Palladium-Catalyzed Trifluoroethylation of Terminal Alkynes with 1,1,1-Trifluoro-2-iodoethane

ORGANIC LETTERS 2013 Vol. 15, No. 4 936–939

Yi-Si Feng,[†] Chuan-Qi Xie,[†] Wen-Long Qiao,[†] and Hua-Jian Xu^{*,†,‡}

School of Chemical Engineering, School of Medical Engineering, Hefei University of Technology, Key Laboratory of Advanced Functional Materials and Devices, Anhui Province, Hefei 230009, P. R. China

hjxu@hfut.edu.cn

Received January 12, 2013

An efficient C_{sp} -CH₂CF₃ bond-forming reaction via Pd-catalyzed 2,2,2-trifluoroethylation of aryl and alkyl terminal alkynes has been developed. This protocol proceeds under mild conditions using the readily available and cheap reagent CF₃CH₂I as the source of the CH₂CF₃ group. Various terminal aryl alkynes as well as alkylacetylenes can be transformed into the corresponding trifluoroethylated products in good-to-excellent yields. The method is tolerant of carbonyl, nitro, ester, cyano, and even formyl groups.

The incorporation of fluorine atoms into organic molecules can profoundly influence their chemical and biological

(2) Recent examples: (a) Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.; Buchwald, S. L. Science 2010, 328, 1679. (b) Zhu, R.; Buchwald, S. L. J. Am. Chem. Soc. 2012, 134, 12462. (c) Parsons, A. T.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50, 9120. (d) Cho, E. J.; Buchwald, S. L. Org. Lett. 2011, 13, 6552. (e) Ye, Y.; Sanford, M. S. J. Am. Chem. Soc. 2012, 134, 9034. (f) Ye, Y.; Lee, S.; Sanford, M. S. Org. *Lett.* 2011, *13*, 5464. (g) Ball, N. D.; Gary, J. B.; Ye, Y.; Sanford, M. S. *J. Am. Chem. Soc.* 2011, *133*, 7577. (h) Loy, R. N.; Sanford, M. S. *Org.* Lett. 2011, 13, 2548. (i) Ball, N. D.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2010, 132, 2878. (j) Janson, P. G.; Ghoneim, I.; Ilchenko, N.O.; Szabo, K.J. Org. Lett. 2012, 14, 2882. (k) Xu, J.; Fu, Y.; Luo, D.-F.; Jiang, Y.-Y.; Xiao, B.; Liu, Z.-J.; Gong, T.-J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 15300. (l) Xu, J.; Xiao, B.; Xie, C.-Q.; Luo, D.-F.; Liu, L.; Fu, Y. Angew. Chem., Int. Ed. 2012, 51, 12551. (m) Xu, J.; Luo, D.-F.; Xiao, B.; Liu, Z.-J.; Gong, T.-J.; Fu, Y.; Liu, L. Chem. Commun. 2011, 47, 4300. (n) Hu, M.-Y.; Ni, C.-F.; Hu, J.-B. J. Am. Chem. Soc. 2012, 134, 15257. (o) (in) Id., Id., T., H., C., Hu, J., B.J., Am. Chem. Soc. 2012, 152-162, 152-J. Am. Chem. Soc. 2010, 132, 7262. (s) Morandi, B.; Carreira, E. M. Angew. Chem., Int. Ed. 2010, 49, 938.

10.1021/ol400099h © 2013 American Chemical Society Published on Web 02/01/2013 activities, such as lipophilicity, metabolic stability, and bioavailability.¹ As a result, much attention has been paid to the development of an appropriate method for the incorporation of fluoroalkyl groups into functional organic structures.² In this context, considerable progress has been made in the use of 1,1,1-trifluoro-2-iodoethane (CF₃CH₂I) to form C_{sp}^{3} -CH₂CF₃ or C_{sp}^{2} -CH₂CF₃ bonds.³ For instance, McLoughlin and Thrower groups reported Cu(0)promoted 2,2,2-trifluoroethylation reactions of iodoaromatic compounds with CF₃CH₂I in 1969.⁴ Recently, the Hu⁵ and Zou⁶ groups respectively reported the palladium-catalyzed

[†]Hefei University of Technology.

^{*}Key Laboratory of Advanced Functional Materials and Devices.

⁽¹⁾ Recent reviews: (a) Uneyama, K.; Katagiri, T.; Amii, H. Acc. Chem. Res. 2008, 41, 817. (b) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359. (c) Ma, J.-A.; Cahard, D. Chem. Rev. 2008, 108, PR1. (d) Hu, J.; Zhang, W.; Wang, F. Chem. Commun. 2009, 7465. (e) Lectard, S.; Hamashima, Y.; Sodeoka, M. Adv. Synth. Catal. 2010, 352, 2708. (f) Nie, J.; Guo, H.-C.; Cahard, D.; Ma, J.-A. Chem. Rev. 2011, 111, 455. (g) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475.

^{(3) (}a) Solladie-Cavallo, A.; Suffert, J. Tetrahedron Lett. 1984, 25, 1897. (b) Solladie-Cavallo, A.; Farkhani, D.; Fritz, S.; Lazrak, T.; Suffert, J. Tetrahedron Lett. 1984, 25, 4117. (c) Solladie-Cavallo, A.; Suffert, J. Synthesis 1985, 659. (d) Schneider, M. R. J. Med. Chem. 1986, 29, 1494. (e) Solladi-Cavallo, A.; Farkhani, D.; Dreyfuss, A. C.; Sanch, F. Bull. Soc. Chim. Fr. 1986, 6, 906. (f) Matsubara, S.; Mitani, M.; Utimoto, K. Tetrahedron Lett. 1987, 28, 5857. (g) Hammond, G. B.; Plevey, R. G.; Sampson, P.; Tatlow, J. C. J. Fluorine Chem. 1988, 40, 81. (h) Long, Z.-Y.; Chen, Q.-Y. Tetrahedron Lett. 1998, 39, 8487. (i) Culkin, D. A.; Hartwig, J. F. Organometallics 2004, 23, 3398. (j) Balsells, J.; Waters, M.; Hansen, K.; Kieczykowski, G. R.; Song, Z. J. Synthesis 2007, 2779. (k) Takai, K.; Takagi, T.; Baba, T.; Kanamori, T. J. Fluorine Chem. 2007, 128, 120.

⁽⁴⁾ McLoughlin, V. C. R.; Thrower, J. Tetrahedron 1969, 25, 5921.

⁽⁵⁾ Zhao, Y.-C.; Hu, J.-B. Angew. Chem., Int. Ed. 2012, 51, 1033.

⁽⁶⁾ Liang, A.-P.; Li, X.-J.; Liu, D.-F.; Li, J.-Y.; Zou, D.-P.; Wu, Y.-J.; Wu, Y.-S. Chem. Commun. **2012**, *48*, 8273.

2,2,2-trifluoroethylation of organoboronic acids and esters with readily available 1,1,1-trifluoro-2-iodoethane.

Notably, trifluoroethylated acetylenes are useful organic intermediates. While methods for the construction of C_{sp}-CH₂CF₃ bonds have remained rare, the Shibata group has documented a copper-mediated protocol for the preparation of 1-nitro-4-(4,4,4-trifluorobut-1-ynyl)benzene, but the yield was only 36% (Scheme 1a).⁷ In addition, the copper-catalyzed direct 2.2.2-trifluoroethylation of terminal alkynes with pregenerated 2,2,2-trifluorodiazoethane was reported by the Ma group in 2012. The drawback of this method is the need to preprepare the gaseous 2,2,2-trifluorodiazoethane from 2,2,2-trifluoroethylamine hydrochloride and sodium nitrite (Scheme 1b).⁸ Meanwhile, the Szabo group developed a copper-mediated trifluoromethylation of propargylic halides and trifluoroacetates, which require prefunctionalization of terminal alkynes (Scheme 1c).9 Herein, we describe a direct palladium-catalyzed method for 2,2,2-trifluoroethylation of terminal alkynes with readily available 1,1,1-trifluoro-2iodoethane (CF₃CH₂I). The direct trifluoroethylation of C_{sp}-H bonds represents a straightforward and functional group tolerant protocol applicable for preparation of a broad range of trifluoroethylated acetylenes in moderateto-excellent yields.

Scheme 1. Synthetic Protocols of Trifluoroethylated Acetylenes

Our study began with the cross-coupling of phenylacetylene (I) with the CF₃CH₂I. Initially we examined direct 2,2,2-trifluoroethylation in the presence of Pd₂(dba)₃ (5 mol %), Xantphos (20 mol %), and Cs₂CO₃ (2.0 equiv) in 1,4-dioxane at 80 °C, which is similar to previously reported reaction conditions.⁵ Fortunately, the desired product was detected, although the yield was very low (Table 1, entry 1). With the aim of improving the desired Table 1. Optimization of the Reaction Conditions^a

entry	Pd source	ligand	base	solvent	¹⁹ F NMR yield of II (%)
1	Pd ₂ (dba) ₃	Xantphos	Cs ₂ CO ₃	1,4-dioxane	11
2	Pd ₂ (dba) ₃	Xantphos	Cs_2CO_3	DMF	5
3	Pd ₂ (dba) ₃	Xantphos	Cs ₂ CO ₃	DMSO	20
4	Pd ₂ (dba) ₃	Xantphos	Cs_2CO_3	DCE	9
5	Pd ₂ (dba) ₃	Xantphos	Cs ₂ CO ₃	CH ₃ CN	trace
6	Pd ₂ (dba) ₃	Xantphos	Cs_2CO_3	PhCH ₃	60
7	Pd ₂ (dba) ₃	BINAP	Cs ₂ CO ₃	PhCH ₃	15
8	Pd ₂ (dba) ₃	dppf	Cs ₂ CO ₃	PhCH ₃	33
9	Pd ₂ (dba) ₃	X-Phos	Cs ₂ CO ₃	PhCH ₃	12
10	Pd ₂ (dba) ₃	S-Phos	Cs ₂ CO ₃	PhCH ₃	16
11	Pd ₂ (dba) ₃	DPEphos	Cs ₂ CO ₃	PhCH ₃	72
12	Pd ₂ (dba) ₃	DPEphos	t-BuOK	PhCH ₃	4
13	Pd ₂ (dba) ₃	DPEphos	t-BuONa	PhCH ₃	2
14	Pd ₂ (dba) ₃	DPEphos	t-BuOLi	PhCH ₃	trace
15	Pd ₂ (dba) ₃	DPEphos	K_2CO_3	PhCH ₃	34
16	Pd ₂ (dba) ₃	DPEphos	Et ₃ N	PhCH ₃	42
17	Pd ₂ (dba) ₃	DPEphos	Dabco	PhCH ₃	86
18 ^b	Pd(OAc) ₂	DPEphos	Dabco	PhCH ₃	35
19 ^b	PdCl ₂	DPEphos	Dabco	PhCH ₃	77
20 ^b	Pd(PPh ₃) ₄	DPEphos	Dabco	PhCH ₃	3
21		DPEphos	Dabco	PhCH ₃	NR
22	Pd ₂ (dba) ₃		Dabco	PhCH ₃	<1
23°	Pd ₂ (dba) ₃	DPEphos	Dabco	PhCH ₃	trace
	PPh ₂ PPh ₂		PPh ₂ PPh ₂	Fe PPh ₂	
	Xantphos įPr	BIN	АР	dppf	

^{*a*} Unless otherwise noted, the reactions were carried out with I (0.5 mmol), CF₃CH₂I (2 equiv), base (2 equiv), Pd₂(dba)₃ (5 mol %), ligand (20 mol %), and toulene (1 mL) under Ar, 80 °C, 24 h. ^{*b*} 10 mol % of Pd(OAc)₂, PdCl₂, and Pd(PPh₃)₄ were used. ^{*c*} Under air.

S-Phos

оMe

PCy₂

₽Ph2

DPEphos

MeC

PCy₂

X-Phos

product yield, different organic solvents were examined, and PhCH₃ gave the best yield compared with other solvents (Table 1, entries 2–6). To our surprise, screening different monodentate and bidentate phosphine ligands (Table 1, entries 7–11) led to the discovery that DPEphos was an effective ligand, forming the product in 72% yield (Table 1, entry 11). Reasoning that a base might play an important role in this reaction, we tested several inorganic (Table1, entries 12–15) and organic bases (Table1, entries 16 and 17). It was found that 1,4-diazabicyclo[2.2.2]octane (Dabco) could provide the most efficient yield of 86% (Table 1, entry 17), while other organic and inorganic bases

⁽⁷⁾ Kawai, H.; Furukawa, T.; Nomura, Y.; Tokunaga, E.; Shibata, N. Org. Lett. **2011**, *13*, 3596.

⁽⁸⁾ Liu, C.-B.; Meng, W.; Li, F.; Wang, S.; Nie, J.; Ma, J.-A. Angew. Chem., Int. Ed. **2012**, *51*, 6227.

⁽⁹⁾ Zhao, T. S. N.; Szabo, K. J. Org. Lett. 2012, 14, 3966.

Table 2. Pd-Catalyzed Trifluoroethylation of Terminal Alkynes to 1,1,1-Trifluoro-2-iodoethane^{*a*}

^{*a*} Reaction conditions: **1** (0.5 mmol), CF_3CH_2I (2 equiv), $Pd_2(dba)_3$ (5 mol %), DPEphos (20 mol %), and Dabco (2 equiv) in toluene (1 mL), 80 °C, Ar, 24 h. ^{*b*} Isolated yields. ^{*c*} Yields were determined by ¹⁹F NMR with an internal standard (benzotrifluoride).

Scheme 2. Reduction and Oxidation Reaction of Aryl and Alkyl 2,2,2,-Trifluoroethylation Product

were less effective. Finally, an examination of different palladium sources revealed that palladium(II) catalysts were less effective compared to the $Pd_2(dba)_3$ catalyst (Table 1, entries 18 and 19). However, other palladium(0) catalysts, such as $Pd(PPh_3)_4$, gave only a low yield (Table 1, entry 20). Obviously, both palladium catalyst and ligand were essential for reaction efficiency, as hardly any detectable product was observed in the absence of $Pd_2(dba)_3$ or DPEphos (Table 1, entries 21 and 22). Only a trace amount of the target product was obtained when the reaction was carried out under aerobic conditions (Table 1, entry 23).

With the optimal protocol in hand, we next investigated the substrate scope of this 2,2,2-trifluoroethylation reaction. We found that various terminal aryl alkynes (1a-1l)and alkyl alkynes (1m-1s) could be transformed to the corresponding products in good-to-excellent yields (Table 2). Both electron-rich (1a-1e) and electron-deficient (1f-1l)aryl alkynes gave the expected trifluoroethylation products in moderate-to-good yields. Many synthetically important functional groups, such as alkoxy, alkyl, nitrile, carbonyl, nitro, ester, amide, and especial formyl groups, were welltolerated under the optimal conditions (1b-1c, 1f, 1g, 1i, 1h, 1j-1k, 1p, 1n). Moreover, adjacent heteroatom substituted alkyl alkynes (1m-1q) reacted with CF₃CH₂I under our conditions to give the products in higher yield, up to 95%. Alkyl alkynes with O,N-heteroatoms at the β -position (1r, 1s) were also tolerated and gave the products in moderate-to-excellent yields.

Application of this new trifluoroethylative method in the synthesis of organofluorine compounds which would otherwise be difficult to access was tested (Scheme 2). We chose 4-(4,4,4-trifluorobut-1-yn-1-yl)benzonitrile (**3f**) and 2-((5,5,5-trifluoropent-2-yn-1-yl)oxy)naphthalene (**3m**) as model substrates, which can be hydrogenated to the fluorinated alkanes **3f**' and **3n**' using a 10% Pd/C catalyst and H₂ at room temperature. Next, the oxidation reaction of 4-(4,4,4-trifluorobut-1-yn-1-yl)-1,1'-biphenyl (**3a**) was investigated with the oxidant Ce(SO₄)₂·4H₂O and H₂SO₄ (concd) at 70 °C, producing the corresponding ketone compound 3a' in moderate yield. These encouraging results indicated that the present method provides an efficient approach for the preparation of diverse organofluorine compounds.

Scheme 3. A Possible Mechanism for the Catalytic 2,2,2-Trifluoroethylation Reaction

A plausible reaction mechanisim for Pd-catalyzed trifluoroethylation of alkynes with CF₃CH₂I is presented in Scheme 3. Initially, the palladium complex A^{10-12} would be generated by the reaction of the Pd precursor with ligands. Subsequently, the Pd^{II} intermediate B^{13} is formed via oxidative addition of complex A to CF₃CH₂I. Then, ligand dissociation followed by complexation with the alkyne occurs to form the intermediate complex C (η^2 -RC=CH)—Pd (CF₃CH₂)XL.^{10,12} The ligated alkyne is then deprotonated

(10) Chinchilla, R.; Najera, C. Chem. Rev. 2007, 107, 874.

by the amine (Dabco), forming a new square planar Pd complex \mathbf{D} .^{10–12} Probably the $\mathbf{C} \rightarrow \mathbf{D}$ process in the catalytic cycle is relatively facile under Cu-free catalytic Sonogashira reaction conditions. A reason for this can be the electron-withdrawing nature of the CF₃ group, which is beneficial for formation of complex \mathbf{D} from complex \mathbf{C} . Finally, complex \mathbf{D} affords the product alkynyl-CH₂CF₃ through reductive elimination.^{12,14}

In conclusion, we have successfully developed the palladium-catalyzed 2,2,2-trifluoroethylation reaction of alkyl and aryl terminal alkynes using the readily available reagent CF_3CH_2I . The reaction can be carried out under mild conditions and is compatible with many functional groups, even the formyl group. This reaction provides a straightforward, practically useful way to prepare various trifluoroethylated alkynes.

Acknowledgment. We gratefully acknowledge financial support from the National Natural Science Foundation of China (Nos. 21272050, 21072040, 21071040) and the Program for New Century Excellent Talents in University of the Chinese Ministry of Education (NCET-11-0627).

Supporting Information Available. Standard experimental procedure and characterization data of products. This material is available free of charge via the Internet at http://pubs.acs.org.

(14) Culkin, D. A.; Hartwig, J. F. Organometallics 2004, 23, 3398.

The authors declare no competing financial interest.

⁽¹¹⁾ Soheili, A.; Albaneze-Walker, J.; Murry, J. A.; Dormer, P. G.; Hughes, D. L. Org. Lett. 2003, 5, 4191.

^{(12) (}a) Garcia-Melchor, M.; Pacheco, M. C.; Najera, C.; Lledos, A.; Ujaque, G. *ACS Catal.* **2012**, *2*, 135. (b) Shang, R.; Yang, Z.-W.; Wang, Y.; Zhang, S.-L.; Liu, L. *J. Am. Chem. Soc.* **2010**, *132*, 14391.

^{(13) (}a) Yin, J.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 6043.
(b) Fujita, K.-I.; Yamashita, M.; Puschmann, F.; Alvarez-Falcon, M. M.; Incarvito, C. D.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 9044. (c) Zuideveld, M. A.; Swennenhuis, B. H. G.; Boele, M. D. K.; Guari, Y.; van Strijdonck, G. P. F.; Reek, J. N. H.; Kamer, P. C. J.; Goubitz, K.; Fraanje, J.; Lutz, M.; Spek, A. L.; van Leeuwen, P. W. N. M. J. Chem. Soc., Dalton Trans. 2002, 2308. (d) Li, Z.; Fu, Y.; Zhang, S.-L.; Guo, Q.-X.; Liu, L. Chem.—Asian J. 2010, 5, 1475–1486. (e) Li, Z.; Fu, Y.; Guo, Q.-X.; Liu, L. Organometallics 2008, 27, 4043. (f) Klingensmith, L. M.; Strieter, E. R.; Barder, T. E.; Buchwald, S. L. Organometallics 2006, 25, 82. (g) Amii, H.; Kageyama, K.; Kishikawa, Y.; Hosokawa, T.; Morioka, R.; Katagir, T.; Uneyama, K. Organometallics 2012, 31, 1281.