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GRAPHICAL ABSTRACT

Abstract A convenient and facile enantioselective synthesis of (�)-erinapyrone B from

commercially available D-(þ)-malic acid has been achieved in seven steps. One of the

key steps in this synthesis was the one-pot reaction of palladium(II)-mediated Wacker-type

oxidative cyclization in the presence of a catalytic amount of p-toluenesulphonic acid (p-

TsOH) which has been found to be effective for the preparation of enantiopure

2,3-dihydro-4H-pyran-4-one from the corresponding enantiopure b-hydroxyenone via

enantio-enriched diketohydroxy intermediate.

[Supplementary materials are available for this article. Go to the publisher’s online

edition of Synthetic Communications1 for the following free supplemental resource(s):

Full experimental and spectral details.]

Keywords 2,3-Dihydro-4H-pyran-4-one; b-hydroxyenone; oxidative cyclization;

Pd-catalyzed; p-TsOH

INTRODUCTION

2,6-Disubstituted dihydropyrones are seemingly present in many natural pro-
ducts. These compounds are also important synthetic intermediates in the syntheses
of biologically active molecules.[1] Their syntheses have been well established in the
literature. For example, hetero-Diels–Alder reactions have been used to synthesize
this type of compound.[2] New strategies that have been recently developed include
the tandem aldol reaction = conjugate addition[3]and the oxidative cyclization of b-
hydroxyenenoneswith palladium(II).[4] Erinapyrone A (1) and erinapyrone B (2)
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belong to the class of 2,6-dihydroxy dihydropyrones isolated from the culture broth
of Hericium erinaceummycelia (Fig. 1) reported by Kawagishi et al., which possess
cytotoxicity toward HeLa cells.[5] The first total syntheses of optically active (�)-1
and (�)-2 were reported by Noda et al.[6] in a short route from bis-2-(1,3-
dithianyl)methane, (S)-propylene oxide, (R)-benzyl glycidyl ether, and HgCl2.

[7,8]

In early 1999, Jacobsen et al. developed a palladium-mediated route for
structurally diverse 2,3-dihydro-4H-pyran-4-ones using a concerted or stepwise
hetero-Diels–Alder (HAD) reaction of aldehydes with Danishefsky’sdienes catalyzed
by various Lewis acids that led to b-hydroxyenenones. These are common precursors
for the preparation of 2,3-dihydro-4H-pyran-4-ones via Wacker-type oxidative
palladium(II)-mediated cyclization.[9] See Scheme 1.

Based on these strategies, Reiter et al. reported the synthesis of 2,3-dihydro-4-
H-pyran-4-ones using the common precursor of b-hydroxyenenones from the corre-
sponding Grignard reagent and Weinreb amide.[4] The crotyl-b-hydroxyenenones
were converted to the corresponding 2,3-dihydro-4H-pyran-4-ones via Wacker-type
oxidative palladium(II)-mediated cyclization. We are interested in a facile synthesis
of stereospecific (�)-erynopyrone B (2).We outline in this communication a versatile

Figure 1. Natural products from Hericium erinaceummycelia.

Scheme 1. Methods available for the synthesis of dihydro-4H-pyran-4-ones.
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synthetic route of chiral erinapyrone B in seven steps from commercially available
D-(þ)-malic acid. Our approach is inspired by Reiter’s method using the formation
of b-hydroxyenenone as a key intermediate (Scheme 2). In Scheme 2, Gouverneur
and colleagues[4] reported the synthesis of crotyl-b-hydroxyenenones using crotyl-
magnesium bromide as the Grignard reagent and performed the reactions at
�40�C to 0�C and then achieved the 6-hydroxyheptane-2,4-diones with an ee> 97%
by Wacker oxidation using PdCl2=CuCl under oxygen atmosphere in a DME
solvent. Based on the above information, we tried to use commercially available
allylmagnesium bromide as the cost effective Grignard reagent than the crotylmag-
nesium bromide, performed the various reactions at ambient temperatures and
optimized the reaction conditions successfully to achieve the allyl-b-hydroxyene-
nones in 69% yield with an ee of 99%, which proceeded for Wacker oxidation using
PdCl2=CuCl under oxygen atmosphere in a DMF solvent. The reaction was carried
out overnight and afforded the 6-hydroxyheptane-2,4-dione (11) and was confirmed
by 1H NMR and mass spectrum analysis.

Our aim is to cyclize the 6-hydroxyheptane-2,4-dione (11) to the corresponding
dihydropyranone (10) without isolation of hydroxydiketones. We carried out the
reaction mixture to next cyclisation with the addition of p-TsOH(cat.) and contin-
ued the reaction at room temperature for 3 h. After workup, silica gel column chro-
matography afforded the erinapyrone B with an ee of 99%.

RESULTS AND DISCUSSIONS

We began with the esterification of D-(þ)-malic acid by treatment of thionyl
chloride in methanol. This resulted its dimethyl ester 5 in 90% yield.[10] The selective
reduction of 5 in presence of BH3 �Me2S and sodium borohydride in tetrahydrofuran
(THF) at rt for 3 h afforded 6 in excellent yield (90%).[11] The selective protection of 6
happened by the treatment of 1 equiv of tert-butyldiphenylsilylchloride and imidaz-
ole in dimethylformanide (DMF) resulting in ester 7 in 90% yield.[12] Reaction of 7
with N,O-dimethylhydroxylamine hydrochloride in the presence of trimethylalumi-
num provided the crystalline N-methoxy-N-methylamide 8 (70%), which on treat-
ment with exposure to allyl magnesium bromide provided the novel enone 9 in
85% yield[13] (Scheme 3).

One-pot conversion from 9 to 10 happened by oxidation of eneone 9 using
palladium(II) chloride = copper(I) chloride=oxygen in aqueous DMF[14] followed
by the treatment with p-toluenesulfonic acid (p-TsOH)[8] at room temperature for

Scheme 2. Approaches toward the synthesis of b-hydroxyenenone via Grignard reactions. (Figure is

provided in color online.)
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3 h affords dihydropyranone 10 in 60% yield with an enantiomeric excess of 99%
(Scheme 4).

Deprotection of the TBDPS group[15] of 10 with tetrabutylammonium fluoride
(TBAF) furnished (�)-erinapyrone B in 80% yield. 1H, and 13C NMR spectra of
(�)-erinapyrone B matched with the literature reported values.[5]

CONCLUSION

In conclusion, we have developed a convenient, operationally simple, and
efficient synthesis of erinapyrone B from commercially available D-(þ)-malic acid
in seven steps with 82% overall yield. The efforts to expand this work to the synthesis
of other heterocyclic compounds are under way in our laboratory.

EXPERIMENTAL

1H and 13C NMR spectra were recorded on a Varian Unity instrument at rt at
400MHz. Chemical shifts are reported in d parts per million (ppm) downfield from
tetramethylsilane (TMS) with reference to internal solvent and coupling constants in
hertz. Infrared (IR) spectra were recorded on a Perkin-Elmer FT-IR spectrometer.
Mass spectra were obtained on a high resolution Micromass QuattroMicroTM

API-autospectrometer using electraspray ionization techniques (ESI). High-
resolution mass spectrometry (HRMS) TOF ES mass spectra were recorded on a
Waters-Alliance 2695 Separation Module=Q-TOF Micromass. Optical rotations
were obtained on an automated Jasco P-1030 Polari meter. Chiral high-performance

Scheme 4. One-pot reaction of b-hydroxyenone (9) to 2,3-dihydro-4H-pyran-4-one (10).

Scheme 3. Synthesis of (�)-erinapyrone B. Reagents and conditions: (a) SOCl2, MeOH, rt, 18 h (95%); (b)

BH3 �Me2S, NaBH4, THF, rt, 3 h (90%); (c) TBDPSCl, imidazole, DMF, rt, 18 h (90%); (d) (MeO)-

MeNH �HCl, Al(CH3)3,CH2Cl2, reflux, 18 h (75%); (e) CH2¼CH-CH2MgBr, THF, 0 �C, 2 h (85%); (f)

PdCl2, CuCl, O2, DMF=H2O, rt, 18 h; p-TsOH, rt, 3 h (60%); and (g) TBAF, THF, rt, 3 h (80%).
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liquid chromatography (HPLC) analysis was performed by Chiralcel OJH (4.6�
250mm), 5 mm, and Chiralpak-IC (250� 4.6mm), 5 mm, columns.

General Procedure for the Synthesis of (R)-7-(tert-
Butyldiphenylsilyloxy)-6-hydroxyhept-1-en-4-one (9)

A solution of Weinreb amide 8 (1.0 g, 3.61mmol) in 20mL of THF was added
dropwise to a solution of ally magnesium bromide (1M solution in THF; 9.1mL,
9.11mmol) at 0 �C under a nitrogen atmosphere. The reaction mixture was stirred
for 2 h at room temperature, then added to aqueous 20% NH4Cl solution (10mL)
at 0 �C, and extracted with ether (2� 25mL). The combined organic layer was
washed with brine (10mL), dried (MgSO4), and concentrated under reduced press-
ure. The crude product was purified by column chromatography over silica gel
(20% EtOAc in hexanes) to afford the title compound.

General Procedure for the Synthesis of (R)-7-(tert-
Butyldiphenylsilyloxy)-6-hydroxyheptane-2,4-dione (11)

A 25-mL, three-necked, round-bottomed flask was charged with a mixture of
palladium (II) chloride (35mg, 0.2mmol), cuprous chloride (99mg, 1mmol), and
aqueous DMF (DMF=H2O¼ 7:1, 23mL), and the reaction mixture was purged with
oxygen for 10min. The reaction was continued under oxygen for 1 h and then
substrate 9 (0.38 g, 1mmol) was added in DMF (2mL) to the reaction mixture at
the same temperature. The resulting reaction mixture was stirred at room tempera-
ture for 18 h under an oxygen atmosphere, which was used for next step without
isolation. For the confirmation of compound 11, 0.2mL of this reaction mixture
was concentrated and purified by preparative thin-layer chromatography (TLC)
using 15% EtOAc in hexanes as an eluent to afford the title compound, which was
confirmed by 1H NMR and MS.

General Procedure for the Synthesis of (R)-2-((tert-
Butyldiphenylsilyloxy)methyl)-6-methyl-2H-Pyran-4(3H)-one(10)

To this reaction mixture, p-TsOH (18mg, 10% mol) was added and stirring was
continued at room temperature for 3 h. The reaction mixture was diluted with water
(10mL) and extracted with ether (3� 25mL). The combined organic layer was
washed with brine (10mL), dried (MgSO4), and concentrated under reduced press-
ure. The crude product was purified by column chromatography over silica gel
(15% EtOAc in hexanes) to afford the title compound.

Spectral Data for New Compounds

(R)-7-(tert-Butyldiphenylsilyloxy)-6-hydroxyhept-1-en-4-one
(9). Yield 0.79 g (85%), light yellow oil; Rf 0.5 (30% EtOAc=hexanes); IR (DCM
film) 3445, 3304, 2956, 2929, 2857, 1714, 1463, 1427, 1393, 1260, 1187, 1112, 923,
823, 741, 703 cm�1; ½a�27D þ10.91� (c 1.0, CHCl3);

1H NMR (400MHz, CDCl3) d
7.68 (m, 4H), 7.38 (m, 6H), 5.83 (m, 1H), 5.28 (m, 2H), 4.31 (s, 1H), 3.62 (d, 2H);
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3.23 (d, 2H), 2.84 (s, 1H), 2.64 (d, 2H); 1.07 (s, 9H); 13C NMR (100MHz, CDCl3): d
208.2, 135.4, 133.0, 133.0, 130.0, 129.8, 127.7, 119.1, 68.1, 66.9, 48.4, 45.0, 26.8,
19.2;MS (ESI) m=z 406.12 (MþNa)þ. HRMS calculated for C23H31O3Si [MþNa]þ

405.1862; found 408.1877.

(R)-7-(tert-Butyldiphenylsilyloxy)-6-hydroxyheptane-2,4-dione (11). Gummy
liquid; Rf 0.6 (30% EtOAc=hexanes); 1H NMR (400MHz, CDCl3) d 7.67 (m, 4H),
7.45 (m, 6H), 4.43 (m, 1H), 3.96 (m, 2H), 2.68 (m,1H), 2.41 (m, 1H), 2.01 (s, 3H),
1.09 (s, 9H); MS (ESI) m=z 397.26 (MþH)þ.

(R)-2-((tert-Butyldiphenylsilyloxy)methyl)-6-methyl-2h-pyran-4(3H)-one
(10). Yield 0.22 g (60%), light yellow oil; Rf 0.35 (20% EtOAc=hexanes); IR (DCM
film) 3464, 3071, 2957, 2858, 1896, 1667, 1613, 1461, 1427, 1397, 1335, 1240, 1112,
1041, 903, 822, 703 cm�1; ½a�25D �91.22� (c 1.02, MeOH); 1H NMR (400MHz,
CDCl3) d 7.68 (m, 4H), 7.38 (m, 6H), 5.36 (s, 1H), 4.46 (m, 1H), 3.93 (m, 2H),
2.62 (m,1H); 2.36 (m, 1H), 1.95 (s, 3H); 1.07 (s, 9H); 13C NMR (100MHz, CDCl3):
d 192.7, 174.1, 135.5, 132.5, 132.9, 129.8, 127.7, 127.7, 116.0, 104.6, 79.2, 64.9, 37.1,
29.6, 26.7, 20.9, 19.2; MS (ESI) m=z 381.4 (MþH)þ. HRMS calculated for
C23H29O3Si [MþH]þ 381.1886; found 381.1891.

Supporting Information

Full experimental details, 1H and 13C NMR spectra, and chiral HPLC chroma-
tograms of all the important compounds associated with this article can be found via
the Supplementary Content section of this article’s Web page.
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