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Photoredox-catalyzed Cyclopropanation of Michael Acceptors 
Ana M. del Hoyo,[a] and Marcos G. Suero*[a] 

Dedicated to Prof. Josefa Flórez González 

Abstract: A new protocol for the catalytic cyclopropanation of α,β-
unsaturated carbonyl compounds with diiodomethane by means of 
photoredox catalysis has been successfully developed. The 
transformation is characterized by its mild conditions, functional 
group compatibility, and excellent selectivity profile. 

Introduction 
The cyclopropane ring is an important cyclic structural motif 
found in many natural products, medicines and crop protection 
agents.[1] Over the past decades, the development of catalytic 
methodologies for the synthesis of these carbocycles has been 
an area of intense study.[2] In particular, the simple methylene 
transfer into alkenes has provided the conceptual basis for the 
development of a range of useful methodologies involving 
iodomethylzinc carbenoids,[3] diazomethane[4] and sulfur or 
nitrogen ylides.[5],[6] In contrast, it is rather surprising to see the 
scarcity of synthetic methods based on radical species.[7] 
Recently, our group has introduced a novel reactivity concept 
based on the catalytic generation of radical carbenoid species 
by means of photoredox catalysis (Scheme 1).[8] These radicals 
are substituted with an excellent leaving group and its reactivity 
is reminiscent of carbene species. 

 

Scheme 1. Generation of radical carbenoids via SET process. 

By using this concept, we have developed a new alkene 
cyclopropanation reaction using commercial diiodomethane as 
methylene transfer reagent via photoredox catalysis (Scheme 
2a).[9] This process is characterized by its mild conditions, broad 
functional group compatibility, and excellent selectivity profile. 
Iodomethyl radical carbenoid ICH2(�) is the key intermediate 
photocatalytically generated that is able to cyclopropanate 
mixtures of E,Z-styrenes in a stereoconvergent manner. A 
benzyl radical has been proposed to explain the 
stereoconvergence phenomena and the ring-closing step 
(Scheme 2a).[10] With the aim of expanding the scope of this 
radical cyclopropanation reaction, we questioned whether a 
related catalytic process could be developed for α,β-unsaturated 

carbonyl compounds. In this process, the nucleophilic 
iodomethyl radical would attack the C–C double bond generating 
an α-carbonyl radical intermediate, which might be able to 
conduct to the cyclopropane ring.[11] Herein, we report the 
successful development of a new photocatalytic 
cyclopropanation reaction of α,β-unsaturated carbonyl 
compounds using diiodomethane as methylene transfer reagent 
(Scheme 2b). 

 

Scheme 2. Photocatalytic alkene cyclopropanation with diiodomethane. 

Results and Discussion 

We started our study using commercial (E)-chalcone (1a) as a 
model substrate (Table 1) and analogous reaction conditions 
developed previously for the cyclopropanation of styrene 
derivatives [Ru(bpy)3(PF6)2 (1 mol %), CH2I2 (2.5 equiv), i-Pr2EtN 
(5 equiv), Na2S2O3 (5 equiv), CH3CN/H2O (4:1)]. It was highly 
gratifying to observe that the same reaction conditions were 
suitable for the cyclopropanation of 1a, and a 69% NMR yield of 
the expected trans-cyclopropane 3a was obtained as the only 
reaction product (Table 1, entry 1). In order to improve the 
efficiency of this process, we performed different experiments 
modifying the reaction variables. A dramatic decrease of yield 
was observed when no sodium thiosulfate and water were 
added (entry 2) or no degasification of the reaction mixture was 
carried out (entry 3). Further modification of the standard 
reaction conditions using alternative polar solvents (entry 4,5), 
visible-light sources (entry 6) or photocatalysts (entry 7–10) did 
not improve the efficiency of the process (see supporting 
information for further experiments).[12] 
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Table 1. Optimization Studies.[a]  

 
Entry[a] Modification of the standard conditions Yield [%][b] 

1 None 69 

2 Na2S2O3 and H2O no added 35 

3 Reaction mixture no degassed 17 

4 DMSO instead CH3CN 10 

5 DMF instead CH3CN 5 

6 Blue LED strips instead of 21 W CFL 35 

7 Ir(ppy)2(dtbbpy)PF6 instead Ru(bpy)3(PF6)2 22 

8 Ir(ppy)3 instead Ru(bpy)3(PF6)2 59 

9 Cu(dap)2Cl instead Ru(bpy)3(PF6)2 21 

10 Eosin Y instead Ru(bpy)3(PF6)2 42 

[a] Reaction conditions: 1a (0.10 mmol), 2 (0.25 mmol), i-PrEt2N (0.50 mmol), 
CH3CN (4 mL), Na2S2O3 (0.50 mmol), H2O (1 mL). Reactions were degassed 
prior to irradiation. [b] NMR Yields calculated using 1,2-dimethoxyethane as 
internal standard. bpy = 2,2’-bipyridine. ppy = 2-phenylpyridine. dtbbpy = 4,4’-
bis(1,1-dimethylethyl)-2,2’-bipyridine. dap = 2,9-bis(para-anisyl)-1,10-
phenanthroline.  

With these conditions in hand, we next turned our attention to 
assessing the scope of this radical cyclopropanation reaction by 
varying the aromatic substituent at C1 (Table 2). We found that 
electron-rich aromatic rings led to excellent yields (3b–c) in 
comparison for electron-poor ones (3d,e). Although full 
conversion is accomplished for the latter substrates, 
cyclopropane decomposition is clearly observed under the 
reaction conditions.[13] In this sense, we later extensively 
explored the substrate scope at the C3 position keeping an 
electron-rich aromatic group at C1 position. We found that the 
process worked well for aromatic rings substituted with alkyl (3f), 
alkoxide (3g,h), amino (3i), halogen (3j), ciano (3k), CF3 (3l) or 
aldehyde groups (3m). Additionally, substrates bearing five- and 
six-membered ring heterocycles (3n–r) worked well and no 
products from a Minisci-type C–H bond iodomethylation were 
observed.[14] It is noteworthy the excellent site-selectivity profile 
observed for the cyclopropanation of the conjugated alkene 
moiety versus other functionalities such us alkyl-substituted 
alkenes (3h), nitriles (3k,o) or aldehyde groups (3m), that might 
undergo methylene transfer by using classic protocols. 
Additionally, we were delighted to find that the efficiency of the 
cyclopropanation reaction was not decreased for trisubstituted 
chalcones (3s) or for substrates bearing an alkyl group at C3 
position instead of an aromatic ring (3t).[15] 
 
 
 
 
 
 
 
 
 
 

Table 2. Cyclopropanation reaction of chalcone substrates.[a] 

 
[a] Reaction conditions: 1 (0.40 mmol), 2 (1.00 mmol), i-PrEt2N (2.00 mmol), 
CH3CN (10 mL), Na2S2O3 (2.00 mmol), H2O (1.5 mL), Reactions were 
degassed prior to irradiation. [b] Reaction carried out with 1 gram of (E)-1c. 
PMP = para-methoxyphenyl. 

 

This new cyclopropanation reaction was also amenable for 
isomeric E/Z mixtures of chalcones 1a,c,j and permitted the 
steroconvergent synthesis of the desired trans-cyclopropane 
3a,c,j with total stererocontrol (Scheme 3). These results 
highlights a unique feature of this radical cyclopropanation 
reaction based on the novel radical carbenoid species ICH2(�). 

 

Scheme 3. Stereoconvergent chalcone cyclopropanation. 

Later, we believed that alternative Michael acceptors could be 
cyclopropanated by using the process developed for the 
chalcone derivatives. We were pleased to find that α,β-
unsaturated aldehydes (4a), methyl ketones (4b),[16] amides (4c) 
or simple alkyl-substituted enones (4d) were suitable substrates 
for the synthesis of the corresponding cyclopropanes 5a–d 
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(Scheme 4). In contrast with these results, ester substrates (4e), 
imines (4f) or alkenes bearing ciano (β-cianostyrene) or nitro 
groups (β-nitrostyrene) were not suitable for this radical 
cyclopropanation reaction.[17] 

 

Scheme 4. Catalytic cyclopropanation of α,β-unsaturated carbonyls. 

Finally, we wondered whether the catalytic concept depicted in 
Scheme 1 for radical carbenoid generation, could be generalized 
by using alternative gem-diiodoalkanes. This generalization 
would allow access to complex cyclopropane cores using a 
simple and novel catalytic approach. Preliminary studies have 
revealed that commercially available 1,1-diiodoethane (6) 
worked well under the same reaction conditions developed in 
Table 1 and produced tri-substituted cyclopropane 7 in 69% 
isolated yield as a mixture of diastereoisomers (Scheme 5). This 
result suggested the involvement of a new radical carbenoid 
species 8, whose reactivity is analogous to the iodomethyl 
radical carbenoid ICH2(�). 

 

Scheme 5. Cyclopropanation with 1,1-diiodoethane (6). 

Conclusions 

In summary, we have successfully developed a new 
cyclopropanation reaction of α,β-unsaturated carbonyl 
compounds with CH2I2 by means of photoredox catalysis. 
Notable features of this process are the mild reaction conditions 
and excellent selectivity profile. The process involves the 
catalytic generation of radical carbenoid species, which are able 
to transfer a CH2 in a stereocontrolled manner. Additionally, we 
were able to transfer for the first time, a CH(Me) group by using 
commercial 1,1-diiodoethane. 
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