NEW C,O-GLYCOSYLFLAVONES FROM THE GENUS Silene

D. N. Olennikov* and N. I. Kashchenko

Chromatographic separation of extracts from the aerial parts of three Silene species (Caryophyllaceae) isolated 26 flavonoids including the four new C,O-glycosylflavones acacetin-6-C-(2"-O- β -D-glucopyranosyl)- β -D-glucopyranoside (sileneside D, 1) from S. jeniseensis Willd., apigenin-6-C-(2"-O- β -D-glucopyranosyl)- β -D-glucopyranoside-8-C- α -L-arabinopyranoside (sileneside E, 2) and genkwanin-6-C-(2"-O- β -D-glucopyranosyl)- β -D-glucopyranosyl)- β -D-glucopyranoside (sileneside F, 3) from S. italica (L.) Pers., and apigenin-6-C-(2"-O- β -D-glucopyranosyl)- β -D-glucopyranoside (sileneside G, 4) from S. dioica (L.) Clairv. The structures of 1–4 were studied using UV, IR, and NMR spectroscopy and mass spectrometry.

Keywords: Silene jeniseensis, Silene italica, Silene dioica, Caryophyllaceae, C,O-glycosylflavones, sileneside.

Plants of the family Caryophyllaceae are capable of accumulating flavonoid glycosides with the most common form being *C*,*O*-glycosylflavones [1]. The flavonoid compositions of three *Silene* species introduced to Baikal Region, i.e., *S. jeniseensis* Willd., *S. italica* (L.) Pers., and *S. dioica* (L.) Clairv., were investigated during the course of our continuing studies on flavonoids of this family. Wild specimens of them had previously yielded *C*,*O*-glycosylflavones [2–4]. Herein, the flavonoid compositions of the three cultivated species *S. jeniseensis*, *S. italica*, and *S. dioica* are reported and the structures of four new compounds **1–4** are studied.

Fractionation of the EtOH extract of the aerial part of *S. jeniseensis* produced EtOAc and BuOH fractions that were separated by column chromatography (CC) over polyamide Sephadex LH-20, and reversed-phase SiO₂ and by preparative HPLC to isolate 11 compounds, including new glycosylflavone **1** with molecular formula $C_{34}H_{42}O_{20}$ according to mass spectrometry (*m/z* 771.6024 for [M + H]⁺) and ¹³C NMR spectroscopy. The UV spectrum of **1** contained bands at 271 and 339 nm that were characteristic of flavones. The fragmentation pattern in ESI-MS spectra was indicative of two *O*-bound hexose fragments (*m/z* 771 [M + H]⁺ \rightarrow 609.447) and one *C*-bound hexose (*m/z* 357, 329, 327, 299) [5]. Hydrolysis in H₂SO₄ (30%)–AcOH formed acacetin and D-glucose while TFA (2 M) gave isocytisoside (acacetin-6-*C*-glucoside) [6] and D-glucose.

The PMR spectrum exhibited two singlets at 6.65 (H-3) and 6.41 ppm (H-8), 2H doublets at 7.83 (H-2', 6') and 6.73 ppm (H-3', 5'), and a methoxy resonance at 3.76 (3H, s) that were characteristic of acacetin [7]. Resonances of three anomeric protons at 4.91 (1H, d, J = 9.0 Hz), 4.31 (1H, d, J = 7.0 Hz), and 5.11 (1H, d, J = 7.0 Hz) correlated in the HSQC spectrum with three resonances of anomeric C atoms at 72.4, 104.3, and 101.4 ppm, respectively, indicating that they belonged to a *C*-bound β -glucopyranose and two *O*-bound β -glucopyranoses.

Analyses of ¹³C NMR and DEPT spectra allowed a resonance for a quaternary C atom at 110.9 ppm to be attributed to C-6 of the aglycon bound by a C–C bond to a glucose, which was consistent with correlations between resonances for H-1" ($\delta_{\rm H}$ 4.91, 6-*C*-glucose) and C-6 ($\delta_{\rm C}$ 110.9) in the HMBC spectrum. A weak-field shift of the C-2" resonance ($\delta_{\rm C}$ 80.0) and correlations in the HMBC spectrum between H-1"" ($\delta_{\rm H}$ 4.31, 2"-*O*-glucose) and C-2" indicated that C-2" had an *O*-bound glucose. A weak-field shift of the C-7 resonance ($\delta_{\rm C}$ 162.9) and correlations between H-1"" ($\delta_{\rm H}$ 5.11, 7-*O*-glucose) and C-7 indicated that the C-7 hydroxyl was substituted by glucose. Thus, 1 was an isocytisoside derivative with two additional *O*-bound glucose residues in the 7- and 2"-positions or acacetin-6-*C*-(2"-*O*- β -D-glucopyranosyl)- β -D-glucopyranoside.7,2"-di-*O*-glucoside), which we called sileneside D. Known *O*-glucosides of isocytisoside include the 7-*O*-glucoside from *Gentiana pyrenaica* L. (Gentianaceae) [8] and the 2"-*O*-glucoside from *Securigera securidaca* (L.) Degen & Dorfl. (Fabaceae) [9].

Institute of General and Experimental Biology, Siberian Branch, Russian Academy of Sciences, 6 Sakh'yanovoi St., Ulan-Ude, 670047, e-mail: olennikovdn@mail.ru. Translated from *Khimiya Prirodnykh Soedinenii*, No. 6, November–December, 2020, pp. 884–890. Original article submitted March 10, 2020.

0009-3130/20/5606-1026 ©2020 Springer Science+Business Media, LLC

Known compounds from *S. jeniseensis* included the *C*,*O*- and *C*-glycosylflavones isocytisoside (**5**) [6], isomargariten (isocytisoside-2"-*O*-rhamnoside, **6**) [7], isoscoparin-2"-*O*-rhamnoside (**7**) [10], isovitexin-2"-*O*-rhamnoside (**8**) [11], isoorientin-7-*O*-rutinoside (**9**) [12], lutonarin (isoorientin-7-*O*-glucoside, **10**) [13], isoscoparin-7-*O*-rutinoside (**11**) [12], and isoorientin-2"-*O*-rhamnoside (**12**) [14], and the pyrone glucoside dianthoside [15] that were isolated for the first time from it in addition to the flavonoid isoorientin (**13**) [16] that is known from this species.

2: R = H; 3: R = CH₃

The extract of *S. italica* was fractionated and chromatographed to isolate nine known compounds and two new flavonoids (2 and 3). The molecular formula of 2 was determined as $C_{32}H_{38}O_{19}$ according to mass spectrometry (*m*/*z* 727.2210 for [M + H]⁺) and ¹³C NMR spectroscopy. The UV spectrum of 2 was indicative of a flavone.

H atom	3	4				
	Genkwanin	Apigenin				
3	6.75 (1H, s)	6.70 (1H, s)				
8		6.48 (1H, s)				
2', 6'	7.97 (2H, d, J = 8.1)	7.91 (2H, d, J = 8.0)				
3', 5'	7.05 (2H, d, J = 8.1)	6.95 (2H, d, J = 8.0)				
5-OH	13.36 (1H, br.s)	13.42 (1H, br.s)				
4'-OH	10.16 (1H, br.s)	10.22 (1H, br.s)				
7-OCH ₃	3.89 (3H, s)					
		6- <i>C-β</i> -D-Glcp				
1‴	4.87 (1H, d, J = 9.0)	4.83 (1H, d, J = 9.2)				
2‴	4.54 (1H, m)	4.45 (1H, m)				
3‴	3.58 (1H, m)	3.57 (1H, m)				
4'' 5''	3.25–3.37 (2H, m)	3.15–3.22 (2H, m)				
5 6''	$3.72 (1H, dd, J = 2.5, 11.0, H_{A}); 3.39 (1H, m, H_{B})$	$3.75 (1H, dd, J = 2.8, 11.0, H_{A}); 3.36 (1H, m, H_{B})$				
	2 ^{′′} - <i>О-β</i> -D-Glcp	2′′- <i>О-β</i> -D-Хуlp				
1‴	4.30 (1H, d, J = 7.1)	4.98 (1H, d, J = 7.2)				
2‴′		3.12 (1H, m)				
3‴′						
4‴′	2.82–3.24 (4H, m)	3.24–3.34 (2H, m)				
5‴′		3.62 (1H, m, H _A); 2.91 (1H, m, H _B)				
6‴′	3.97 (1H, m, H _A); 3.61 (1H, m, H _B)					
	8- <i>C</i> -α-L-Arap	7- <i>O</i> -β-D-Glc <i>p</i>				
1''''	4.92 (1H, d, J = 9.0)	5.14 (1H, d, J = 7.1)				
2''''	4.52 (1H, m)					
3''''	3.55 (1H, m)	3 38-3 53 (<i>A</i> H m)				
4''''	3.94 (1H, m)	5.56-5.55 (411, 11)				
5''''	3.99 (1H, m, H _A); 3.67 (1H, m, H _B)					
6''''		$4.38 (1H, dd, J = 2.9, 12.0, H_A); 4.10 (1H, dd, J = 7.0, 12.0, H_B)$				
		6 ^{''''} -O-Feruloyl				
2''''		7.07 (1H, d, J = 1.9)				
5''''	6.65 (1H, d, J = 8.1)					
6'''''	6.77 (1H, dd, J = 8.1, 2.1)					
7''''	7.21 (1H, d, J = 15.7)					
8'''''	6.09 (1H, d, J = 15.7)					
3"""-OCH3	3.83 (3H, s)					
4'''''-OH		9.30 (1H, s)				

Total hydrolysis produced apigenin, D-glucose, and L-arabinose. The hydrolysis products in TFA (2 M) were schaftoside (apigenin-6-*C*-glucoside-8-*C*-arabinoside) [17] and D-glucose. The glucose was *O*-bound according to mass spectrometry (ESI-MS, m/z 727 [M + H]⁺ \rightarrow 565). Fragmentation of a di-*C*-glycosyl daughter (m/z 565) was typical of schaftoside [5].

NMR spectroscopy confirmed that **2** was a schaftoside derivative [17] containing an additional β -glucopyranose. A weak-field shift of the C-2" resonance (δ_C 80.3) of the 6-*C*-glucose and correlations in the HMBC spectrum between resonances for glucose H-1"" (δ_H 4.34) and C-2" indicated that this position was substituted. Therefore, **2** was apigenin-6-*C*-(2"-*O*- β -D-glucopyranosyl)- β -D-glucopyranoside-8-*C*- α -L-arabinopyranoside (schaftoside-2"-*O*-glucoside), which was called sileneside E. Schaftoside-6"-*O*-glucoside was isomeric to **2** and was isolated earlier from *Stellaria holostea* L. (Caryophyllaceae) [18].

Compound **3** with molecular formula $C_{33}H_{40}O_{19}$ (*m*/*z* 741.4215 for $[M + H]^+$) was hydrolyzed in H_2SO_4 (30%)–AcOH to genkwanin, D-glucose, and L-arabinose. Use of TFA (2 M) formed genkwanin-6-*C*-glucoside-8-*C*-arabinoside [3] and D-glucose. Fragmentation of **3** in mass spectra showed ions caused by loss of an *O*-bound glucose (*m*/*z* 741 \rightarrow 579) and those typical of di-*C*-glycosylflavones (*m*/*z* 519, 489, 459, 429, 401, 399, 371, 369, 341) [5].

C atom	1	2	3	4
	Acacetin	Apigenin	Genkwanin	Apigenin
2	164.0	164.1	163.9	164.3
3	103.5	103.5	103.1	103.9
4	182.1	182.1	181.7	182.4
5	160.4	160.7	160.3	160.2
6	110.9	110.2	108.4	110.7
7	162.9	161.7	164.5	162.7
8	94.6	104.8	103.5	94.5
9	156.0	154.3	155.7	156.3
10	105.2	105.0	104.2	105.6
1'	123.0	122.1	121.8	122.4
2', 6'	128.2	129.3	128.7	129.1
3', 5'	114.1	115.7	115.9	116.2
4'	162.5	161.0	161.2	161.3
4'-OCH ₃	55.1			
7-OCH ₃ 56.5		56.5		
	6- <i>С-β</i> -D-Glc <i>p</i>			
1″	72.4	72.0	72.6	72.1
2″	80.0	80.3	80.5	80.1
3″	77.2	77.0	77.1	77.3
4″	71.3	70.8	71.0	71.5
5″	81.5	81.7	81.6	81.2
6″	61.9	61.5	61.2	62.2
	2''- <i>O</i> -β-D-Glc <i>p</i>	2"- <i>O</i> -β-D-Glcp	2"-O-β-D-Glcp	2‴- <i>О-β</i> -D-Хуlp
1‴	104.3	104.7	104.2	105.9
2′′′	74.3	74.1	74.0	75.3
3′′′	77.7	77.9	77.7	76.2
4‴	70.1	70.4	70.2	70.3
5′′′	76.1	76.3	76.5	66.3
6'''	60.2	60.4	60.1	
	7-O-β-D-Glcp	8-C- α -L-Arap	$8-C-\alpha-L-Arap$	7- <i>O</i> -β-D-Glc <i>p</i>
1''''	101.4	74.9	74.6	101.9
2''''	73.9	68.5	68.9	74.0
3''''	76.9	75.7	75.3	76.7
4''''	69.7	69.2	69.3	69.8
5''''	76.3	71.4	71.6	74.4
6''''	59.8			64.7
0				6 ^{''''} -O-Ferulovl
1'''''				125.1
2"""				110.2
3"""				147.7
4"""				149.2
5'''''				115.4
5 6'''''				123.7
ייייי <i>ד</i>				144 5
8"""				1143
0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				166.0
3///// OCH				55 1
5 -00113				00.1

TABLE 3. ^{13}C NMR Spectra of 1–4 (125 MHz, DMSO-d_6, 298 K, $\delta,$ ppm)

NMR spectra were similar to that of sileneside E (2) except for additional resonances for a methoxy group [δ_H 3.89 (3H, s)/ δ_C 56.5] on C-7 according to correlations in the HMBC spectrum between the methoxyl protons (δ_H 3.89) and the aglycon C-7 (δ_C 164.5). Thus, **3** was a methoxylated derivative of sileneside E and had the structure genkwanin-6-*C*-(2"-*O*- β -D-glucopyranosyl)- β -D-glucopyranoside-8-*C*- α -L-arabinopyranoside (sileneside F).

A cultivated specimen of *S. italica* also contained isoorientin (13) [16], isoscoparin (14) [19], isovitexin (15) [20], genkwanin-6-*C*-glucoside-8-*C*-arabinoside (16) [3], schaftoside (apigenin-6-*C*-glucoside-8-*C*-arabonoside, 17) [17], isovitexin-2"-*O*-arabinoside (18) [20], carlinoside (luteolin-6-*C*-glucoside-8-*C*-arabinoside, 19) [21], meloside A (isovitexin-2"-*O*-glucoside, 20) [22], and saponarin (21) [23]. Compounds 13–19 and 21 were previously described from wild *S. italica* [3] while 20 was observed for the first time in this species.

The EtOH extract of the aerial part of *S. dioica* was fractionated and chromatographed (CC over polyamide, Sephadex LH-20, and RP-SiO₂ and prep. HPLC) to afford new glycoside **4** and seven known compounds including **20**, **21**, divarioside (**22**) [24], saponarin-6^{*TT*}-*O*-ferulate (**23**) [25], isovitexin-7,2^{*TT*}-di-*O*-glucoside (**24**) [26], isovitexin-7-*O*-xyloside-2^{*TT*}-*O*-glucoside (**25**) [4], and isovitexin-7-*O*-glucoside (**26**) [4]. Compounds **20**, **21**, **24**-26 were identified earlier in specimens of *S. dioica* growing in Europe [4] while **22** and **23** were observed for the first time.

Compound 4 according to mass spectrometric and ¹³C NMR spectroscopic data had molecular formula $C_{42}H_{46}O_{22}$ (*m*/*z* 903.4216 for [M + H]⁺). The total hydrolysis products of 4 contained apigenin, D-glucose, D-xylose, and ferulic acid [27]. The UV spectrum exhibited a hypsochromic shift of the long-wavelength band relative to that of apigenin (λ_{max} 335 \rightarrow 327 nm). The IR spectrum showed bands for a substituted carboxylic group (1652, 1717 cm⁻¹) [24]. Acid hydrolysis in TFA (2 M) produced isovitexin (15), ferulic acid, D-glucose, and D-xylose.

The mass spectrum (ESI-MS) gave peaks for fragments formed by loss of *O*-bound xylose ($C_5H_8O_4$), ferulic acid ($C_{10}H_8O_3$), and glucose ($C_6H_{10}O_5$) and fragmentation of an ion with *m/z* 433 that was characteristic of isovitexin (*m/z* 343, 315, 313, 285) [5]. Enzymatic hydrolysis of 4 by β -glucosidase gave 6-*O*-feruloylglucose [28] and isovitexin-2"-*O*-xyloside [29]. Use of β -xylosidase formed saponarin-6"''-*O*-ferulate (**23**) [25]. An analysis of NMR spectroscopic data showed that **4** had a structure similar to that of the known acylated glycosylflavone saponarin-6"''-*O*-ferulate (**23**) [25] except for additional resonances for an *O*-bound β -D-xylopyranose. A weak-field shift of the C-2" resonance of 6-*C*-glucose (δ_C 80.1) and HMBC spectral data demonstrating correlations between resonances for xylose H-1"'' (δ_H 4.98) and C-2" indicated that the xylose was attached to C-2" of the 6-*C*-glucose.

The studies established that **4** was apigenin-6-*C*-(2"-*O*- β -D-xylopyranosyl)- β -D-glucopyranoside-7-*O*-(6""-*O*-feruloyl)- β -D-glucopyranoside (saponarin-2"-*O*-xyloside-6""-*O*-ferulate), which was called sileneside G. Alkaline hydrolysis of sileneside G formed ferulic acid and glycoside **4a**, which was identified as saponarin-2"-*O*- β -D-xylopyranoside [apigenin-6-*C*-(2"-*O*- β -D-xylopyranosyl)- β -D-glucopyranoside-7-*O*- β -D-glucopyranoside], which was also a new compound. Saponarin *O*-glycosides acylated by cinnamic acids were observed earlier in Caryophyllaceae species, including *Melandrium divaricatum* Fenzl. (divariosides A and B) [24] and *Gypsophila vaccaria* (L.) Sm. (vaccarins E and F) [23].

EXPERIMENTAL

Plant specimens of the three *Silene* species were grown on open ground at the experimental plot of IGEB, SB, RAS (50°51'14.23" N, 107°38'14.94" E, 612 m above sea level) from authenticated seeds collected in nature of *S. jeniseensis* in

the vicinity of Nilova Pustyn' (Tunkinskii District, Republic of Buryatia, Russia; July 21, 2015; $51^{\circ}51'54''$ N, $101^{\circ}43'24''$ E, 2233 m above sea level; No. CA/BUR-0715/61-11) and *S. italica*, in the vicinity of Mestia (Mestiiskii municipality, Samegrelo-Verkhnyaya Svanetiya Province, Georgia; July 14, 2017; $43^{\circ}2'35.88''$ N, $42^{\circ}42'41.23''$ E, 1435 m above sea level; No. CA/GEO-0717/41-06). Seeds of *S. dioica* (Graham's Delight variety) were obtained from the botanical garden of Plant World Gardens & Nursery (Plant World Devon Ltd., Devon, UK). The aerial parts of the plants were collected during flowering, dried in a convection oven (45° C) to <5% moisture, and milled (1-2 mm).

Spectrophotometric studies used an SF-2000 spectrophotometer (OKB Spectr, St. Petersburg, Russia); mass spectrometric studies, an LCMS-8050 TQ-mass spectrometer (Shimadzu, Columbia, MD, USA) as described before [30]. NMR spectra were recorded on a VXR 500S NMR spectrometer (Varian, Palo Alto, CA, USA). Preparative HPLC used a Summit liquid chromatograph (Dionex, Sunnyvale, CA, USA); LiChrospher RP-18 column (250 × 10 mm, \emptyset 10 µm; Supelco, Bellefonte, PA, USA); mobile phase H₂O (A) and MeCN (B); flow rate 1 mL/min; column temperature 30°C; and UV detector at λ 330 nm. Analytical HPLC used a Milichrom A-02 chromatograph (EcoNova, Novosibirsk, Russia) equipped with a ProntoSIL-120-5-C18 AQ column (2 × 75 mm, \emptyset 5 µm; Metrohm AG, Herisau, Switzerland).

Isolation of 1, 5–13, and Dianthoside from *S. jeniseensis.* The aerial part of *S. jeniseensis* (970 g) was sequentially extracted with EtOH (80% and 50%; 1:12) in an ultrasonic bath (100 W, 35 kHz) at 55°C (2.5 h). The combined EtOH extract was concentrated to dryness (184.3 g), suspended in H_2O (1 L), and extracted with hexane, EtOAc, and BuOH. The EtOAc fraction (58 g) was separated over polyamide for CC (3 kg) that was eluted by H_2O and EtOH (60%). The fraction eluted by 60% EtOH was separated over Sephadex LH-20 (CC, 90 × 3 cm, MeOH-– H_2O eluent, 90:10– \rightarrow 0:100) and RP-SiO₂ (CC, 60 × 3 cm, H_2O –MeCN eluent, 60:40– \rightarrow 20:80) and by prep. HPLC [gradient mode (%B): 0–60 min, 40–60%; 60–120 min, 60–80%] to isolate isocytisoside (acacetin-6-*C*-glucoside, 11 mg, 5) [6], isomargariten (isocytisoside-2"-*O*-rhamnoside, 14 mg, 6) [7], isoscoparin-2"-*O*-rhamnoside (21 mg, 7) [10], and isovitexin-2"-*O*-rhamnoside (19 mg, 8) [11]. The BuOH fraction (106 g) was separated by CC over polyamide, Sephadex LH-20, and RP-SiO₂ as described above and by prep. HPLC [gradient mode (%B): 0–20 min, 5–17%; 20–60 min, 17–25%; 60–90 min, 25–35%] to isolate 1 (22 mg), isoorientin-7-*O*-rutinoside (10 mg, 9) [12], lutonarin (isoorientin-7-*O*-glucoside, 25 mg, 10) [13], isoscoparin-7-*O*-rutinoside (17 mg, 11) [12], isoorientin-2"-*O*-rhamnoside (76 mg, 12) [14], isoorientin (8 mg, 13) [16], and dianthoside (maltol-*O*-glucoside, 64 mg) [15].

Sileneside D (1). $C_{34}H_{42}O_{20}$. UV spectrum (50% MeOH, λ_{max} , nm): 271, 339. HR-ESI-MS, *m/z* 771.6024 (calcd for $C_{34}H_{43}O_{20}$, 771.6418). ESI-MS, *m/z*: 771 [M + H]⁺; MS² [771]: 609 [(M + H) - C₆H₁₀O₅]⁺, 447 [(M + H) - 2 × C₆H₁₀O₅]⁺; MS³ [447]: 357 [(M + H) - 2 × C₆H₁₀O₅ - C₃H₆O₃]⁺, 329 [(M + H) - 2 × C₆H₁₀O₅ - C₃H₆O₃ - CO]⁺, 327 [(M + H) - 2 × C₆H₁₀O₅ - C₄H₈O₄]⁺, 299 [(M + H) - 2 × C₆H₁₀O₅ - C₄H₈O₄ - CO]⁺. Table 1 lists the PMR spectrum (500 MHz, DMSO-d₆, δ, ppm). Table 3 lists the ¹³C NMR spectrum (125 MHz, DMSO-d₆, δ, ppm).

Isolation of 2, 3, and 13–21 from *S. italica.* The aerial part of *S. italica* (720 g) afforded EtOAc and BuOH fractions that were separated as described above. The EtOH fraction produced isoscoparin (6 mg, 14) [19], isovitexin (5 mg, 15) [20], and genkwanin-6-*C*-glucoside-8-*C*-arabinoside (12 mg, 16) [3]. The BuOH fraction gave 2 (18 mg), 3 (11 mg), 13 (11 mg) [16], schaftoside (apigenin-6-*C*-glucoside-8-*C*-arabinoside, 85 mg, 17) [17], isovitexin-2"-*O*-arabinoside (14 mg, 18) [20], carlinoside (luteolin-6-*C*-glucoside-8-*C*-arabinoside, 10 mg, 19) [21], meloside A (isovitexin-2"-*O*-glucoside, 7 g, 20) [22], and saponarin (isovitexin-7-*O*-glucoside, 9 mg, 21) [23].

Sileneside E (2). $C_{32}H_{38}O_{19}$. UV spectrum (50% MeOH, λ_{max} , nm): 270, 337. HR-ESI-MS, *m/z*: 727.2210 (calcd for $C_{32}H_{39}O_{19}$, 727.5924). ESI-MS, *m/z*: 727 [M + H]⁺; MS² [727]: 565 [(M + H) - C₆H₁₀O₅]⁺; MS³ [565]: 505 [(M + H) - C₆H₁₀O₅ - C₂H₄O₂]⁺, 475 [(M + H) - C₆H₁₀O₅ - C₃H₆O₃]⁺, 445 [(M + H) - C₆H₁₀O₅ - C₄H₈O₄]⁺, 415 [(M + H) - C₆H₁₀O₅ - C₃H₆O₃ - C₂H₄O₂]⁺, 387 [(M + H) - C₆H₁₀O₅ - C₃H₆O₃ - C₂H₄O₂ - CO]⁺, 385 [(M + H) - C₆H₁₀O₅ - C₂H₄O₂ - C₄H₈O₄]⁺, 357 [(M + H) - C₆H₁₀O₅ - C₂H₄O₂ - C₄H₈O₄]⁺, 357 [(M + H) - C₆H₁₀O₅ - C₂H₄O₂ - CO]⁺, 355 [(M + H) - C₆H₁₀O₅ - C₄H₈O₄ - C₃H₆O₃]⁺, 327 [(M + H) - C₆H₁₀O₅ - C₄H₈O₄ - CO]⁺. Table 1 lists the PMR spectrum (500 MHz, DMSO-d₆, δ, ppm).

Sileneside F (3). $C_{33}H_{40}O_{19}$. UV spectrum (50% MeOH, λ_{max} , nm): 268, 338. HR-ESI-MS, *m/z*: 741.4215 (calcd for $C_{33}H_{41}O_{19}$, 741.6176). ESI-MS, *m/z*: 741 [M + H]⁺; MS² [741]: 579 [(M + H) - C₆H₁₀O₅]⁺; MS³ [579]: 519 [(M + H) - C₆H₁₀O₅ - C₂H₄O₂]⁺, 489 [(M + H) - C₆H₁₀O₅ - C₃H₆O₃]⁺, 459 [(M + H) - C₆H₁₀O₅ - C₄H₈O₄]⁺, 429 [(M + H) - C₆H₁₀O₅ - C₃H₆O₃ - C₂H₄O₂]⁺, 401 [(M + H) - C₆H₁₀O₅ - C₃H₆O₃ - C₂H₄O₂ - CO]⁺, 399 [(M + H) - C₆H₁₀O₅ - C₂H₄O₂ - C₄H₈O₄]⁺, 371 [(M + H) - C₆H₁₀O₅ - C₂H₄O₂ - C₄H₈O₄ - CO]⁺, 369 [(M + H) - C₆H₁₀O₅ - C₄H₈O₄ - C₃H₆O₃]⁺, 341 [(M + H) - C₆H₁₀O₅ - C₄H₈O₄ - C₃H₆O₃ - CO]⁺. Table 2 lists the PMR spectrum (500 MHz, DMSO-d₆, δ, ppm). Table 3 lists the ¹³C NMR spectrum (125 MHz, DMSO-d₆, δ, ppm).

Isolation of 4 and 20–26 from *S. dioica.* The aerial part of *S. dioica* (320 g) was extracted (3×) with EtOH (60%, 1:15) in an ultrasonic bath (100 W, 35 kHz) at 50°C (2 h). The obtained extract (86.4 g) was concentrated to dryness under vacuum, suspended in H_2O (250 mL), and extracted with hexane, EtOAc, and BuOH. The EtOAc fraction (19.2 g) was separated over polyamide for CC (kg) with elution by H_2O and EtOH (20, 40, and 60%). The fraction eluted by 60% EtOH was separated over Sephadex LH-20 (CC, 80 × 2 cm, MeOH– H_2O eluent, 90:10 \rightarrow 0:100) and RP-SiO₂ (CC, 40 × 2 cm, H_2O –MeCN eluent, 70:30 \rightarrow 20:80) and by prep. HPLC [isocratic mode (%B): 0–60 min, 65%] to give 4 (52 mg), divarioside B (saponarin-2"-*O*-glucoside-6""-*O*-feerulate, 46 mg, 22) [24], and saponarin-6""-*O*-ferulate (17 mg, 23) [25]. The BuOH fraction was separated analogously over polyamide, Sephadex LH-20, and RP-SiO₂ and by prep. HPLC [gradient mode (%B): 0–30 min, 5–15%; 30–60 min, 15–40%; 60–80 min, 40–45%] to isolate 20 (9 mg), 21 (4 mg), isovitexin-7,2"-di-*O*-glucoside (11 mg, 24) [26], isovitexin-7-*O*-xyloside-2"-*O*-glucoside (19 mg, 25) [4], and isovitexin-7-*O*-glucoside-2"-*O*-xyloside (21 mg, 26) [4].

Sileneside G (4). C₄₂H₄₆O₂₂. UV spectrum (MeOH, λ_{max} , nm): 272, 327. IR spectrum (v, cm⁻¹): 1652, 1717. HR-ESI-MS, *m/z*: 903.4216 (calcd for C₄₂H₄₇O₂₂, 903.7478). ESI-MS, *m/z*: 903 [M + H]⁺; MS² [903]: 771 [(M + H) - C₅H₈O₄]⁺, 595 [(M + H) - C₅H₈O₄ - C₁₀H₈O₃]⁺, 433 [(M + H) - C₅H₈O₄ - C₁₀H₈O₃ - C₆H₁₀O₅]⁺; MS³ [433]: 343 [(M + H) - C₅H₈O₄ - C₁₀H₈O₃ - C₆H₁₀O₅ - C₃H₆O₃]⁺, 315 [(M + H) - C₅H₈O₄ - C₁₀H₈O₃ - C₆H₁₀O₅ - C₃H₆O₃ - CO]⁺, 313 [(M + H) - C₅H₈O₄ - C₁₀H₈O₃ - C₆H₁₀O₅ - C₄H₈O₄]⁺, 285 [(M + H) - C₅H₈O₄ - C₁₀H₈O₃ - C₆H₁₀O₅ - C₄H₈O₄ - CO]⁺. Table 2 lists the PMR spectrum (500 MHz, DMSO-d₆, δ, ppm). Table 3 lists the ¹³C NMR spectrum (125 MHz, DMSO-d₆, δ, ppm).

Total Hydrolysis. A weighed portion (5 mg) of compound was mixed with a mixture (5 mL) of H_2SO_4 (30%) and AcOH (30%) (1:1) thermostatted at 95°C for 10 h, neutralized with CaCO₃, and centrifuged. The supernatant was separated over polyamide (5 g) with elution by H_2O (eluate 1) and MeOH (80%, eluate 2). Monosaccharides in eluate 1 were derivatized with 3-methyl-1-phenyl-2-pyrazolin-5-one [31] and analyzed by anal. HPLC (conditions 1). Monosaccharides were assigned to D- and L-series after reductive amination with L-tryptophan [32] using anal. HPLC (conditions 2). Non-carbohydrate hydrolysis products (eluate 2) were analyzed by GC-MS [33] and NMR spectroscopy. Hydrolysis of **1** produced acacetin [34] and D-glucose; of **2**, apigenin [34], D-glucose, and L-arabinose; of **3**, genkwanin [34], D-glucose, and L-arabinose; of **4**, apigenin, ferulic acid [27], D-glucose, and D-xylose.

Acid hydrolysis with TFA was performed in TFA (2 M) at 120°C. The hydrolysate was separated over polyamide using the previously reported method [24]. The hydrolysis products of 1 contained isocytisoside (5) [6] and D-glucose; of 2, schaftoside (17) [17] and D-glucose; of 3, genkwanin-6-*C*- β -D-glucopyranoside-8-*C*- α -L-arabinopyranoside (16) [3], and D-glucose; of 4, isovitexin (15) [20], ferulic acid, D-glucose, and D-xylose.

Hydrolysis by β -glucosidase used β -glucosidase from *Amygdalus* (3.2.1.21, 30 U/mg, No. G4511; Sigma-Aldrich) as described earlier [24]. The hydrolysis products were analyzed by HPLC, mass spectrometry, and NMR spectroscopy [24]. The hydrolysis products of **4** were 6-*O*-feruloylglucose [28] and isovitexin-2"-*O*-xyloside [29].

Hydrolysis of 4 by β -**Xylosidase.** A weighed portion of **4** (10 mg) was dissolved in DMSO (150 µL). The volume was adjusted to 5 mL using sodium succinate solution (50 mM, pH 5.3). The mixture was treated with β -xylosidase (2 U) from *Selenomonas ruminantium* (3.2.1.37, 115 U/mg; Megazyme Ltd., Bray, Ireland). The reaction mixture was incubated at 40°C for 10 h, heated at 95°C (15 min), and centrifuged (6,000 rpm, 15 min). The hydrolysate was separated over polyamide (5 g) with elution by H₂O (50 mL) and EtOH (60%, 100 mL). The EtOH eluate afforded saponarin-6^{*m*}-*O*-ferulate (4 mg, **23**), which was identified using ¹³C NMR spectroscopy and mass spectrometry [25].

Alkaline hydrolysis of 4 with NaOH used the previously reported method [24]. The hydrolysate of 4 contained ferulic acid [27] and saponarin-2"-O- β -D-xylopyranoside (4a) according to GC-MS [33] and NMR spectroscopy.

Saponarin-2"-*O*-β-D-xylopyranoside (4a), $C_{32}H_{38}O_{19}$. UV spectrum (MeOH, λ_{max} , nm): 271, 334. HR-ESI-MS, *m*/*z* 727.7202 (calcd for $C_{32}H_{39}O_{19}$, 727.5924). ESI-MS, *m*/*z*: 727 [M + H]⁺; MS² [727]: 595 [(M + H) – $C_5H_8O_4$]⁺, 433 [(M + H) – $C_5H_8O_4$ – $C_6H_{10}O_5$]⁺; MS³ [433]: 343 [(M + H) – $C_5H_8O_4$ – $C_6H_{10}O_5$ – $C_3H_6O_3$]⁺, 315 [(M + H) – $C_5H_8O_4$ – $C_6H_{10}O_5$ – $C_3H_6O_3$ –CO]⁺, 313 [(M + H) – $C_5H_8O_4$ – $C_6H_{10}O_5$ – $C_4H_8O_4$]⁺, 285 [(M + H) – $C_5H_8O_4$ – $C_6H_{10}O_5$ – $C_4H_8O_4$ –CO]⁺. ¹H NMR spectrum (500 MHz, DMSO-d₆, δ, ppm, J/Hz): apigenin – 6.74 (1H, s, H-3), 6.51 (1H, s, H-8), 7.90 (2H, d, J = 8.1, H-2', 6'), 6.99 (2H, d, J = 8.1, H-3', 5'), 13.38 (1H, br.s, 5-OH), 10.29 (1H, br.s, 4'-OH); 6-*C*-β-*D*-glucopyranose – 4.87 (1H, d, J = 9.0, H-1"), 4.41 (1H, m, H-2"), 3.59 (1H, m, H-3"), 3.17–3.25 (2H, m, H-4", 5"), 3.79 (1H, dd, J = 3.0, 11.4, H_A-6"), 3.37 (1H, m, H_B-6"); 2"-*O*-β-*D*-xylopyranose – 4.96 (1H, d, J = 7.0, H-1"), 3.10 (1H, m, H-2"'), 3.27–3.35 (2H, m, H-3"', 4"''), 3.62 (1H, m, H_A-5"''), 2.93 (1H, m, H_B-5"''); 7-*O*-β-*D*-glucopyranose – 5.09 (1H, d, J = 7.1, H-1"''), 3.39–3.57 (4H, d, H-2"''-5"'), 3.92 (1H, dd, J = 3.1, 11.6, H_A-6"''), 3.65 (1H, m, H_B-6"'). ¹³C NMR spectrum (125 MHz, DMSO-d₆, \delta, ppm): apigenin – 164.1 (C-2), 103.6 (C-3), 182.4 (C-4), 160.1 (C-5), 110.4 (C-6), 162.3 (C-7), 94.7 (C-8), 156.4 (C-9), 105.9 (C-10),

122.1 (C-1'), 129.3 (C-2', 6'), 115.8 (C-3', 5'), 161.5 (C-4'); 6-*C*-β-*D*-glucopyranose – 72.3 (C-1"), 79.8 (C-2"), 77.6 (C-3"), 71.6 (C-4"), 81.0 (C-5"), 62.0 (C-6"); 2"-*O*-β-*D*-xylopyranose – 105.4 (C-1""), 75.1 (C-2""), 76.0 (C-3""), 70.2 (C-4""), 66.1 (C-5""); 7-*O*-β-*D*-glucopyranose – 101.5 (C-1""), 74.1 (C-2""), 76.7 (C-3""), 69.7 (C-4""), 76.4 (C-5""), 61.2 (C-6"").

Analytical HPLC. Conditions 1: mobile phase: NH_4OAc (100 mM, pH 4.5) (A) and MeCN (B); gradient mode (%B): 0–20 min, 20–26%; flow rate 150 µL/min; column temperature 35°C; UV detector at λ 250 nm. Conditions 2: mobile phase: NaH_2PO_4 (10 mM), $Na_2B_4O_7$ (50 mM), 1:1 (pH 9.6); isocratic mode, flow rate 200 µL/min; column temperature 35°C; UV detector at λ 220 nm.

ACKNOWLEDGMENT

The studies were sponsored by FASO Russia (AAAA-AA17-117011810037-0).

REFERENCES

- 1. M. Richardson, Biochem. Syst. Ecol., 6, 283 (1978).
- 2. V. N. Darmograi, Chem. Nat. Compd., 13, 102 (1977).
- 3. D. N. Olennikov, N. I. Kashchenko, and N. K. Chirikova, *Khim. Rastit. Syr'ya*, No. 3, 119 (2019).
- 4. O. Mastenbroek, H. C. Prentice, R. Kamps-Heinsbroek, J. van Brederode, G. J. Niemann, and G. van Nigtevecht, *Plant Syst. Evol.*, **141**, 257 (1983).
- 5. D. N. Olennikov, N. K. Chirikova, N. I. Kashchenko, V. M. Nikolaev, S.-W. Kim, and C. Vennos, *Front. Pharmacol.*, **9**, 756 (2018).
- 6. W. Bylka and I. Matlawska, Acta Pol. Pharm., 54, 331 (1997).
- C. A. Williams, A. L. Toscano De Brito, J. B. Harborne, J. Eagles, and P. G. Waterman, *Phytochemistry*, 37, 1045 (1994).
- 8. A. Marston, K. Hostettmann, and A. Jacot-Guillarmod, Helv. Chim. Acta, 59, 2596 (1976).
- 9. M. Jay, B. Voirin, A. Hasan, J.-F. Gonnet, and M.-R. Viricel, Biochem. Syst. Ecol., 8, 127 (1980).
- 10. J. Van Brederode and R. Kamps-Heinsbroek, Z. Naturforsch., C: J. Biosci., 36, 486 (1981).
- 11. K. Hoffmann-Bohm, H. Lotter, O. Seligmann, and H. Wagner, *Planta Med.*, 58, 544 (1992).
- 12. A. Obmann, I. Werner, A. Presser, M. Zehl, Z. Swoboda, S. Purevsuren, S. Narantuya, C. Kletter, and S. Glasl, *Carbohydr. Res.*, **346**, 1868 (2011).
- 13. K. R. Markham and K. A. Mitchell, Z. Naturforsch., C: J. Biosci., 58, 53 (2003).
- 14. R. T. Sherwood, M. Shamma, J. L. Moniot, and J. R. Kroschewsky, *Phytochemistry*, **12**, 2275 (1973).
- 15. V. Plouvier, M.-T. Martin, and J.-P. Brouard, *Phytochemistry*, 25, 546 (1986).
- 16. J. Liu, Y. Liu, Z. Dai, L. He, and S. Ma, J. Anal. Methods Chem., 2017, 4934309 (2017).
- 17. C. Xie, N. C. Veitch, P. J. Houghton, and M. S. J. Simmonds, Chem. Pharm. Bull., 51, 1204 (2003).
- M. L. Bouillant, F. F. de Arce, J. Favre-Bonvin, J. Chopin, A. Zoll, and G. Mathieu, *Phytochemistry*, 23, 2653 (1984).
- 19. F. Senatore, M. D'Agostino, and I. Dini, J. Agric. Food Chem., 48, 2659 (2000).
- 20. J. Peng, G. Fan, Z. Hong, Y. Chai, and Y. Wu, J. Chromatogr. A, 1074, 111 (2005).
- E. Besson, G. Dellamonica, J. Chopin, K. R. Markham, M. Kim, H.-S. Koh, and H. Fukami, *Phytochemistry*, 24, 1061 (1985).
- 22. T. Iwashina, A. Uehara, J. Kitajima, and T. Yukawa, Bull. Natl. Mus. Nat. Sci., Ser. B, 41, 33 (2015).
- 23. G. Zhou, H. Wu, T. Wang, R. Guo, J. Xu, Q. Zhang, L. Tang, and Z. Wang, *Phytochem. Lett.*, 19, 241 (2017).
- 24. D. N. Olennikov and N. K. Chirikova, Chem. Nat. Compd., 55, 1032 (2019).
- 25. M. Ohkawa, J. Kinjo, Y. Hagiwara, H. Hagiwara, H. Ueyama, K. Nakamura, R. Ishikawa, M. Ono, and T. Nohara, *Chem. Pharm. Bull.*, **46**, 1887 (1998).
- 26. M.-A. Dubois, A. Zoll, M.-L. Bouillant, and J. Chopin, *Phytochemistry*, **21**, 1141 (1982).
- 27. V. A. Kurkin, Chem. Nat. Compd., **39**, 123 (2003).
- 28. M. Bokern, S. Heuer, V. Wray, L. Witte, T. Macek, T. Vanek, and D. Strack, *Phytochemistry*, **30**, 3261 (1991).

- 29. M. A. Zielinska-Pisklak, D. Kaliszewska, M. Stolarczyk, and A. K. Kiss, J. Pharm. Biomed. Anal., 102, 54 (2015).
- 30. D. N. Olennikov, N. I. Kashchenko, N. K. Chirikova, A. G. Vasil'eva, A. I. Gadimli, J. I. Isaev, and C. Vennos, *Antioxidants*, **8**, 307 (2019).
- 31. D. N. Olennikov, N. K. Chirikova, N. I. Kashchenko, T. G. Gornostai, I. Y. Selyutina, and I. N. Zilfikarov, *Int. J. Mol. Sci.*, **18**, 2579 (2017).
- 32. M. Akabane, A. Yamamoto, S. Aizawa, A. Taga, and S. Kodama, Anal. Sci., 30, 739 (2014).
- 33. D. N. Olennikov, A. I. Gadimli, J. I. Isaev, N. I. Kashchenko, A. S. Prokopyev, T. N. Katayeva, N. K. Chirikova, and C. Vennos, *Metabolites*, **9**, 271 (2019).
- 34. V. M. Malikov and M. P. Yuldashev, *Chem. Nat. Compd.*, **38**, 358 (2002).