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ABSTRACT: Fluoropolymers have found broad applications for many decades. Considerable efforts have focused on expand-
ing accesses toward main-chain fluorinated polymers. In contrast to previous polymerizations of gaseous fluoroethylenes 
conducted at elevated temperatures and with high-pressure metallic vessels, we here report the development of a photoor-
ganocatalyzed reversible-deactivation radical alternating copolymerization of chlorotrifluoroethylene (CTFE) and vinyl 
ethers (VEs) at room temperature and ambient pressure by exposing to LED light irradiation. This method enables the syn-
thesis of various fluorinated alternating copolymers with low Ð and high chain-end fidelity, allowing iterative switch of the 
copolymerization between “ON” and “OFF” states, the preparation of fluorinated block alternating copolymers, as well as post-
synthetic modifications.  

INTRODUCTION 

Fluoropolymers, endowed with outstanding properties 
such as thermal stability, chemical inertness, excellent 
weatherability and low surface energy, have found their use 
in many high-end applications.1, 2 However, lots of fluori-
nated homopolymers possess high crystallinity, hindering 
their processability. Copolymerization is an effective means 
to regulate the crystallinity and solubility without losing the 
intrinsic advantages of fluoropolymers.3, 4 Examples include 
commercialized products of Halar,5 Lumiflon6 and Tefzel,7 
all of which have been synthesized via copolymerization of 
fluoroethylene and other comonomers. Meanwhile, the in-
corporation of comonomers enables facile regulation of pol-
ymers’ chemical structures and physical properties.3, 8  

Precise polymer synthesis enables engineering of tailored 
materials at the molecular level for specific properties that 
are suitable for various applications.9-11 While the develop-
ment of reversible-deactivation radical polymerization 
(RDRP) has been demonstrated to be particularly effective 
for acrylates and styrene,9-11 the transformation of fluoro-
ethylene (i.e., chlorotrifluoroethylene (CTFE),12 which con-
stitutes the backbone of Halar and Lumiflon, to name a few) 
through a controlled pathway remains a significant chal-
lenge.13, 14 Considerable research efforts have been devoted 
to synthesize copolymers of CTFE,15-19 however, owing to its 
low boiling point,20 the synthetic routes typically require 
high pressure at elevated temperatures (80 to 250 oC), 
which limits the broad accessibility of related products. 
Apart from the harsh conditions, the intrinsic characteristic 
of copolymerization poses challenges on regulation of the 
precise chain-growth since the copolymer chain-ends could 
connect with different comonomers during iterative initia-

tions, and would give rise to different reactivities and un-
predictable copolymer sequence. In addition, the Cl atoms 
on the growing copolymers could act as initiating sites or 
undergo chain transfer reactions under metal-catalyzed or 
harsh conditions.21-23 Consequently, a number of synthetic 
limitations including the requirement of metal catalysts24 or 
60Co γ-ray irradiation25 in the reaction process, as well as 
poor chain-end fidelity, broad molecular weight distribu-
tion (MWD) at high monomer conversion, remain issues to 
be overcome. 

Recently, the employment of photoredox catalysis in 
RDRPs,26-32 cationic polymerizations33-35 and ring-opening 
metathesis polymerizations36 has enabled spatiotemporally 
controlled chain growth exposing to light irradiation.37-39 
However, a photo-controlled (co)polymerization of CTFE 
has not been achieved yet. We envision that a photoorgano-
catalyzed approach could provide opportunities to improve 
the livingness of chain-growth and decrease side reactions 
by implementing control through the photoredox singe-
electron-transfer mechanism31-34 under mild conditions. 
Meanwhile, the controlled copolymerization of CTFE under 
operationally simple conditions could not only facilitate the 
access towards a variety of fluoropolymers, but also allow 
the investigation of amorphous materials that would re-
solve the crystallinity problem of the homopolymer coun-
terpart, which might shed light on rational design of poly-
meric materials (for example, solid polymer electrolytes 
(SPEs))40, 41 derived from the particularly interesting per-
formance of fluoropolymers.42, 43 

Herein we report the development of a photoorganocata-
lyzed reversible-deactivation radical alternating copoly-
merization of CTFE and vinyl ethers (VEs) for the first time 
(Scheme 1). Specifically, the synthetic advances of this 
method include: (1) the facile transformation of CTFE and 
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VEs in an alternating fashion achieved under ambient pres-
sure and temperature without metal-contamination con-
cern; (2) the controlled access to various main-chain fluori-
nated materials with low Ð and high chain-end fidelity at 
high VE conversions; (3) the iteratively switching of copol-
ymerization between “ON” and “OFF” states for a gaseous 
monomer enabled by using light as an external trigger; (4) 
the unprecedented capability in expanding the synthetic 
scope to overall fluorinated block alternating copolymers, 
and in facile post-synthetic modifications. Overall, this 
method emerges as a simple and effective approach for the 
controlled synthesis of main-chain fluorinated alternating 
copolymers, which creates new possibilities to access func-
tional materials. 

Scheme 1. Photoorganocatalyzed reversible-deactiva-
tion radical alternating copolymerization of CTFE and 
VEs. 

 

RESULTS AND DISCUSSION 

Scheme 2. Chemical Structures of A) Catalyst, B) Chain-
Transfer Agents and C) Comonomers used in this study. 

 

Preliminary investigations on copolymerization con-
ditions. At the beginning of the investigation, we employed 
non-fluorinated PCs [i.e., perylene and 10-phenylphenothi-
azine (PTH)] in the photopolymerization of CTFE and vinyl 
ethyl ether (EVE). However, emulsions were generated, and 
broad MWDs (Ð ~ 1.5-1.8) of the resulted copolymers were 
detected by size-exclusion chromatography (SEC). Instead, 
we synthesized fluorinated PC (F-PTH, Scheme 1A, Scheme 
S1 and Figures S1-S3) based on PTH.44-46 In comparison to 
PTH, F-PTH possesses a redshifted absorption (λmax = 350 vs 
320 nm, Figures S4-S5) and increased molar absorptivity (ε 
= 7958 vs 3200 M-1cm-1). Although the reductive potential 

at the excited state of F-PTH is more positive than PTH 
(EƟ(PC●+/PC*) = -1.87 V vs -2.03 V) as caused by the elec-
tron-withdrawing substituent, F-PTH is reductive enough 
to react with thiocarbonylthio CTAs mostly employed in 
photoinduced electron transfer-reversible addition-frag-
mentation chain transfer (PET-RAFT) polymerization.47 Ad-
ditionally, F-PTH exhibits reversible voltammetric cycles at 
different scan rates (Figure S6), indicating that the oxida-
tion is highly reversible and the resulting PC•+ is stable.  

 

Figure 1. Optimization for the photoorganocatalyzed copoly-
merization of CTFE and EVE with CTA 1-4. 
[CTFE]/[EVE]/[CTA]/[F-PTH] = 60/40/1/0.05, 410 nm purple 
LED, 25 °C, ambient pressure. A) EVE conversions. B) molecu-
lar weights (Mn) and Ɖ results of copolymers, filled blue 
squares represent Mn by SEC, empty blue squares represent Mn 
calculated based on monomer conversions.  

Using F-PTH as a PC, we investigated the copolymeriza-
tion of CTFE and EVE in the presence of a series of xanthates 
(CTA 1a to 1d, Scheme 1B & 1C) in diethyl carbonate sol-
vent using a 13 W purple LED bulb as a light source (emis-
sion at 410 nm, Figure S7). While xanthates have shown 
good control in RAFT copolymerization of CTFE and VEs un-
der thermal conditions as reported by Kamigaito, Ladmiral 
and co-workers,19 as well as 60Co γ-ray irradiated copoly-
merization by the Bai group,25 the employment of xanthates 
under photoredox conditions generated copolymers of un-
satisfactory control (Ð = 1.42-1.60, Figure 1B, Table S1); 
though, moderate to high conversions (59-95%, Figure 1A) 
were obtained. Then, we focused on tuning the structure of 
CTAs in order to modulate its reactivity. We observed that a 
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better leaving group, which gives a more stable alkyl radi-
cal, affords lower monomer conversions than a poorer leav-
ing group. For example, in comparison to CTA 1a, 2a and 3a 
(alkyl radical = •CCN(CH3)2), improved conversions (93-
98% vs 53-61%) were obtained with CTA 1d, 2d and 3d (al-
kyl radical = •CH2CN). From CTAs 1 to 3, the employment of 
CTA 3d provided the lowest MWD (Ð = 1.39), others gave 
MWDs in a range of Ð = 1.42-2.25. 

When CTA 1d, 2d and 3d were analyzed by cyclic voltam-
metry (CV) (Figure S8), CTA 3d exhibits the most positive 
onset potential of reduction, suggesting that the NPh2 group 
could best facilitate accepting electron from PC* during the 
PET process.39 Then, we turned our attention to CTA 4,48 
which simultaneously possesses a more positive reductive 
potential than CTA 3d (-1.21 vs -1.54 V) and a −CH2CN leav-
ing group. The employment of CTA 4 generated P(CTFE-alt-
EVE) at a complete EVE conversion and high control over 
MWD (Ð = 1.21, Mn,SEC = 19.8 kDa). Further modifications 
from the optimized reaction conditions including solvents 
and light sources resulted in lower monomer conversions 
and broad MWDs (Tables S2-S3). 

To further validate the importance of a fluorinated PC, we 
employed non-fluorinated PCs instead of F-PTH with CTA 4, 
and found that broad MWDs (Ð = 1.49-1.77) at 88-97% 
monomer conversions were obtained (Table S4). The copol-
ymerization mixture of CTFE and EVE was characterized 
with dynamic light scattering (DLS). The observation of na-
noparticles (343 nm) (Figures S9 and S10) indicated that 
the main-chain fluorinated copolymers would be prone to 
self-assembly during copolymerization. The n-C8F17 substit-
uent on F-PTH could promote the interaction between PC 
and the growing polymer chain by transferring into nano-
particles driven by the fluorine-fluorine interaction, thus 
implementing the good control over chain growth. 

Reaction kinetics for the alternating copolymeriza-
tion. Next, we investigated the copolymerization process of 
CTFE and different VEs under optimized reaction condi-
tions. As shown in Figure 2A, for VEs including EVE, t-butyl-
dimethyl(4-(vinyloxy)butoxy)silane (SiBVE), i-butyl vinyl 
ether (IBVE), n-butyl vinyl ether (BVE) and 2-chloroethyl vi-
nyl ether (CEVE), the degrees of polymerization (DPs, Equa-
tions S1 and S2, Tables S5 to S9) increase with exposure 
times. Importantly, DPs of both CTFE and VEs are very close 
to each other throughout the copolymerization processes, 
confirming the alternating chemical structures of the copol-
ymer backbones. Plots of ln([M]0/[M]t) as a function of time 

(Figure 2B) exhibit first order kinetics for reactions of dif-
ferent VEs, further demonstrating the high degree of control 
obtained in the alternating copolymerization process. Dur-
ing the propagation, molar masses of copolymers increase 
with monomer conversions (Figure 2C). The MWDs of all 
copolymers maintained within a narrow range of Ð =1.12-
1.29 (Figures S11 to S15), which are particularly good for 
main-chain fluorinated copolymers. Although the molar 
masses provided by SEC are higher than theoretical results 
at high VE conversions (Mn,calc), when measured with a mul-
tiangle laser light scattering (MALLS) detector (Figure S16), 
obtained molecular weights (Mn,MALLS) are in a good agree-
ment with the predetermined values. For example, during 
the synthesis of P(CTFE-alt-BVE), when BVE reached 90% 

conversion, Mn,SEC = 21.1 kDa, Mn,calc = 15.9 kDa and Mn,MALLS 
= 14.8 kDa, respectively. 

 

Figure 2. Alternating copolymerization of CTFE and VEs ena-
bled by the photoredox catalysis. Points of different colors rep-
resent results obtained with different VEs: SiBVE (green), EVE 
(yellow), IBVE (purple), BVE (blue) and CEVE (red). 
[CTFE]/[VE]/[CTA 4]/[F-PTH] = 120/80/1/0.05, 25 °C, ambi-
ent pressure. A) Degrees of polymerization (DPs) of CTFE 
(filled circle) and VEs (empty circle) versus exposure time. See 
the supporting information (Equations S1 and S2) for details of 
calculation. B) ln([M]0/[M]t) versus exposure time. [M]0 and 
[M]t are the concentrations of VEs at time points 0 and t, re-
spectively. C) Mn and Ð versus % VE conversion, filled squares 
represent Mn obtained by SEC, empty squares represent Mn ob-
tained using a MALLS detector. 
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Expanding the copolymerization scope and charac-
terization results. With the established copolymerization 
method, we turned our attention to the synthesis of a vari-
ety of P(CTFE-alt-VE)s with different molecular weights. As 
shown in Table 1, good to excellent VE conversions were 
achieved for different combinations of CTFE and VEs upon 
visible-light irradiation at low organocatalyst loadings 
(0.01-0.05 mol% of monomer). Since ambient temperature 
and pressure were employed, conventional low-pressure 
glass tubes could be employed as reaction containers in this 
method, further facilitating handling gaseous CTFE without 
high-pressure metallic devices. For examples described in 
Table 1, P(CTFE-alt-VE)s of molecular weights ranging from 
2.0 to 31.1 kDa and narrow MWDs of Ð = 1.13-1.32 were ob-
tained at up to >99% VE conversions. SEC profiles of ob-
tained fluoropolymers (Figure S17) were symmetrical and 
unimodal without the detection of any shoulder peak, fur-
ther manifesting the well-controlled propagation realized 
for each comonomer. When CTA 4 was replaced with CTA 
3d under otherwise identical conditions, the photoorgano-
catalyzed copolymerizations of CTFE and different VEs gen-
erated copolymers with decreased control over MWDs (Ð = 
1.33-1.51, Table S10).  

Table 1. Photoorganocatalyzed alternating copolymer-
ization of CTFE and VEs.a 

 

a[M] = [CTFE]+[VE], [CTFE]/[VE] = 60/40, [CTA 4]/[F-PTH] 
= 1/0.05, 25 °C, ambient pressure, conducted with Schlenk 
glass tube, 410 nm light irradiation. Conversions are based on 
the 1H NMR analysis of remaining VEs after reactions. bMn,SEC 
and Ð measured by SEC. cMn,MALLS measured by MALLS instru-
ment. dMn determined by 1H NMR analysis. 

P(CTFE-alt-CEVE) synthesized with this method was 
characterized with proton nuclear magnetic resonance 
spectroscopy (1H NMR) to analyze the chemical structure of 

the chain-end group. As shown in Figure 3, resonances cor-
responding to protons from Ha to He were clearly observed, 
and their integration areas are in a good agreement with the 
target structure, revealing that the final repeating unit of co-
polymer is vinyl ether, which is substituted by the dithiocar-
bamate group (Z(CS)S-). The molecular weight calculated 
based on the 1H NMR spectrum is close to the Mn,MALLS value 
(Mn,NMR = 24.8 kDa, Mn,MALLS = 24.2 kDa, , Mn,calc = 23.9 kDa). 
Termination of copolymer with proton will reduce the 
chain-end fidelity, giving overestimated molar mass as de-
termined by UV-vis adsorption (Mn,UV-vis).49 When P(CTFE-
alt-CEVE) was characterized by UV-vis instrument, Mn,UV-vis 

= 25.1 kDa was obtained, suggesting that the degree of end 
group functionality is above 95% (Figures S18 and S19, 
Equations S3). The dithiocarbamate terminal groups in 
other alternating copolymers have also been observed in 
corresponding 1H NMR spectra (Figures S20-S24), indicat-
ing that high chain-end fidelity was achieved with this 
method. 

 

Figure 3. 1H NMR spectrum of P(CTFE-alt-CEVE) synthesized 
via the photoorganocatalyzed copolymerization. 

“ON/OFF” switch for the copolymerization of gaseous 
CTFE. An attractive advantage of photo-controlled 
polymerization is the capability to temporally regulate 
chain growth by switching light irradiation between “ON” 
and “OFF” states, providing a facile access to tune materials’ 
properties.38, 39 The ease of handling gaseous monomer en-
abled by this photoredox catalytic method allowed us to re-
alize unprecedently temporal control of copolymerization 
based on CTFE, which operation we believe could be further 
expanded to other low-boiling-point monomers. During ex-
periments, the reaction displayed good switchability as 
demonstrated by three cycles of “ON/OFF” chain growth 
(Figure 4), the molecular weights continuously increased 
with conversions (Table S11, and the MWDs of copolymers 
were kept in a range of Ð = 1.22-1.26). 
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Figure 4. Photoredox catalysis enabled external control of co-
polymerization of CTFE and IBVE by switching light between 
“ON” and “OFF” states. 

When the light irradiation was turned “OFF”, the chain 
growth could keep proceeding, which might not be clear to 
observe with short “OFF” periods. For example, to shed light 
on the fidelity of temporal control in different photo-medi-
ated RDRPs, Hawker, Anastasaki and coworkers demon-
strated that there was no monomer conversion during the 
“dark” periods in metal-free atom transfer radical polymer-
ization (ATRP) and PET-RAFT polymerization in compari-
son with Cu-mediated processes recently.50 Then, a longer 
“dark” time was employed in our investigation. As shown in 
Figure 5, when the light irradiation was switched “OFF” dur-
ing chain growth, the polymerization was immediately 
ceased without the observation of any monomer conversion 
in the following 10 h. The polymerization could be success-
fully turned “ON” by further exposing the reaction mixture 
to light irradiation. During the chain-growth process, the 
molecular weights of fluoropolymers improved with mono-
mer conversions. The good temporal control observed in 
this metal-free system is consistent with results demon-
strated by others.31, 44, 50  

 

Figure 5. “ON/OFF” temporal control of copolymerization 
of CTFE and IBVE with long “OFF” periods. 

Chain-extension via the photoorganocatalyzed alter-
nating copolymerization and post-synthetic modifica-
tions. To illustrate the synthetic advantage of this method, 
we synthesized a main-chain fluorinated block alternating 
copolymer51 by a two-step photoorganocatalyzed copoly-
merization process. As shown in Figure 6A, P(CTFE-alt-
EVE) (Mn = 6.1 kDa, Ð = 1.22) was first prepared in the pres-
ence of F-PTH and CTA 4 exposing to 410 nm light irradia-
tion, and subsequently employed as a macroinitiator in the 
chain-extension reaction with CTFE and CEVE under the 

same photopolymerization conditions without additional 
photocatalyst. This process generated P(CTFE-alt-EVE)-b-
P(CTFE-alt-CEVE) with satisfactory control over the molar 
mass distribution (Mn = 13.6 kDa, Ð = 1.29), and the SEC pro-
file of the copolymer revealed a clear shift of P(CTFE-alt-
EVE) to lower retention time (Figure 6B, black vs blue line), 
indicating the good chain-end fidelity of the fluorinated ma-
croinitiator. The incorporation of a second block and the 
terminal dithiocarbamate substituent of P(CTFE-alt-EVE)-
b-P(CTFE-alt-CEVE were confirmed by the 1H NMR analysis 
(Figures S25).  

 

Figure 6. Synthesis and characterization of block alternating 
copolymers. A) Synthetic schemes of the two-step photopoly-
merization and post modification. B) SEC profiles of the fluori-
nated block alternating copolymers. 

The fluorinated block copolymers with all alternating 
segments have provided versatile and unprecedented ac-
cesses to various fluorinated materials via post-synthetic 
modifications. For example, by modifying the chloride 
group on the side chain of the P(CTFE-alt-CEVE) block, dif-
ferent functionalities could be incorporated, including the 
tetraphenylethylene (TPE) (P1, Mn = 26.3 kDa, Ð = 1.33) and 
azide groups (P2, Mn = 14.0 kDa, Ð = 1.31). While the TPE 
group could embed the corresponding materials with ag-
gregation-induced emission (AIE) behavior (Figures S27),52 
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the tailoring of azide group provides opportunities to fur-
ther connect with desirable functionalities via the copper-
catalyzed “click” chemistry.53 The successful conversions of 
the chloride substituent into TPE and azide groups were 
confirmed by 1H NMR and FT-IR measurements (Figures 
S28-S30). 

CONCLUSION 

We have developed a photoorganocatalyzed reversible-
deactivation alternating copolymerization of CTFE and VEs 
with a fluorinated photoredox catalyst, enabling the con-
trolled synthesis of various main-chain fluorinated alternat-
ing copolymers with low Ð and high chain-end fidelity at 
high monomer conversions. The synthetic advances of this 
method allow smooth transformation of gaseous CTFE at 
ambient pressure and room temperature by exposing to 
LED light irradiation, and facilitate iteratively switching the 
chain growth between “ON” and “OFF” states. Main-chain 
fluorinated block alternating copolymers have been suc-
cessfully synthesized via a tandem photoorganocatalyzed 
alternating copolymerization, promoting the synthesis of 
fluoropolymers with diverse functional side groups. Given 
the broad applications of fluoropolymers and photopoly-
merization, as well as tunable physical/chemical properties 
of copolymers by selecting appropriate comonomers, we 
expect this method to be useful for creating improved op-
portunities to tailored fluorinated copolymers. 
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