# An Expedient Process for the Synthesis of 2-(*N*-Arylamino)benzaldehydes from 2-Hydroxybenzaldehydes via Smiles Rearrangement

Hamid Saeidian,\*a Zohreh Mirjafary, b Elinaz Abdolmaleki, a Farzaneh Moradniaa

<sup>a</sup> Department of Science, Payame Noor University (PNU), PO Box 19395-4697, Tehran, Iran E-mail: h\_porkaleh@yahoo.com

<sup>b</sup> Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran

Received: 24.06.2013; Accepted after revision: 21.07.2013

Dedicated to Professor Firouz Matloubi Moghaddam on his 62<sup>nd</sup> birthday

**Abstract:** This paper describes an efficient Smiles rearrangement process for the synthesis of 2-(*N*-arylamino)benzaldehyde derivatives with reasonable yields. A mechanism is proposed for the reaction course.

**Key words:** 2-(*N*-arylamino)benzaldehyde, 2-hydroxybenzaldehyde, Smiles rearrangement, O-alkylation

2-Aminobenzaldehyde derivatives are versatile and valuable building blocks for a number of biologically and pharmaceutically active compounds.<sup>1</sup> The synthesis and characterization of these important compounds have also been of interest in the field of coordination chemistry.<sup>2</sup> 2-Aminobenzaldehyde derivatives have both hydrogenbonding and donor–acceptor properties but can be difficult to synthesize. For example, low yielding syntheses of the parent 2-aminobenzaldehyde have been reported from



Scheme 1



Scheme 2

2-nitroaniline (33%),<sup>3</sup> 2-nitrobenzaldehyde (40-50%),<sup>4</sup> and from 2-nitrotoluene  $(24\%)^5$  (Scheme 1).

In a recent patent, 4-(N-arylamino)pyrimidine-5-carbaldehydes were prepared by the procedure outlined in Scheme 2. However, the three-step protocol was restricted to 4-(*N*-arylamino)pyrimidine-5-carbaldehyde derivatives.<sup>6</sup> Alternatively, reduction of 2-aminobenzoic acids with borane followed by oxidation of the resultant 2-aminobenzyl alcohols with MnO2 has been reported by Carter.<sup>7</sup> Formylation of substituted *N*-(*tert*-butoxycarbonyl) anilines using t-BuLi and dimethyl formamide at -78 °C affords *N*-Boc-2-aminobenzaldehyde derivatives (Scheme 3),<sup>8</sup> but this method suffers from poor substituent tolerance. In 2002, Apple reported the synthesis of N-alkyl-2-aminobenzaldehydes in moderate yield using quinolinium salts.9

To the best of our knowledge, there is no general method for the synthesis of 2-(*N*-arylamino)benzaldehydes in the literature. Therefore, a flexible protocol with wide substituent tolerance and mild reaction conditions is desirable for a general preparation of 2-(*N*-arylamino)benzaldehydes **5**. We proposed that the title compounds could be produced by reacting readily available 2-hydroxybenzaldehyde derivatives **4** with *N*-aryl 2-chloroacetamides **3**. This Letter presents our results based on the above approach (Scheme 4).

It is worth noting that structures **5** can be precursors of fenamic acid derivatives, nonsteroidal anti-inflammatory drugs which contain the basic structure **6** (Figure 1).<sup>10</sup>

To find the optimal conditions, synthesis of 2-(4-methylphenylamino)benzaldehyde (**5b**) in the presence of a base was chosen as a model reaction. A mixture of *N*-(4-methylphenyl) 2-chloroacetamide (**3**, 1 mmol), 2-hydroxy benzaldehyde (**4**, 1 mmol), and solvent (5 mL) was stirred under various reaction conditions. Our first experiment



#### Scheme 3

*SYNLETT* 2013, 24, 2127–2131 Advanced online publication: 27.08.2013 DOI: 10.1055/s-0033-1339641; Art ID: ST-2013-D0576-L © Georg Thieme Verlag Stuttgart · New York



2-(*N*-arylamino)benzaldehyde derivatives as raw chemicals







showed that the presence of a base such as  $K_2CO_3$  or  $KF/Al_2O_3^{11}$  was required to achieve the synthesis of **5b** and no reaction was observed when the reaction was performed without base.  $K_2CO_3$  (59%) was less effective compared to  $KF/Al_2O_3$  (72%).

We then continued to optimize the model reaction by considering the efficiency of polar and nonpolar solvents. A polar solvent such as DMF was much better than a nonpolar solvent. The effect of temperature was also studied by carrying out the model reaction at room temperature, 90 °C, and 120 °C. It was observed that the yield was increased as the reaction temperature was raised to 120 °C. No desired product was observed when the reaction was performed at room temperature. Final optimized conditions involved KF/Al<sub>2</sub>O<sub>3</sub> (150 mg), 2-chloro-*N*-arylacetamide **3** (1 mmol), 2-hydroxybenzaldehyde derivative **4** (1 mmol) in DMF (5 mL) at 120 °C for 14 hours. The structures of the products were confirmed by MS (EI), <sup>1</sup>H NMR and <sup>13</sup>C NMR, and CHN analysis.<sup>12</sup>

The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of the product clearly indicated the formation of **5b**. The <sup>1</sup>H NMR spectrum contained a broad resonance at  $\delta = 9.98$  ppm correlating to the NH, a sharp singlet for the aldehyde proton at  $\delta = 9.93$  ppm and a singlet for the methyl protons at  $\delta = 2.39$ 

ppm. Intramolecular hydrogen bonding between the amine proton and the carbaldehyde group results in deshielding of the NH proton, a similar phenomenon also being observed in fenamic acid derivatives.<sup>13</sup> The <sup>1</sup>H-decoupled <sup>13</sup>C NMR spectrum of **5b** showed 12 distinct resonances in agreement with the proposed structure, with the aldehyde carbon appearing at  $\delta = 194.2$  ppm, 10 distinct resonances for the aromatic carbons between  $\delta = 112.8-148.4$  ppm and a resonance at  $\delta = 21.0$  ppm for the methyl carbon. The MS (EI) mass spectrum of **5b** clearly showed the presence of the molecular ion (211) [M<sup>++</sup>] with elimination of the formyl moiety from M<sup>++</sup> to give m/z = 182 as the base peak (see Supporting Information).

To establish the generality of this method, we used a series of *N*-aryl 2-chloroacetamides and 2-hydroxybenzaldehydes to obtain the corresponding 2-(N-arylamino) benzaldehydes **5a**-**h** (Table 1). All the substrates consistently furnished the desired 2-(N-arylamino)benzaldehydes in good yields and were not limited to 2hydroxybenzaldehydes; 2-hydroxynaphthalene-1-carboxaldehyde also afforded the desired products **5g** and **5h** in good yields (Table 1, entries 7 and 8).

The applicability of the present methodology was further extended by performing the reaction of phenol 7 with *N*-(4-methylphenyl) 2-chloroacetamide (**3**) in the presence of KF/Al<sub>2</sub>O<sub>3</sub> (Scheme 5) to provide *N*-phenyl 4-methyl-aniline (**8**) in 40% yield. Further studies of the reaction between phenols and *N*-aryl 2-chloroacetamides for the formation of diarylamine derivatives are in progress.

A possible reaction mechanism is proposed in Scheme 6. The first step is an O-alkylation of the 2-hydroxybenzal-



Scheme 5

Synlett 2013, 24, 2127-2131

© Georg Thieme Verlag Stuttgart · New York

dehyde with *N*-aryl 2-chloroacetamide affording aryloxyacetamide I. In the case of *N*-(4-chlorophenyl) 2chloroacetamide, this intermediate was separated and its structure was confirmed by <sup>1</sup>H NMR analysis (see Supporting Information). The next step is the conversion of I into spiro intermediate II via Smiles rearrangement, replacing the oxygen atom on the benzene ring with a nitrogen atom.<sup>14</sup> Hydrolysis of compound III under the basic conditions then leads to the desired products. The intramolecular nucleophilic aromatic substitution of **I** is not favored by electron-withdrawing groups in the 2-chloro-*N*aryl acetamide **3** (Table 1, entry 4). On the other hand, the electron-withdrawing aldehyde group in the 2-hydroxybenzaldehyde substrates **4** accelerates *ipso* nucleophilic aromatic substitution.

 Table 1
 Synthesis of 2-(N-Arylamino)benzaldehyde Derivatives



 $\ensuremath{\mathbb{C}}$  Georg Thieme Verlag Stuttgart  $\cdot$  New York

Synlett 2013, 24, 2127-2131



# Scheme 6

In conclusion, we report herein an efficient procedure for the synthesis of 2-(*N*-arylamino)benzaldehydes from 2hydroxybenzaldehyde derivatives and *N*-aryl 2-chloroacetamides. Good yields and readily available starting materials are the key features of the present method.

# Acknowledgment

We would like to acknowledge financial support from Payame Noor University (PNU). We also are grateful to Mr. Biglari for NMR spectral support.

**Supporting Information** for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.

# **References and Notes**

- (a) He, Y.; Mahmud, H.; Moningka, R.; Lovely, C. J.; Dias, H. V. R. *Tetrahedron* **2006**, *62*, 8755. (b) Wagner, A. M.; Knezevic, C. E.; Wall, J. L.; Sun, V. L.; Buss, J. A.; Allen, L. T.; Wenzel, A. G. *Tetrahedron Lett.* **2012**, *53*, 833.
   (c) Skouta, R.; Li, C. J. *Synlett* **2007**, 1759. (d) Zhao, Y.; Li, D.; Zhao, L.; Zhang, J. *Synthesis* **2011**, 873. (e) Levesque, P.; Fournier, P. A. J. Org. Chem. **2010**, *75*, 7033.
- (2) Kolchinski, A. G. Coordin. Chem. Rev. 1998, 174, 207.
- (3) Beech, W. F. J. Chem. Soc. 1954, 1297.
- (4) Reddy, C. S.; Sundaraman, E. V. *Tetrahedron* 1989, 45, 2109.
- (5) Tsang, S. M.; Wood, E. H.; Johnson, J. R. Org. Synth., Coll. Vol. III 1955, 641.
- (6) Clark, M. P.; Brugel, T. A.; Sabat, M.; Golebiowski, A.; Bookland, R. G.; De, B. US 20080139588, 2008.
- (7) Carter, J. S.; Obukowicz, M. G.; Devadas, B.; Talley, J. J.; Brow, D. L.; Graneto, M. J.; Bertenshaw, S. R.; Rojier, D. J.; Nagarajan, S. R.; Hanau, C. E.; Hartmann, S. J.; Ludwig, C. L.; Metz, S. US 006034256, **2000**.
- (8) Chelucci, G.; Manca, I.; Pinna, G. A. *Tetrahedron Lett.* **2005**, *46*, 767.
- (9) Apple, I. A.; Cohn, O. M. ARKIVOC 2002, (vi), 4.
- (10) (a) Insel, P. A.; Gilman, A. G.; Rall, T. W.; Nies, A. S.; Taylor, P. *Goodman and Gilman's: The Pharmacological Basis of Therapeutics*, 8th ed.; McGraw-Hill: New York, **1990**. (b) Baragi, V.; Boschelli, D. H.; Connor, D. T.; Renkiewicz, R. R. US 005703119, **1997**.
- (11) Saeidian, H.; Sadeghi, A.; Mirjafary, Z.; Moghaddam, F. M. Synth. Commun. 2008, 38, 2043.
- (12) General Procedure for the Synthesis of 2-(N-

Synlett 2013, 24, 2127-2131

# Arylamino)benzaldehydes 5a-h

To a stirred suspension of KF/Al<sub>2</sub>O<sub>3</sub> (150 mg) in DMF (5 mL) were added 2-hydroxy benzaldehyde **4** (1 mmol) and 2-chloro-*N*-arylacetamide **3** (1 mmol), and the reaction mixture was stirred at 120 °C for 14 h with progress of the reaction being monitored by TLC. After completion of the reaction, the mixture was poured into ice cold H<sub>2</sub>O, stirred for 15 min, then extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 10 mL). The organic phase was dried with Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated under vacuum. The residue was purified by preparative TLC (eluent: PE–EtOAc, 6:1) to afford the desired compound **5a–h**.

#### **Spectroscopic Data**

*N*-(4-Chlorophenyl) 2-(2-Formylphenoxy)acetamide (I) <sup>1</sup>H NMR (400 MHz, CDC1<sub>3</sub>):  $\delta = 10.11$  (m, 2 H, CHO, NH), 7.87 (dd,  $J_1 = 8.80$  Hz,  $J_2 = 2.0$  Hz, 2 H), 7.82 (dd,  $J_1 = 9.20$ Hz,  $J_2 = 1.60$  Hz, 1 H), 7.68–7.75 (m, 1 H), 7.37 (dd,  $J_1 = 8.80$  Hz,  $J_2 = 2.0$  Hz, 2 H), 7.28 (m, 1 H), 7.01 (d, J = 8.0 Hz, 1 H), 4.72 (s, 2 H, CH<sub>2</sub>) ppm.

#### 2-(4-Chlorophenylamino)benzaldehyde (5a)

<sup>1</sup>H NMR (400 MHz, CDC1<sub>3</sub>):  $\delta = 10.00$  (br s, 1 H, NH), 9.92 (s, 1 H, CHO), 7.59 (d, J = 8.0 Hz, 1 H), 7.33–7.42 (m, 3 H), 7.19–7.25 (m, 3 H), 6.88 (t, J = 7.80 Hz, 1 H) ppm. <sup>13</sup>C NMR (100 MHz, CDC1<sub>3</sub>):  $\delta = 194.35$ , 147.36, 138.34, 136.70, 135.64 (2 C), 129.53, 124.29, 119.59, 117.61, 112.82 ppm. MS (EI): m/z (%) = 233 (33), 231 (100) [M<sup>+</sup>], 202 (74), 167 (91). Anal. Calcd for C<sub>13</sub>H<sub>10</sub>CINO: C, 67.39; H, 4.35; N, 6.05. Found: C, 67.18; H, 4.40; N, 5.95.

# 2-(4-Methylphenylamino)benzaldehyde (5b)

<sup>1</sup>H NMR (400 MHz, CDC1<sub>3</sub>):  $\delta = 9.98$  (br s, 1 H, NH), 9.93 (s, 1 H, CHO), 7.58 (d, J = 8.80 Hz, 1 H), 7.38 (t, J = 7.80 Hz, 1 H), 7.17–7.23 (m, 5 H), 6.84 (t, J = 7.40 Hz, 1 H), 2.39 (s, 3 H, CH<sub>3</sub>) ppm. <sup>13</sup>C NMR (100 MHz, CDC1<sub>3</sub>):  $\delta = 194.18$ , 148.39, 136.93, 136.61, 135.55, 135.35, 130.06, 123.69, 119.15, 116.77, 112.81, 21.00 ppm. MS (EI): m/z (%) = 211 (92) [M<sup>+</sup>], 182 (100), 167 (43). Anal. Calcd for C<sub>14</sub>H<sub>13</sub>NO: C, 79.59; H, 6.20; N, 6.63. Found: C, 79.50; H, 6.09; N, 6.70.

# 2-(2-Methylphenylamino)benzaldehyde (5c)

<sup>1</sup>H NMR (400 MHz, CDC1<sub>3</sub>):  $\delta = 9.97$  (s, 1 H, CHO), 9.89 (br s, 1 H, NH), 7.60 (dd,  $J_1 = 9.20$  Hz,  $J_2 = 1.60$  Hz, 1 H), 7.32–7.40 (m, 3 H), 7.26 (t, J = 8.40 Hz, 1 H), 7.17 (t, J =7.40 Hz, 1 H), 6.92 (t, J = 8.40 Hz, 1 H), 6.83 (t, J = 7.30 Hz, 1 H), 2.33 (s, 3 H, CH<sub>3</sub>) ppm. <sup>13</sup>C NMR (100 MHz, CDC1<sub>3</sub>):  $\delta = 194.31$ , 148.42, 137.98, 136.49, 135.59, 133.28, 131.22, 126.12, 125.44, 124.75, 119.12, 114.64, 112.89, 18.05 ppm. MS (EI): m/z (%) = 211 (100) [M<sup>+</sup>], 182 (74), 167 (39). Anal. Calcd for C<sub>14</sub>H<sub>13</sub>NO: C, 79.59; H, 6.20; N, 6.63. Found: C, 79.48; H, 6.07; N, 6.56.

# 2-(3-Acetylphenylamino)benzaldehyde (5d)

<sup>1</sup>H NMR (400 MHz, CDC1<sub>3</sub>):  $\delta = 10.12$  (br s, 1 H, NH), 9.93 (s, 1 H, CHO), 7.89 (d, J = 2.40 Hz, 1 H), 7.71–7.73 (m, 1 H), 7.62 (dd,  $J_1 = 7.60$  Hz,  $J_2 = 1.80$  Hz, 1 H), 7.41–7.49 (m, 3 H), 7.27 (t, *J* = 8.40 Hz, 1 H), 6.91 (t, *J* = 7.40 Hz, 1 H), 2.63 (s, 3 H, CH<sub>3</sub>) ppm. <sup>13</sup>C NMR (100 MHz, CDC1<sub>3</sub>):  $\delta =$ 197.21. 194.44, 147.04, 140.34, 138.44, 136.76, 135.74, 129.72, 127.24, 124.08, 122.10, 119.74, 117.91, 112.85, 26.79 ppm. MS (EI): m/z (%) = 239 (100) [M<sup>+</sup>], 210 (39), 196 (32), 168 (55), 167 (44). Anal. Calcd for C<sub>15</sub>H<sub>13</sub>NO<sub>2</sub>: C, 75.30; H, 5.48; N, 5.85. Found: C, 75.41; H, 5.35; N, 5.69. 2-(4-Chlorophenylamino)-3-methoxybenzaldehyde (5e) <sup>1</sup>H NMR (400 MHz, CDC1<sub>3</sub>):  $\delta = 9.99$  (s, 1 H, CHO), 8.77 (br s, 1 H, NH), 7.34 (dd,  $J_1 = 7.20$  Hz, J = 2.40 Hz, 1 H), 7.18 (d, J = 8.80 Hz, 2 H), 7.11–7.13 (m, 2 H), 6.82 (d, J = 8.80 Hz, 2 H), 3.77 (s, 3 H, OCH<sub>3</sub>) ppm. MS (EI): *m/z* (%) = 263 (34), 261 (100) [M<sup>+</sup>], 234 (26), 232 (76) 183 (38). Anal. Calcd for C<sub>14</sub>H<sub>12</sub>ClNO: C, 64.25; H, 4.62; N, 5.35. Found: C, 64.30; H, 4.53; N, 5.24.

**2-(4-Methylphenylamino)-5-bromobenzaldehyde (5f)** <sup>1</sup>H NMR (400 MHz, CDC1<sub>3</sub>):  $\delta = 9.91$  (br s, 1 H, NH), 9.84 (s, 1 H, CHO), 7.66 (d, J = 2.40 Hz, 1 H), 7.39 (dd,  $J_1 = 8.80$ Hz,  $J_2 = 2.20$  Hz, 1 H), 7.22 (d, J = 8.0 Hz, 2 H), 7.16 (d, J = 8.40 Hz, 2 H), 7.04 (d, J = 8.80 Hz, 1 H), 2.39 (s, 3 H, CH<sub>3</sub>) ppm. <sup>13</sup>C NMR (100 MHz, CDC1<sub>3</sub>):  $\delta = 192.90$ , 147.33, 138.15, 138.13, 136.35, 134.91, 130.19, 123.62, 120.30, 114.97, 107.62, 21.04 ppm. MS (EI): m/z (%) = 291 (96), 289 (99) [M<sup>+</sup>], 262 (69), 260 (73), 167 (34). Anal. Calcd for C<sub>14</sub>H<sub>12</sub>BrNO: C, 57.95; H, 4.17; N, 4.83. Found: C, 57.77; H, 4.10; N, 4.91.

# 2-(4-Methylphenylamino)naphthalene-1-carbaldehyde (5g)

<sup>1</sup>H NMR (400 MHz, CDC1<sub>3</sub>):  $\delta$  = 11.60 (br s, 1 H, NH), 10.92 (s, 1 H, CHO), 8.37 (d, *J* = 8.40 Hz, 1 H), 7.74 (d, *J* = 9.20 Hz, 1 H), 7.70 (d, *J* = 8.0 Hz, 1 H), 7.56 (t, *J* = 7.20 Hz, 1 H), 7.21–7.35 (m, 6 H), 2.42 (s, 3 H, CH<sub>3</sub>) ppm. <sup>13</sup>C NMR (100 MHz, CDC1<sub>3</sub>):  $\delta$  = 189.84, 150.15, 137.21, 136.25, 135.42, 135.02, 130.16, 129.35, 128.11, 126.65, 124.83, 123.13, 118.42, 115.25, 108.19, 21.06 ppm. MS (EI): *m/z* (%) = 261 (100) [M<sup>+</sup>], 232 (85), 217 (53). Anal. Calcd for C<sub>18</sub>H<sub>15</sub>NO: C, 82.73; H, 5.79; N, 5.36. Found: C, 82.85; H, 5.61; N, 5.24.

# 2-(4-Chlorophenylamino)naphthalene-1-carbaldehyde (5h)

<sup>1</sup>H NMR (400 MHz, CDC1<sub>3</sub>):  $\delta = 11.57$  (br s, 1 H, NH), 10.93 (s, 1 H, CHO), 8.36 (d, J = 6.80 Hz, 1 H), 7.79 (d, J =9.20 Hz, 1 H), 7.72 (d, J = 8.0 Hz, 1 H), 7.58 (t, J = 7.20 Hz, 1 H), 7.24–7.39 (m, 6 H) ppm. <sup>13</sup>C NMR (100 MHz, CDC1<sub>3</sub>):  $\delta = 190.22$ , 149.11, 137.71, 137.38, 134.84, 130.58, 129.67, 129.40, 129.08, 126.94, 125.61, 123.49, 118.65, 114.84, 108.84 ppm. MS (EI): m/z (%) = 283 (34), 281 (100) [M<sup>+</sup>], 252 (46), 217 (98). Anal. Calcd for  $C_{14}H_{12}CINO: C, 72.47; H, 4.29; N, 4.97. Found: C, 72.29; H,$ 4.38; N, 4.80.

# N-Phenyl 4-Methylaniline (8)

<sup>1</sup>H NMŘ (400 MHz, CDC1<sub>3</sub>):  $\delta$  = 7.26–7.31 (m, 2 H), 7.14 (d, *J* = 8.0 Hz, 2 H), 7.04–7.07 (m, 4 H), 6.93 (t, *J* = 7.40 Hz, 1 H), 5.66 (br s, 1 H, NH), 2.36 (s, 3 H, CH<sub>3</sub>) ppm. <sup>13</sup>C NMR (100 MHz, CDC1<sub>3</sub>):  $\delta$  = 134.94, 140.28, 131.01, 129.92, 129.37, 120.38, 118.96, 116.93, 20.76 ppm.

- (13) Munro, S. L. A.; Craik, D. J. Magn. Reson. Chem. 1994, 32, 335.
- (14) (a) Bayles, R.; Johnson, M. C.; Maisey, R. F.; Turner, R. W. *Synthesis* 1977, 33. (b) Mizuno, M.; Yamano, M. *Org. Synth.* 2007, 84, 325. (c) Arava, V. R.; Bandatmakuru, S. R. *Synthesis* 2013, 45, 1039. (d) Acemoglu, M.; Allmendinger, T.; Calienni, J.; Cercus, J.; Loiseleur, O.; Sedelmeier, G. H.; Xu, D. *Tetrahedron* 2004, 60, 11571. (e) Kam, L. E.; Grimaud, L.; Oble, J. *Angew. Chem. Int. Ed.* 2005, 44, 7961. (f) Yang, H.; Li, Z. B.; Shin, D. S.; Wang, L. Y.; Zhou, J. Z.; Qiao, H. B.; Tian, X.; Ma, X. Y.; Zuo, H. *Synlett* 2010, 483.

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.