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Abstract A general and efficient asymmetric synthesis of Δ1-pyrrolines
by a one-pot nitro-reduction, cyclization, and dehydration of (R,E)-1,5-
diphenyl-3-(nitromethyl)-5-pent-4-en-1-ones with iron and aqueous
hydrochloric acid has been developed. The Δ1-pyrrolines were obtained
with excellent enantioselectivities (up to 99%) and high yields (up to
83%).

Key words pyrrolines, reductive cyclization, Michael addition, stereo-
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Nitrogen-containing heterocycles are important core
structures in natural and synthetic biologically active com-
pounds.2,3 In particular, 3,4-dihydro-2H-pyrroles,4 also
called Δ1-pyrrolines, can be found in a wide variety of bio-

logically active compounds such as hemes, chlorophylls and
alkaloids, and these rings have been used as building blocks
for the development of new drugs.4 Recently, our group re-
ported the synthesis of new boranil derivatives based on a
Δ1-pyrroline core leading to new fluorophores.5 The syn-
thesis of Δ1-pyrrolines is well documented2,4,6,7 and usually
involves reductive cyclization of γ-nitro carbonyl com-
pounds.8,9 However, asymmetric versions of these reactions
are scarce.10,11 Shibata et al.10 have recently reported the en-
antioselective synthesis of β-trifluoromethylated pyrrolines
through organocatalyzed-conjugate addition of nitrometh-
ane to β-trifluoromethylated enones, followed by a nitro-
reduction, cyclization and dehydration sequence in a one-
pot procedure. Despite the very straightforward methodol-
ogy, the need for a trifluoromethyl group restricts its scope
and limits its application to particular cases.

Scheme 1  Enantioselective addition of nitromethane to (E,E)-1,5-diarylpenta-2,4-dien-1-ones 1 organocatalyzed by 2
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Recent studies in our laboratory have led to the develop-
ment of a new methodology for the asymmetric 1,4-Mi-
chael addition of nitromethane to 1,5-diarylpenta-2,4-
dien-1-ones 1 (Scheme 1).12,13 In the presence of organocat-
alyst 2, (R,E)-1,5-diaryl-3-(nitromethyl)-5-pent-4-en-1-
ones (R)-3 have been obtained with excellent enantioselec-
tivity (up to 99%) and isolated yields (up to 97%). We then
wished to go one step further, and use these enantiomeri-
cally pure compounds for the synthesis of enantiopure Δ1-
pyrroline derivatives. In this communication, we present a
general methodology for the synthesis of several highly en-
antioenriched Δ1-pyrroline derivatives through a one-pot,
nitro-reduction, cyclization, dehydration of the (R,E)-1,5-
diaryl-3-(nitromethyl)-5-pent-4-en-1-ones 3.

To investigate the reactivity of the (R,E)-1,5-diaryl-3-
(nitromethyl)-5-pent-4-en-1-ones 3 towards the reductive
cyclization of the nitro group, our investigation began with
a screening of metal-mediated reduction methods that have
already been described (Scheme 2,Table 1).9,10,14 The first
two reductive systems examined involved Zn/HCl (entry 1)
and Sn/HCl (entry 2) and the Δ1-pyrroline 4a was obtained
in low yields (5–31%). Nevertheless, through HPLC analysis,
it was possible to note the absence of racemization of the
asymmetric carbon, which allowed us to obtain Δ1-pyrro-
line 4a in excellent enantiomeric excess (>99%). However,
formation of the corresponding Δ1-pyrroline-N-oxide 5a
was also observed, in amounts higher than the desired
product. Finally, reduction with Fe/AcOH provided better
results, and Δ1-pyrroline 4a was obtained in good yield (en-
try 3). Further studies on the influence of the temperature,
absence of water and oxygen, as well as the use of preacti-
vated iron15 were performed (entries 4–6). The best results
were obtained by using a mixture of anhydrous tetrahydro-
furan and methanol (2:1) under nitrogen, activated iron (14
mmol) as reducing agent, and acetic acid (4.98 mmol) as a
proton source.

It is worth mentioning that, under these conditions, not
only was the Δ1-pyrroline 4a obtained in a very good yield
(72%), but the formation of Δ1-pyrroline-N-oxide 5a was re-
duced to only 8% yield.

Table 1  Screening of Reduction Methods on the One-Pot Nitro-Reduction, Cyclization and Dehydration of (R)-3a

Entry Conditions Temp. (°C) Time (h) Yield (%)

(R)-4a (R)-5a

1a DMF–H2O (1:1), Zn, conc. HCl 80 30  5 15

2b CHCl3, Sn, concd HCl r.t. 15 31 35

3c THF–MeOH (2:1), Fe, AcOH 65 15 58 10

4c THF–MeOH (2:1), Fe (activated), AcOH 65 15 63 17

5c THF–MeOH (2:1, anhyd), Fe (activated), AcOH 65 15 72  8

6c THF–MeOH (2:1), Fe (activated), AcOH 80 15 36 14
a Reaction conditions: 3a (0.169 mmol), concd HCl (0.34 mL), Zn powder (0.846 mmol), DMF–H2O (1:1, 0.34 mL), 80 °C, 30 h.
b Reaction conditions: 3a (0.169 mmol), concd HCl (5.6 mL), Sn powder (14.0 mmol), CHCl3 (15 mL), r.t., 15 h.
c Reaction conditions: 3a (0.31 mmol), AcOH (4.98 mmol), Fe (14.0 mmol), THF–MeOH (2:1, 6 mL), 65 °C, 15 h, nitrogen atmosphere.

Scheme 2  Reduction methods tested on the one-pot nitro-reduction, 
cyclization, dehydration of (R,E)-1,5-diaryl-3-(nitromethyl)-5-pent-4-
en-1-ones 3
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Table 2  Scope of the One-Pot Nitro-Reduction, Cyclization and Dehy-
dration of 3a

Entry 3 R1 R2 Yield (R)-4 
(%)

ee (R)-4 
(%)

Yield (R)-5 
(%)

1 3b Me H 83 >99  6

2 3c OMe H 73 >99 11

3 3d Cl H 49 >99  5

4 3e F H 67 >99  6

5 3f Br H 44 >99  9

6 3g NO2 H 40b >99  0c

7 3h H OMe 38 >99  4
a Reaction conditions: 3b–h (0.31 mmol), AcOH (4.98 mmol), Fe (14.0 
mmol), THF–MeOH (2:1, 6 mL), 65 °C, 15 h, nitrogen atmosphere.
b (R,E)-2-(4-Aminophenyl)-4-styryl-Δ1-pyrroline (4g) was obtained.
c (R,E)-1-(4-Aminophenyl)-3-(nitromethyl)-5-phenyl-5-pent-4-en-1-one (3i) 
was obtained in 57% yield.
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After establishing these optimal reaction conditions, the
scope of the reaction was investigated by using a range of
derivatives 3b–h (Scheme 3,Table 2). The Δ1-pyrrolines (R)-
4b–h16 were obtained in moderate to good yields (38–83%)
and excellent enantiomeric excesses (99%) for all the syn-
thesized derivatives (entries 1–7).

In the case of nitro derivative 3g (Table 2, entry 6), it
was observed that reduction of the aromatic nitro group re-
sulted in the formation of (R,E)-2-(4-aminophenyl)-4-sty-
ryl-Δ1-pyrroline (4g). Furthermore, for this derivative,
the corresponding N-oxide (R)-5 was not formed; instead,
(R,E)-1-(4-aminophenyl)-3-(nitromethyl)-5-phenyl-5-pent-
4-en-1-one (3i) was obtained.

The mechanism for the formation of Δ1-pyrrolines 4 in-
volves reduction of the nitro group to the corresponding
amine intermediate II, which, after a cyclization and dehy-
dration sequence, affords the desired products. On the oth-
er hand, formation of Δ1-pyrroline-N-oxides 5 as by-prod-
ucts results from cyclization of the partially reduced hy-
droxylamine intermediate I (Scheme 4).

The synthesis of the novel Δ1-pyrroline derivatives (R)-
4b–h occurred without racemization. All enantiomeric ex-
cesses were determined by HPLC analysis (see the Support-
ing Information). The absolute configuration of 4d and 4e
were confirmed by X-ray diffraction studies (Figure 1).17

In conclusion, we have described a very efficient syn-
thesis of Δ1-pyrroline derivatives through a one-pot nitro-
reduction, cyclization and dehydration sequence of (R,E)-

Scheme 3  Synthesis of highly enantioenriched Δ1-pyrroline derivatives
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Scheme 4  Proposed mechanism for the formation of the Δ1-pyrrolines (R)-4 and Δ1-pyrroline-N-oxides 5

O
NO2

(R)-3

N

(R)-4

N

(R)-5

–O

R1 R2

R1

R2

R1

R2

O
N

R1 R2

OH

H O
NH2

R1 R2
I II

N
HO

R1

R2

N

R1

R2

III IV

– H2O – H2O

HO HO

H

+

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.

 



849

© Georg Thieme Verlag  Stuttgart · New York — Synlett 2015, 26, 846–850

D. I. S. P. Resende et al. LetterSyn  lett

1,5-diaryl-3-(nitromethyl)-5-pent-4-en-1-ones 3. There
was no racemization of the asymmetric carbon, and the
trans-geometry of the double bond was retained. This
methodology is being applied in our laboratory to the syn-
thesis of Δ1-pyrroline boranyl complexes.
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31.048(3) Å, α = β = γ = 90.00°; V = 1399.4(2) Å3; colourless flake
with crystal size of 0.50 × 0.20 × 0.04 mm. Of a total of 3068
reflections collected, 2834 were independent (Rint = 0.0380).
Final R1 = 0.0336 [I > 2σ(I)] and wR2 = 0.0796 (all data). CCDC-

1033064 and 1033065 contain the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/datarequest/cif.

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.

 



Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not
be copied or emailed to multiple sites or posted to a listserv without the copyright holder's
express written permission. However, users may print, download, or email articles for
individual use.


