt. The mixture was treated with Na₂S₂O₃ aqueous solution, and extracted with ethyl acetate. The organic layer was washed with water and brine. The extract was dried over Na₂SO₄ and evaporated under reduced pressure. The resulting residue was purified by thin-layer chromatography to give 6aa. Pale yellow viscous oil; IR (neat) 2951, 2925, 2897, 2856, 1567, 1469, 1456, 1431, 1244, 1182, 829, 771, 690 cm $^{-1};~^{1}\text{H}$ NMR (500 MHz) δ 0.28 (s, 9H), 0.55–0.71 (m, 1H), 0.76-1.15 (m, 9H), 1.43-1.58 (m, 1H), 1.59-1.73 (m, 2H), 1.73-1.88 (m, 1H), 4.08-4.24 (m, 2H), 4.28-4.45 (m, 2H), 6.98 (s, 1H), 7.32 (s, 1H); ^{13}C NMR (125 MHz) δ –0.58, 24.8, 26.1, 26.2, 26.6, 27.8, 29.2, 29.6, 70.0, 72.7, 92.2, 126.3, 126.7, 131.7, 152.7, 159.7; HRMS (FAB⁺) for M⁺ found m/z 432.0979, calcd for C₁₈H₂₉IO₂Si: 432.0981. [α]_D¹⁴ +31.1 (*c* 1.51, CHCl₃, 97% ee). ee was determined by HPLC analysis using a chiral column (Daicel Chiralpak IB: 4×250 mm, 254 nm UV detector, rt, eluent: 10% CH₂Cl₂ in hexane, flow rate: 0.5 mL/min, retention time: 8.4 min for minor isomer and 9.7 min for major isomer).

4.8.3. 13-Methyl-16-trimethylsilyl-1,11-dioxa[11]paracyclophane (6ad). After lithiation of 2ab, MeI (19 µL, 0.3 mmol) was added at -78 °C. Then the mixture was stirred for 12 h at rt. It was treated with saturated NH₄Cl aqueous solution and extracted with ethyl acetate. The extract was dried over Na₂SO₄ and evaporated under reduced pressure. The resulting residue was purified by PTLC to give 6ad. Colorless oil; IR (neat) 2952, 2925, 2900, 2856, 1600, 1479, 1352, 1244, 1178, 1033, 839, 750, 636 cm $^{-1}$; ^{1}H NMR (400 MHz) δ 0.21 (s, 9H), 0.49-0.66 (m, 1H), 0.67-1.06 (m, 9H), 1.35-1.64 (m, 4H), 2.20 (s, 3H), 4.00–4.17 (m 3H), 4.21–4.32 (m, 1H), 6.69 (s, 1H), 6.92 (s, 1H); ¹³C NMR (100 MHz) δ -0.2, 16.7, 25.1, 25.9, 26.1, 26.6, 28.1, 29.9, 30.1, 69.8, 71.8, 119.0, 126.6, 128.2, 131.9, 151.8, 159.6; HRMS (FAB⁺) for M⁺ found m/z 320.2166, calcd for C₁₉H₃₂O₂Si: 320.2172. $[\alpha]_D^{23}$ –19.0 (*c* 1.39, Clicit – 27%) CHCl₃, 97% ee). ee was determined by HPLC analysis using a chiral column (Daicel Chiralpak IA: 4×250 mm, 254 nm UV detector, rt, eluent: 10% CH₂Cl₂ in hexane, flow rate: 0.5 mL/min, retention time: 10.6 min for minor isomer and 11.3 min for major isomer).

4.8.4. 13-(16-Trimethylsilyl-1,11-dioxa[11]paracyclophane)carbaldehyde (**6ae**). After lithiation of **2ab**, DMF (23 μ L, 0.3 mmol) was added at -78 °C. Then the mixture was stirred for 2 h at rt. It was treated with saturated NH₄Cl aqueous solution and extracted with ethyl acetate. The extract was dried over Na₂SO₄ and evaporated under reduced pressure. The resulting residue was purified by PTLC to give **6ae**. Yellowish oil; IR (neat) 2951, 2927, 2900, 2856, 1685, 1597, 1471, 1458, 1398, 1354, 1244, 1178, 1132, 1057, 978, 841, 769, 640 cm⁻¹; ¹H NMR (500 MHz) δ 0.31 (s, 9H), 0.45–0.62 (m, 1H), 0.62–0.78 (m, 1H), 0.78–1.07 (m, 8H), 1.49–1.64 (m, 2H) 1.64–1.82 (m, 2H), 4.12–4.39 (m, 3H), 4.41–4.55 (m, 1H), 7.17 (s, 1H), 7.34 (s, 1H) 10.47 (s, 1H); ¹³C NMR (125 MHz) δ –0.7, 24.2, 25.9, 26.3, 26.7, 27.5, 28.5, 29.8, 69.2, 73.9 112.3, 128.2, 129.4, 140.8, 156.7, 159.2, 190.0; HRMS (ESI) for M+Na found *m*/*z* 357.1853, calcd for C₁₉H₃₀NaO₃Si: 357.1862. [α]₁¹⁸ –48.9 (*c* 1.22, CHCl₃, 97% ee). ee was determined by HPLC analysis using a chiral column (Daicel Chiralpak IA: 4×250 mm, 254 nm UV detector, rt, eluent: 10% CH₂Cl₂ in hexane, flow rate: 1.0 mL/min, retention time: 9.2 min for minor isomer and 12.8 min for major isomer).

4.8.5. 13-(1-Hydroxy-1,1-diphenylmethyl)-16-trimethylsilyl-1,11dioxa[11]paracyclophane (6af). After lithiation of 2ab, benzophenone (54.7 mg, 0.3 mmol) in Et₂O (0.6 mL) was added at -78 °C. Then the mixture was stirred for 12 h at rt. It was treated with saturated NH₄Cl aqueous solution and extracted with ethyl acetate. The extract was dried over Na₂SO₄ and evaporated under reduced pressure. The resulting residue was purified by PTLC to give 6af. Colorless oil; IR (neat) 3479, 3058, 2952, 2924, 2898, 2854, 1596, 1475, 1446, 1340, 1246, 1176, 1034, 862, 839, 756, 700, 677 cm⁻¹; ¹H NMR (500 MHz) δ 0.29 (s, 9H), 0.64–1.19 (m, 10H), 1.33–1.64 (m, 4H), 3.79-3.91 (m, 1H), 3.92-4.04 (m, 1H), 4.07-4.19 (m, 1H), 4.29-4.42 (m, 1H), 6.03 (s, 1H), 6.11 (s, 1H), 7.03 (s, 1H), 7.14–7.42 (m, 10H); ¹³C NMR (125 MHz) δ -0.32, 25.4, 25.5, 27.0, 27.1, 27.7, 28.9, 29.2, 70.3, 71.4, 82.3, 119.5, 124.6, 127.2, 127.2, 127.7, 127.7, 127.8, 128.2, 129.9, 137.9, 145.7, 147.1, 150.5, 157.8; HRMS (ESI) for M+Na found m/z 511.2627, calcd for $C_{31}H_{40}O_3Si$: 511.2644. $[\alpha]_D^{13}$ +46.3 (*c* 2.03, CHCl₃, 97% ee). ee was determined by HPLC analysis using a chiral column (Daicel Chiralpak IA: 4×250 mm, 254 nm UV detector, rt, eluent: 10% CH₂Cl₂ in hexane, flow rate: 1.0 mL/min, retention time: 5 min for major isomer and 13 min for minor isomer).

Acknowledgements

K.K. is grateful to the Japan Society for the Promotion of Science for the fellowship support. This work was supported by Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (No. 23655091). We also thank Asahi Glass Foundation and the Global COE program 'Center for Practice Chemical Wisdom' by MEXT. We also thank Ms. T. Koike (Waseda Univ.) for her experimental assistance in the preliminary work.

References and notes

- For reviews, see: (a) Cyclophane Chemistry; Vögtle, F., Ed.; Wiley: Chichester, UK, 1993; (b) Modern Cyclophane Chemistry; Gleither, R., Hopf, H., Eds.; Wiley: Chichester, UK, 2004.
- The monosubstituted [11]paracyclophanes were resolved into the enantiomers at rt, see: (a) Hochmuth, D. H.; König, W. A. *Liebigs Ann*. **1996**, 947–951; (b) Hochmuth, D. H.; König, W. A. *Tetrahedron: Asymmetry* **1999**, *10*, 1089–1097; (c) Scharwächter, K. P.; Hochmuth, D. H.; Dittmann, H.; König, W. A. Chirality **2001**, *13*, 679–690; (d) Lüttringhaus, A.; Gralheer, H. *Liebigs Ann. Chem.* **1942**, *550*, 67–98.
- (a) Pye, P. J.; Rossen, K.; Reamer, R. A.; Tsou, N. N.; Volante, R. P.; Reider, P. J. J. Am. Chem. Soc. 1997, 119, 6207–6208 For a review of [2.2]paracyclophane derivatives for asymmetric syntheses, see: (b) Gibson, S. E.; Knight, J. D. Org. Biomol. Chem. 2003, 1, 1256–1269.
- (a) Oi, S.; Miyano, S. Chem. Lett. 1992, 987–990; (b) Hattori, T.; Harada, N.; Oi, S.; Abe, H.; Miyano, S. Tetrahedron: Asymmetry 1995, 6, 1043–1046; (c) Hattori, T.; Koike, N.; Okaishi, Y.; Miyano, S. Tetrahedron Lett. 1996, 37, 2057–2060; (d) Fiesel, R.; Huber, J.; Scherf, U. Angew. Chem., Int. Ed. 1996, 35, 2113–2116; (e) Fiesel, R.; Huber, J.; Apel, U.; Enkelmann, V. ,; Hentschke, R.; Scherf, U. Macromol. Chem. Phys. 1997, 198, 2623–2650; (f) Kanomata, N.; Nakata, T. Angew. Chem., Int. Ed. 1997, 36, 1207–1211; (g) Kanomata, N.; Nakata, T. J. Am. Chem. Soc. 2000, 122, 4563–4568; (h) Kanomata, N.; Sakaguchi, R.; Sekine, K.; Yamashita, S.; Tanaka, H. Adv. Synth. Catal. 2010, 352, 2966–2978; (i) Maeda, R; Wada, T.;

Mori, T.; Kono, S.; Kanomata, N.; Inoue, Y. J. Am. Chem. Soc. 2011, 133, 10379–10381.

- (a) Kanomata, N.; Ochiai, Y. Tetrahedron Lett. 2001, 42, 1045–1048; (b) Kanomata, N.; Oikawa, J. Tetrahedron Lett. 2003, 44, 3625–3628; (c) Ueda, T.; Kanomata, N.; Machida, H. Org. Lett. 2005, 7, 2365–2368.
- (a) Islas-Gonzalez, G.; Bois-Choussy, M.; Zhu, J. Org. Biomol. Chem. 2003, 1, 30–32; (b) Tanaka, K.; Hori, T.; Osaka, T.; Noguchi, K.; Hirano, M. Org. Lett. 2007, 9, 4881–4884; (c) Hori, T.; Shibata, Y.; Tanaka, K. Tetrahedron: Asymmetry 2010, 21, 1303–1306; (d) Araki, T.; Hojo, D.; Noguchi, K.; Tanaka, K. Synlett 2011, 539–542.
- 7. Kanda, K.; Koike, T.; Endo, K.; Shibata, T. Chem. Commun. 2009, 1870-1872.
- Although it is not a paracyclophane synthesis, enantioselective synthesis of planar-chiral azamacrocycles via Pd-catalyzed Buchwald–Hartwig reaction of 1,5-dichloroanthraquinone and 1,5-dichloroanthracene with a diamine was recently reported: Ranyuk, E. R.; Averin, A. D.; Beletskaya, I. P. Adv. Synth. Catal. 2010, 352, 2299–2305.
- 9. It is not an enantioselective synthesis, but enantiomerically pure paracyclophanes was synthesized from hydrogen-bond-controlled axially chiral substrates using olefin metathesis: Mori, K.; Ohmori, K.; Suzuki, K. Angew. Chem., Int. Ed. 2009, 48, 5638–5641.
- Examples of enantioselective *ortho*-lithiation of chromium-arene complex, see:
 (a) Uemura, M.; Hayashi, Y.; Hayashi, Y. *Tetrahedron: Asymmetry* **1994**, *5*, 1427–1430;
 (b) Alexakis, A.; Kanger, T.; Mangeney, P.; Rose-Munch, F.; Perrotey, A.; Rose, E. *Tetrahedron: Asymmetry* **1995**, *6*, 2135–2138;
 (c) Pache, S.; Botuha, C.; Franz, R.; Kündig, P.; Einhorn, J. Helv. Chim. Acta **2000**, *83*, 2436–2451.
- Examples of enantioselective ortho-lithiation of ferrocene, see: (a) Nishibayashi, Y.; Aikawa, Y.; Ohe, K.; Uemura, S. J. Org. Chem. **1996**, 61, 1172–1174; (b) Tsukazaki, M.; Tinkl, M.; Roglans, A.; Chapell, B. J.; Taylor, N. J.; Snieckus, V. J. Am. Chem. Soc. **1996**, 118, 685–686; (c) Iftime, G.; Daran, J.-C.; Manoury, E.; Balavoine, G. G. A. Angew. Chem., Int. Ed. **1998**, 37, 1698–1701; (d) Metallinos, C.; Szillat, H.; Taylor, N. J.; Snieckus, V. Adv. Synth. Catal. **2003**, 345, 370–382.
- 12. The preliminary communication of this work, see: Kanda, K.; Endo, K.; Shibata, T. Org. Lett. **2010**, *12*, 1980–1983.
- Examples of lithiation using a catalytic amount of chiral diamines, see: (a) Genet, C.; Canipa, S. J.; O'Brien, P.; Taylor, S. J. Am. Chem. Soc. 2006, 128, 9336–9337; (b) Gammon, J. J.; Canipa, S. J.; O'Brien, P.; Kelly, B.; Taylor, S. Chem.

Commun. 2008, 3750–3752; (c) Canipa, S. J.; O'Brien, P.; Taylor, S. Tetrahedron: Asymmetry 2009, 20, 2407–2412.

- Examples of enantioselective lithiation using a catalytic amount of chiral diamines and a stoichiometric amount of achiral amines including lithium amide, see: (a) Asami, M.; Ishizaki, T.; Inoue, S. Tetrahedron: Asymmetry 1994, 5, 793–796; (b) Yamashita, T.; Sato, D.; Kiyoto, T.; Kumar, A.; Koga, K. Tetrahedron 1997, 33, 16987–16998; (c) Sdergren, M. J.; Andersson, P. G. J. Am. Chem. Soc. 1998, 120, 10760–10761; (d) Lill, S. O. N.; Pettersen, D.; Amedjkouh, M.; Ahlberg, P. J. Chem. Soc., Perkin Trans. 1 2001, 3054–3063; (e) Amedjkouh, M.; Pettersen, D.; Lill, S. O. N.; Davidsson, Ö; Ahlberg, P. Chem.-Eur. J. 2001, 7, 4368–4377; (f) Pettersen, D.; Amedjkouh, M.; Ahlberg, P. J. Chem. Soc., N.; Davidsson, Ö; Ahlberg, P. Tetrahedron 2002, 58, 4669–4673; (g) Malhotra, S. V. Tetrahedron: Asymmetry 2003, 14, 645–647; (h) McGrath, M. J.; O'Brien, P. J. Am. Chem. Soc. 2005, 127, 16378–16379; (i) McGrath, M. J.; Bilke, J. L.; O'Brien, P. Chem. 2008, 73, 6452–6454; (k) Bilke, J. L.; Moore, S. P.; O'Brien, P.; Gilday, J. Org. Lett. 2009, 11, 1935–1938.
- (a) Dearden, M. J.; Firkin, C. R.; Hermet, J.-P. R.; O'Brien, P. J. Am. Chem. Soc. 2002, 124, 11870–11871; (b) Dixon, A. J.; McGrath, M. J.; O'Brien, P. Org. Synth. 2006, 83, 141–154.
- 16. Monosubstituted 1,11-dioxa[11]paracyclophanes 2ab, 2ad, and 2ae, which are oil, were slowly racemized at rt (2ab: from 97% ee to 87% ee for 8 months, 2ad: from 95% ee to 88% ee for 2 years, 2ae: from 97% ee to 62% ee for 2 years). On the other hand, monosubstituted 1,11-dioxa[11]paracyclophanes 2ac and 2af, which are solid, was not racemized at all at rt for as long as 2 years.
- 17. Monosubstituted 1,10-dioxa[10]paracyclophanes **2ba** and **2bc**, which are solid, and **2bb**, which is oil, were not racemized at all at rt for as long as 8 months.
- 18. 2'-lodo[16](1,4)naphthalenophane **4d**, which is amorphous, was gradually racemized at rt (from 92% ee to 72% ee for 10 days).
- 19. When 1c was first lithiated by using sparteine, and the obtained 2c was further lithiated by using TMEDA (inverse procedure against entry 1 in Table 5), the ee of 5cb was almost zero. This result means that dynamic kinetic resolution occurred in the reaction of 1,12-dioxa[12]paracyclophane 2cb.
- Monophosphine MOP was used as a chiral ligand: Marina, N.; Wadamoto, M.; Yamamoto, H. Eur. J. Org. Chem. 2009, 5129–5131.
- Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518–1520.