Letter

Efficient Synthesis of Highly Enantioenriched Δ¹-Pyrrolines

D. I. S. P. Resende et al.

Diana I. S. P. Resende^a Samuel Guieu^{a,b} Cristina G. Oliva^{*a,1} Artur M. S. Silva^{*a}

 R^{2} + R^{1} R^{2} R^{2} R^{2} R^{2} R^{3} R^{3} R^{1} R^{1} R^{1} R^{1} R^{1} R^{1} R^{1} R^{2} R^{3} R^{3}

^a Department of Chemistry, QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal

^b Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal artur.silva@ua.pt

Abstract A general and efficient asymmetric synthesis of Δ^1 -pyrrolines by a one-pot nitro-reduction, cyclization, and dehydration of (*R*,*E*)-1,5diphenyl-3-(nitromethyl)-5-pent-4-en-1-ones with iron and aqueous hydrochloric acid has been developed. The Δ^1 -pyrrolines were obtained with excellent enantioselectivities (up to 99%) and high yields (up to 83%).

Key words pyrrolines, reductive cyclization, Michael addition, stereoselectivity

Nitrogen-containing heterocycles are important core structures in natural and synthetic biologically active compounds.^{2,3} In particular, 3,4-dihydro-2*H*-pyrroles,⁴ also called Δ^1 -pyrrolines, can be found in a wide variety of bio-

logically active compounds such as hemes, chlorophylls and alkaloids, and these rings have been used as building blocks for the development of new drugs.⁴ Recently, our group reported the synthesis of new boranil derivatives based on a Δ^1 -pyrroline core leading to new fluorophores.⁵ The synthesis of Δ^1 -pyrrolines is well documented^{2,4,6,7} and usually involves reductive cyclization of y-nitro carbonyl compounds.^{8,9} However, asymmetric versions of these reactions are scarce.^{10,11} Shibata et al.¹⁰ have recently reported the enantioselective synthesis of β -trifluoromethylated pyrrolines through organocatalyzed-conjugate addition of nitromethane to β-trifluoromethylated enones, followed by a nitroreduction, cyclization and dehydration sequence in a onepot procedure. Despite the very straightforward methodology, the need for a trifluoromethyl group restricts its scope and limits its application to particular cases.

D. I. S. P. Resende et al.

Letter

Entry	Conditions	Temp. (°C)	Time (h)	Yield (%)	
				(R)- 4a	(R)- 5 a
1ª	DMF–H ₂ O (1:1), Zn, conc. HCl	80	30	5	15
2 ^b	CHCl ₃ , Sn, concd HCl	r.t.	15	31	35
3°	THF–MeOH (2:1), Fe, AcOH	65	15	58	10
4 ^c	THF–MeOH (2:1), Fe (activated), AcOH	65	15	63	17
5°	THF–MeOH (2:1, anhyd), Fe (activated), AcOH	65	15	72	8
6 ^c	THF–MeOH (2:1), Fe (activated), AcOH	80	15	36	14

847

 Table 1
 Screening of Reduction Methods on the One-Pot Nitro-Reduction, Cyclization and Dehydration of (R)-3a

^a Reaction conditions: **3a** (0.169 mmol), concd HCl (0.34 mL), Zn powder (0.846 mmol), DMF-H₂O (1:1, 0.34 mL), 80 °C, 30 h.

^b Reaction conditions: **3a** (0.169 mmol), concd HCl (5.6 mL), Sn powder (14.0 mmol), CHCl₃ (15 mL), r.t., 15 h.

^c Reaction conditions: **3a** (0.31 mmol), AcOH (4.98 mmol), Fe (14.0 mmol), THF–MeOH (2:1, 6 mL), 65 °C, 15 h, nitrogen atmosphere.

Recent studies in our laboratory have led to the development of a new methodology for the asymmetric 1,4-Michael addition of nitromethane to 1,5-diarylpenta-2,4-dien-1-ones **1** (Scheme 1).^{12,13} In the presence of organocatalyst **2**, (*R*,*E*)-1,5-diaryl-3-(nitromethyl)-5-pent-4-en-1-ones (*R*)-**3** have been obtained with excellent enantioselectivity (up to 99%) and isolated yields (up to 97%). We then wished to go one step further, and use these enantiomerically pure compounds for the synthesis of enantiopure Δ^1 -pyrroline derivatives. In this communication, we present a general methodology for the synthesis of several highly enantioenriched Δ^1 -pyrroline derivatives through a one-pot, nitro-reduction, cyclization, dehydration of the (*R*,*E*)-1,5-diaryl-3-(nitromethyl)-5-pent-4-en-1-ones **3**.

To investigate the reactivity of the (R,E)-1,5-diaryl-3-(nitromethyl)-5-pent-4-en-1-ones 3 towards the reductive cyclization of the nitro group, our investigation began with a screening of metal-mediated reduction methods that have already been described (Scheme 2, Table 1).9,10,14 The first two reductive systems examined involved Zn/HCl (entry 1) and Sn/HCl (entry 2) and the Δ^1 -pyrroline **4a** was obtained in low yields (5–31%). Nevertheless, through HPLC analysis, it was possible to note the absence of racemization of the asymmetric carbon, which allowed us to obtain Δ^1 -pyrroline **4a** in excellent enantiomeric excess (>99%). However, formation of the corresponding Δ^1 -pyrroline-N-oxide **5a** was also observed, in amounts higher than the desired product. Finally, reduction with Fe/AcOH provided better results, and Δ^1 -pyrroline **4a** was obtained in good yield (entry 3). Further studies on the influence of the temperature, absence of water and oxygen, as well as the use of preactivated iron¹⁵ were performed (entries 4–6). The best results were obtained by using a mixture of anhydrous tetrahydrofuran and methanol (2:1) under nitrogen, activated iron (14 mmol) as reducing agent, and acetic acid (4.98 mmol) as a proton source.

Scheme 2 Reduction methods tested on the one-pot nitro-reduction, cyclization, dehydration of (*R*,*E*)-1,5-diaryl-3-(nitromethyl)-5-pent-4-en-1-ones **3**

It is worth mentioning that, under these conditions, not only was the Δ^1 -pyrroline **4a** obtained in a very good yield (72%), but the formation of Δ^1 -pyrroline-*N*-oxide **5a** was reduced to only 8% yield.

Table 2 Scope of the One-Pot Nitro-Reduction, Cyclization and Dehydration of $\mathbf{3}^{\mathrm{a}}$

Entry	3	R ¹	R ²	Yield (<i>R</i>) (%)	- 4 ee (R)- 4 (%)	<pre>?)-4 Yield (R)-! (%)</pre>	
1	3b	Me	Н	83	>99	6	
2	3c	OMe	Н	73	>99	11	
3	3d	Cl	Н	49	>99	5	
4	3e	F	Н	67	>99	6	
5	3f	Br	Н	44	>99	9	
6	3g	NO ₂	Н	40 ^b	>99	0 ^c	
7	3h	Н	OMe	38	>99	4	

^a Reaction conditions: **3b-h** (0.31 mmol), AcOH (4.98 mmol), Fe (14.0 mmol), THF–MeOH (2:1, 6 mL), 65 °C, 15 h, nitrogen atmosphere. ^b (*R*,*E*)-2-(4-Aminophenyl)-4-styryl-Δ¹-pyrroline (**4q**) was obtained.

 $^{\rm c}$ (R,É)-1-(4-Aminophenyl)-3-(nitromethyl)-5-phenyl-5-pent-4-en-1-one (3i) was obtained in 57% yield.

Svn		ett
	۲	

D. I. S. P. Resende et al.

After establishing these optimal reaction conditions, the scope of the reaction was investigated by using a range of derivatives **3b**-**h** (Scheme 3,Table 2). The Δ^1 -pyrrolines (*R*)-**4b**-**h**¹⁶ were obtained in moderate to good yields (38–83%) and excellent enantiomeric excesses (99%) for all the synthesized derivatives (entries 1–7).

In the case of nitro derivative **3g** (Table 2, entry 6), it was observed that reduction of the aromatic nitro group resulted in the formation of (R,E)-2-(4-aminophenyl)-4-sty-ryl- Δ^1 -pyrroline (**4g**). Furthermore, for this derivative, the corresponding *N*-oxide (*R*)-**5** was not formed; instead, (R,E)-1-(4-aminophenyl)-3-(nitromethyl)-5-phenyl-5-pent-4-en-1-one (**3i**) was obtained.

The mechanism for the formation of Δ^1 -pyrrolines **4** involves reduction of the nitro group to the corresponding amine intermediate **II**, which, after a cyclization and dehydration sequence, affords the desired products. On the other hand, formation of Δ^1 -pyrroline-*N*-oxides **5** as by-products results from cyclization of the partially reduced hydroxylamine intermediate **I** (Scheme 4).

The synthesis of the novel Δ^1 -pyrroline derivatives (*R*)-**4b**-**h** occurred without racemization. All enantiomeric excesses were determined by HPLC analysis (see the Supporting Information). The absolute configuration of **4d** and **4e** were confirmed by X-ray diffraction studies (Figure 1).¹⁷

In conclusion, we have described a very efficient synthesis of Δ^1 -pyrroline derivatives through a one-pot nitroreduction, cyclization and dehydration sequence of (*R*,*E*)-

848

Scheme 3 Synthesis of highly enantioenriched Δ^1 -pyrroline derivatives

Scheme 4 Proposed mechanism for the formation of the Δ^1 -pyrrolines (*R*)-**4** and Δ^1 -pyrroline-*N*-oxides **5**

849

D. I. S. P. Resende et al.

Figure 1 Molecular structure of 4d (a) and 4e (b). Thermal ellipsoids are shown at the 50% probability level, hydrogen atoms are shown with an arbitrary radius (0.30 Å). C, grey; N, blue; Cl, green; F, yellow; H, white

1,5-diaryl-3-(nitromethyl)-5-pent-4-en-1-ones **3**. There was no racemization of the asymmetric carbon, and the *trans*-geometry of the double bond was retained. This methodology is being applied in our laboratory to the synthesis of Δ^1 -pyrroline boranyl complexes.

Acknowledgment

Thanks are due to the University of Aveiro and the Portuguese Fundação para a Ciência e a Tecnologia (FCT) for funding the Organic Chemistry Research Unit (project PEst- C/QUI/UI0062/2013), the CICECO Associate Laboratory (PEst-C/CTM/LA0011/2013) and the Portuguese National NMR Network (RNRMN). D.I.S.P.R. and S.G. also thank the FCT for a doctoral grant (SFRH/BD/62696/2009) and a post-doctoral grant (SFRH/BPD/70702/2010), respectively.

Supporting Information

Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1380144.

References and Notes

- (1) Current address: Medicinal Chemistry Section, Experimental Therapeutics Programme, CNIO (Spanish National Cancer Research Centre), Madrid, Spain.
- (2) Huang, P.-Q. Asymmetric Synthesis of Five Membered Ring Heterocycles, In Asymmetric Synthesis of Nitrogen Heterocycles; Royer, J., Ed.; Wiley-VCH: Weinheim, 2009.
- (3) Pinder, A. R. Nat. Prod. Rep. 1992, 9, 491.
- (4) Asghari, S.; Qandalee, M. Synth. Commun. 2010, 40, 2172.
- (5) Cardona, F.; Rocha, J.; Silva, A. M. S.; Guieu, S. *Dyes Pigm.* **2014**, *111*, 16.
- (6) Marrec, O.; Christophe, C.; Billard, T.; Langlois, B.; Vors, J.-P.; Pazenok, S. Adv. Synth. Catal. 2010, 352, 2825.
- (7) Shvekhgeimer, M. G. A. Chem. Heterocycl. Compd. 2003, 39, 405.

- (8) Black, D. S.; Edwards, G. L.; Evans, R. H.; Keller, P. A.; Laaman, S. M. *Tetrahedron* **2000**, *56*, 1889.
- (9) Liang, Y.; Dong, D.; Lu, Y.; Wang, Y.; Pan, W.; Chai, Y.; Liu, Q. *Synthesis* **2006**, 3301.
- (10) Kawai, H.; Kitayama, T.; Tokunaga, E.; Matsumoto, T.; Sato, H.; Shiro, M.; Shibata, N. *Chem. Commun.* **2012**, *48*, 4067.
- (11) Lee, M.; Lee, Y.-J.; Park, E.; Park, Y.; Ha, M. W.; Hong, S.; Lee, Y.-J.; Kim, T.-S.; Kim, M.-h.; Park, H.-g. Org. Biomol. Chem. 2013, 11, 2039.
- (12) Oliva, C. G.; Silva, A. M. S.; Paz, F. A. A.; Cavaleiro, J. A. S. *Synlett* **2010**, 1123.
- (13) Oliva, C. G.; Silva, A. M. S.; Resende, D. I. S. P.; Paz, F. A. A.; Cavaleiro, J. A. S. *Eur. J. Org. Chem.* **2010**, 3449.
- (14) Silva, E. M. P.; Silva, A. M. S.; Cavaleiro, J. A. S. Synlett 2011, 2740.
- (15) A mixture of iron powder (30 g) and 10% HCl (25 mL) was stirred vigorously for 1 min. The solution was then filtered off and the iron powder was washed successively with distilled water (5×25 mL) and absolute EtOH (5×25 mL).
- (16) Synthesis of 4a-h; General Procedure: To a solution of (R,E)-1,5-diaryl-3-(nitromethyl)-5-pent-4-en-1-ones **3a-h** (0.31 mmol) in a mixture of THF-MeOH (2:1, 6 mL) was successively added at r.t., AcOH (4.98 mmol) and activated iron powder (14.0 mmol). The resulting mixture was heated at 65 °C for 15 h under a nitrogen atmosphere. After cooling to r.t., the reaction mixture was filtered through Celite and rinsed with EtOAc. The resultant solution was washed with sat. aq NaHCO₃, brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The resulting residue was purified by column chromatography (hexane-EtOAc, 80:20). Finally the residues were crystallized from hexane-EtOAc to furnish the desired compounds 4a-h. Compound 4a: Yield: 72%; brown oil. ¹H NMR (300 MHz, $CDCl_3$): $\delta = 7.85 (dd, J = 7.0, 2.3 Hz, 2 H, H-2', 6'), 7.45-7.19 (m,$ 8 H. H-3',5', H-4', H-2",6", H-3",5", H-4"), 6.47 (d, J = 15.8 Hz, 1 H, H- β), 6.24 (dd, *J* = 15.8, 7.9 Hz, 1 H, H- α), 4.33 (dd, *J* = 15.6,

7.2 Hz, 2 H, H-5), 3.90 (dd, *J* = 15.6, 5.1 Hz, 1 H, H-5), 3.36–3.19 (m, 2 H, H-3, H-4), 2.97–2.81 (m, 1 H, H-3). ¹³C NMR (75 MHz, CDCl₃): δ = 172.7 (C-2), 137.1 (C-1"), 134.2 (C-1'), 132.2 (C-α), 130.5 (C-4'), 129.9 (C-β), 128.5 (C-3',5',C-3'',5''), 127.5 (C-2',6'), 127.2 (C-4''), 126.0 (C-2'',6''), 67.2 (C-5), 41.8 (C-3), 41.3 (C-4). HRMS (ESI⁺): *m*/*z* [C₁₈H₁₇N + H]⁺ calcd for C₁₉H₁₇N: 248.1434; found: 248.1433. HPLC (*i*-PrOH–hexane, 10:90; flow rate 0.7 mL/min; λ = 254 nm): t_r = 10.90 [(*R*)-4a] min (*ee* = 99%).

Compound 4e: Yield: 44%; salmon solid; mp 110.6–111.3 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.71 (d, *J* = 8.6 Hz, 2 H, H-2',6'), 7.55 (d, *J* = 8.6 Hz, 2 H, H-3',5'), 7.37–7.18 (m, 5 H, H-2'',6'', H-3'',5'', H-4''), 6.46 (d, *J* = 15.8 Hz, 1 H, H-β), 6.23 (dd, *J* = 15.8, 8.2 Hz, 1 H, H-α), 4.38–4.24 (m, 1 H, H-5), 3.94–3.82 (m, 1 H, H-5), 3.38–3.16 (m, 2 H, H-3, H-4), 2.92–2.79 (m, 1 H, H-3). ¹³C NMR (75 MHz, CDCl₃): δ = 171.8 (C-2), 137.0 (C-1''), 133.2 (C-4'), 132.0 (C-α), 131.7 (C-3',5'), 130.2 (C-β), 129.1 (C-2',6'), 128.6 (C-3'',5''), 127.4 (C-4''), 126.1 (C-2'',6''), 125.1 (C-1'), 67.4 (C-5), 41.8 (C-3), 41.4 (C-4). HRMS (ESI⁺): *m/z* [C₁₈H₁₆BrN + H]⁺ calcd for C₁₈H₁₇BrN: 326.0539; found: 326.0537. HPLC (*i*-PrOH– hexane, 10:90; flow rate 0.7 mL/min; λ = 254 nm): *t*_r = 13.07 [(*R*)-**4e**] min (*ee* = 99%).

(17) Crystal data for **4d**: $C_{18}H_{16}CIN$; M = 281.77; orthorhombic; space group P212121; Z = 4; a = 5.6675(7) Å, b = 7.8846(12) Å, c = 32.643(3) Å, $\alpha = \beta = \gamma = 90.00^{\circ}$; V = 1458.7(3) Å³; colorless crystal with crystal size of 0.10 × 0.08 × 0.04 mm was used. Of a total of 2942 reflections collected, 2022 were independent (Rint = 0.0968). Final R1 = 0.0614 [$I > 2\sigma(I)$] and wR2 = 0.1591 (all data). Crystal data for **4e**: $C_{18}H_{16}FN$; M = 265.32; orthorhombic; space group P212121; Z = 4; a = 5.6544(6) Å, b = 7.9709(8) Å, c =

D. I. S. P. Resende et al.

31.048(3) Å, $\alpha = \beta = \gamma = 90.00^\circ$; V = 1399.4(2) Å³; colourless flake with crystal size of 0.50 × 0.20 × 0.04 mm. Of a total of 3068 reflections collected, 2834 were independent (*Rint* = 0.0380). Final *R*1 = 0.0336 [*I* > 2 σ (*I*)] and *wR*2 = 0.0796 (all data). CCDC-

1033064 and 1033065 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/datarequest/cif. Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.