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Summary of main observation and conclusion  The ZnO catalysts supported on Silicalite-1 zeolites with different crystallite sizes (0.08, 0.35, 1 and 1.7 
µm, respectively) and 5% Zn were synthesized via an incipient wetness method. The catalysts were characterized by XRD, N2 adsorption, SEM, TEM-EDX, 
DRIFT spectra and NH3-TPD, and their catalytic performance in isobutane dehydrogenation assisted by CO2 was investigated. The catalytic activity is strongly 
dependent on the crystallite size of Silicalite-1 support. The ZnO/S-1-0.35 catalyst with ca. 0.35 µm crystallite size displays the highest activity, affording an 
initial isobutane conversion of 51.0% and 74.5% isobutene selectivity. This can be attributed to a higher amount of acid sites present on this catalyst as well 
as the largest amount of nest silanols possessed by the S-1-0.35 support. 

 

Background and Originality Content 
With the depletion of fossil resources, the development of pro-

cesses that specifically facilitate the conversion of hydrocarbons 
can be established as an improvement in the use of these resources. 
Two major ways to produce isobutene, i.e. naphtha steam cracking 
and fluidized catalytic cracking, strongly reply on petroleum re-
source. With the growing demand for isobutene, which is regarded 
as an important feedstock for the manufacture of value-added 
chemicals,[1−3] a lot of attention has been paid to the process of cat-
alytic dehydrogenation of isobutane.  

In recent years, the use of CO2 as a soft oxidant for the selective 
dehydrogenation of light alkanes into their corresponding alkenes 
has received much attention.[4−12] Compared with employing O2 as 
an oxidant, CO2 has obvious advantages such as improving the se-
lectivity toward targeted olefins and decreasing CO2 emissions.[13] 
Several types of catalysts such as Cr2O3,[11,14] V2O5 [15−17] and 
V−Mg−O [18,19] have been explored for isobutane dehydrogenation 
with carbon dioxide. The catalytic activity is strongly dependent on 
the catalyst support. γ-Al2O3,[15,19] SiO2,[15,19] active carbon 
(AC),[14,15,19] mesoporous SiO2 molecular sieve (e.g. SBA-15) [11,17] 
are generally chosen as the supports to prepared the supported 
catalysts. However, the application of this technology is still chal-
lenged by the low activity and fast catalyst deactivation. 

Silicalite-1 is an aluminum-free crystalline zeolite with MFI top-
ological framework. The presence of Si atom defective sites in their 
lattice can impose the formation of acid centers (silanol groups), 
which have been reported as active catalysts for the Beckmann re-
arrangement [20−22] as well as the etherification of 5-hydroxyme-
thyl-2-furfural.[23] More recently, we have found that the ZnO cata-
lyst supported on Silicalite-1 zeolite exhibits a superior catalytic 
performance for CO2 assisted dehydrogenation of isobutane, which 
is far more active than SBA-15-supported one with the same Zn 

content.[24] Inspired by this finding, in the present work we first re-
port the influence of Silicalite-1 crystallite size on the catalytic per-
formance of ZnO/Silicalite-1 catalysts for isobutane dehydrogena-
tion assisted by CO2. The reasons for the different activities exhib-
ited by these catalysts were discussed in terms of both acidity and 
silanol groups. 

Results and Discussion 
Catalyst characterization 

The XRD patterns of the ZnO catalysts supported on Silicalite-1 
zeolites with different crystallite sizes are depicted in Figure 1. All 
catalysts display MFI structure with the characteristic diffraction 
peaks at 2θ = 8.0o, 8.9o, 23.1o, 23.3o and 24.0o.[12,25] No reflections 
corresponding to crystalline ZnO can be observed, indicating that 
zinc oxide is well dispersed on the four Silicalite-1 supports. The 
SEM images of the Silicalite-1 supports (Figure S1) show that S-1-
0.08, S-1-0.35 and S-1-1 samples display approximately sphere-like 
morphology with crystallite sizes of around 0.08, 0.35 and 1 µm, 
respectively, whereas the S-1-1.7 sample shows coffin-like mor-
phology with ca. 1.7 µm in width. The homogeneous distribution 
of the Zn element on the four Silicalite-1 supports is demonstrated 
by HAADF STEM mapping (Figure S2), which is in accordance with 
the XRD result. 
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Figure 1  XRD patterns of the catalysts. (a) ZnO/S-1-0.08, (b) 
ZnO/S-1-0.35, (c) ZnO/S-1-1, (d) ZnO/S-1-1.7. 

The textural properties of the Silicalite-1 supports and Sili-
calite-1-supported zinc oxide catalysts are presented in Table 1. 
The BET surface areas and mesopore volumes (contribution from 
intercrystalline voids) of the Silicalite-1 supports increase slightly 
with the decrease of crystallite size, which diminish somewhat af-
ter the impregnation of zinc oxide (5% Zn). The micropore volumes 
of the Silicalite-1 supports are almost unchanged upon the intro-
duction of ZnO. 

The amount of acid sites on the ZnO/S-1 catalysts with differ-
ent crystallite sizes was measured by the NH3-TPD method, and the 
result is given in Figure 2 and Table 1. Two desorption peaks on the 
TPD profiles of all supported zinc oxide catalysts can be found. The 
low temperature peaks are located at ca. 166 oC and the high tem-
perature shoulders are centered at around 324 oC, which corre-
spond to the acid sites of weak and moderate strength, respec-
tively. The total acid amount of the catalysts increases in the order 
of ZnO/S-1-1.7 < ZnO/S-1-1 < ZnO/S-1-0.35 < ZnO/S-1-0.08 (Table 
1). It is clear in Table 1 that the Silicalite-1 supports possess a small 
number of acid sites (0.0108−0.0445 mmol/g), and their acidities 
are improved substantially after supporting zinc oxide 

(0.192−0.371 mmol/g). This implies that the acid sites present on 
the catalysts are mainly originated from the dispersed zinc oxide 
species. Metal species can interact with the alumina or silica sup-
port by consuming the exposed support-OH groups, thus modifying 
the acidic properties of the support.[26,27] 

 

 
Figure 2  NH3-TPD profiles of the catalysts. (a) ZnO/S-1-0.08, (b) 

Table 1  Physico-chemical properties of the samples 

Sample SBET/(m2/g) Vmicroa/(cm3/g) Vmeso/(cm3/g) Vtotalb/(cm3/g) Acid amount/(mmol/g) A3490/A3739c 

S-1-0.08 385 0.18 0.14 0.32 0.0445 8.4 

ZnO/S-1-0.08 354 0.17 0.11 0.28 0.371 1.0 

S-1-0.35 379 0.18 0.12 0.30 0.0387 16.0 

ZnO/S-1-0.35 340 0.16 0.09 0.25 0.314 3.9 

S-1-1 369 0.17 0.10 0.27 0.0182 8.1 

ZnO/S-1-1 334 0.16 0.06 0.22 0.231 0.3 

S-1-1.7 356 0.16 0.08 0.24 0.0108 5.6 

ZnO/S-1-1.7 321 0.16 0.06 0.22 0.192 0.2 
a Calculated by the t-plot method. b Total pore volume adsorbed at P/P0 = 0.99. c A3490 and A3739 are the peak area of nest silanols 

(3490 cm−1) and isolated silanols (3739 cm−1), respectively. 
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ZnO/S-1-0.35, (c) ZnO/S-1-1, (d) ZnO/S-1-1.7. 
According to the literature,[27,28] the weight loss below 100 oC 

and between 100 and 200 oC was attributed to the elimination of 
physically and chemically adsorbed water, respectively, while the 
weight loss above 200 oC was assigned to the dehydroxylation by 
condensation of silanols. Based on the TG result, the amount of si-
lanols on the four Silicalite-1 supports is 1.05, 1.21, 1.54 and 1.61 
mmol/g for S-1-1.7, S-1-1, S-1-0.35 and S-1-0.08, respectively, 
which increases with decreasing the crystallite size. Higher amount 
of silanols on the Silicalite-1 support would favor the dispersion of 
supported metal oxide species,[27] thus leading to a higher amount 
of acid sites on the Silicalite-1-supported ZnO catalyst, as evi-
denced in Figure 3.  

 

 
Figure 3  Relationship between the acidity of the Silicalite-1-sup-
ported ZnO catalysts and the amount of silanols on the Silicalite-1 
supports () as well as between the initial activity and acidity of 
the catalysts (). 
 

DRIFT spectra were investigated to get a deep understanding 
of hydroxyl groups on the Silicalite-1 supports with different crys-
tallite sizes, and the result is shown in Figure 4A. Three types of 
−OH groups can be found. The intense and sharp peak at 3739 cm−1 
is assigned to isolated silanol groups located on the external sur-
face, and the small peak at 3686 cm−1 is ascribed to vicinal silanol 
groups located inside the micropores.[20,29,30−32] The strong broad 
peak at around 3490 cm−1 is generally attributed to nest silanol 
groups that comprise a number of silanol groups interacting 
through extended hydrogen bonding.[20,32] Such nest silanol groups 
generally appear at crystal steps or extended defects.[31,33] It is 
clear in Figure 4A that the intensity of the peak at ca. 3490 cm−1 
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decreases in the order of S-1-0.35 > S-1-0.08 ≈ S-1-1 > S-1-1.7, sug-
gesting that S-1-0.35 possesses the largest amount of nest silanols. 
The TG and IR results reveal that the total amount of silanols as 
well as silanol distribution on these Silicalite-1 supports are differ-
ent from each other, albeit they have the same topology and simi-
lar texture properties. As seen from Figure 4B, after supporting ZnO 
on Silicalite-1 (5% Zn), there is an obvious decrease in the intensity 
of three bands, especially the band at 3490 cm−1, which is due to 
the interaction of Zn species with the support−OH groups.[29,34] This 
is indicative of a decrease in the number of silanol groups via con-
suming the exposed hydroxyl groups. As presented in Table 1, the 

peak area ratio of nest silanol groups (3490 cm−1) to isolated silanol 
ones (3739 cm−1) is 8.4, 16.0, 8.1 and 5.6 for S-1-0.08, S-1-0.35, S-
1-1 and S-1-1.7, respectively, which declines to 1.0, 3.9, 0.3 and 0.2, 
respectively. The above findings imply that Zn species primarily in-
teract with nest silanol groups. Note that after supporting ZnO, the 
peak intensity of the left nest silanols on the Silicalite-1 supports 
diminishes in the order of ZnO/S-1-0.35 > ZnO/S-1-0.08 > ZnO/S-1-
1 ≈ ZnO/S-1-1.7 (Figure 4B), indicating that ZnO/S-1-0.35 has the 
highest amount of the left nest silanols.  

Catalytic performance 

   
Figure 4  DRIFT spectra of the Silicalite-1 supports (A) and Silicalite-1-supported ZnO catalysts (B). (a) S-1-0.08, (b) S-1-0.35, (c) S-1-

1, (d) S-1-1.7, (e) ZnO/S-1-0.08, (f) ZnO/S-1-0.35, (g) ZnO/S-1-1, (f) ZnO/S-1-1.7. 

   
Figure 5  Conversion of isobutane (A) and selectivity to isobutene (B) as a function of reaction time for the Silicalite-1-supported 

ZnO catalysts. () ZnO/S-1-0.08, () ZnO/S-1-0.35, () ZnO/S-1-1, () ZnO/S-1-1.7. 
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The dehydrogenation of isobutane to isobutene assisted by 
CO2 over the Silicalite-1-supported ZnO catalysts was investigated 
at 570 oC. The result is shown in Figure 5 and Table 2. The major 
hydrocarbon product is isobutene, and the minor hydrocarbon 
products comprise methane, ethane, ethylene, propane, propyl-
ene and butenes (excluding isobutene). The catalytic activity 
strongly depends on the crystallite size of Silicalite-1 support. As 
the crystallite size decreases from 1.7 µm to 0.35 µm, the initial 
conversion of isobutane on the ZnO/S-1 catalysts increases evi-
dently from 37.2% to 51.0%. A further decrease in the crystallite 
size of Silicalite-1 support to 0.08 µm results in a decrease in the 
initial isobutane conversion to 46.7%. In general, the ZnO/S-1 cat-
alyst with higher activity displays lower isobutene selectivity (Fig-
ure 5B). The ZnO catalyst supported on Silicalite-1 with ca. 0.35 µm 
crystallite size exhibits the highest activity, giving an initial isobu-
tane conversion of 51.0% and 74.5% isobutene selectivity. As 
shown in Table 2, the ZnO/S-1-0.35 catalyst displays the highest 
isobutene yield. It should be pointed out that under the same re-
action conditions the isobutane conversion on the Silicalite-1 sup-
ports is below 3%, which indicates that the dispersed zinc oxide 
species on the Silicalite-1 supports are the active sites for the de-
hydrogenation reaction. 

According to the DFT calculations, the reaction pathway of 
ethane dehydrogenation over the Zn/ZSM-5 catalyst was proposed 
by Pidko and van Santen.[35] We think that isobutane dehydrogena-
tion over the ZnO/Silicalite-1 catalyst could follow the same mech-
anism (Scheme S1).[24] Isobutane is dissociatively adsorbed on the 
zinc oxide sites (i.e. acidic sites) in the initial step (Eq. (1)). In the 
following step, the resulting product decomposes via one-step 
elimination, thus generating isobutene and H2 (Eq. (2)). Based on 
this reaction mechanism, one would expect that the ZnO/S-1 cata-
lyst having a higher amount of dispersed zinc oxide (i.e. more acid 
sites) exhibits higher catalytic activity. Note that the acid sites pre-
sent on the ZnO/S-1 catalysts are mainly contributed from the dis-
persed zinc oxide species, as revealed by the NH3-TPD result. This 
speculation is further corroborated by a good correlation between 
the initial activity of the ZnO/S-1 catalysts (ZnO/S-1-1.7, ZnO/S-1-1 
and ZnO/S-1-0.35) and acid amount of these catalysts (Figure 3). In 
our recent work we have also demonstrated the excellent correla-
tion between the catalytic activity for CO2-assisted isobutane de-
hydrogenation over the ZnO/S-1-0.35 catalysts with different Zn 
contents and acid amount of these catalysts.[24] Nevertheless, the 

ZnO/S-1-0.08 catalyst displays lower activity than ZnO/S-1-0.35, al-
beit the former catalyst has more acid sites than the latter one. This 
can be interpreted as follows. S-1-0.35 and ZnO/S-1-0.35 have 
more nest silanols than S-1-0.08 and ZnO/S-1-0.08, respectively 
(Figure 4). The acid strength of nest silanols is stronger than iso-
lated ones.[20,22] The activation energy of one-step elimination re-
action (Eq. (2)) is strongly dependent on the relative position of 
[Zn–i-C4H9]+ and framework attached H+ ions. Therefore, the resid-
ual acidic −OH groups on the catalyst, especially the residual nest 
silanols owing to their stronger acid strength, which are close to 
the [Zn–i-C4H9]+ species can promote the regeneration of the active 
sites, thereby leading to an increase in the catalytic activity.[24,35,36] 
It is thus concluded that the highest activity observed for the 
ZnO/S-1-0.35 catalyst can be attributed to a higher amount of acid 
sites present on this catalyst as well as the largest amount of nest 
silanols possessed by the S-1-0.35 support. 

The catalytic performance of our catalysts (ZnO/S-1) in this 
work is compared with the performance of other catalysts re-
ported in the literature. Table S1 lists the conversion, selectivity 
and space-time yield of isobutene, together with the reaction con-
ditions. In fact, it is not appropriate to compare the catalytic activ-
ity because of the different reaction conditions. As far as the space-
time yield of isobutene is concerned, our catalysts are obviously 
more active than the supported Cr-based, V-based and V-Mg-O 
catalysts. Furthermore, the ZnO/S-1 catalysts display higher stabil-
ity. 

Conclusions 
The Silicalite-1-supported ZnO catalysts with 5% Zn were pre-

pared by an incipient wetness method. The XRD and HAADF STEM 
mapping results reveal the homogeneous distribution of the Zn el-
ement on the Silicalite-1 supports with different crystallite sizes 
(0.08, 0.35, 1 and 1.7 µm, respectively). The amount of silanols on 
the four Silicalite-1 supports determined by TG increases with de-
creasing the crystallite size, thus favoring the dispersion of sup-
ported zinc oxide species. As a result, a higher amount of acid sites 
are achieved on the Silicalite-1-supported ZnO catalyst. The ZnO/S-
1-0.35 catalyst with ca. 0.35 µm crystallite size exhibits the highest 
activity for CO2-assisted isobutane dehydrogenation, giving an ini-
tial isobutane conversion of 51.0% and 74.5% isobutene selectivity. 
This can be accounted for by both a higher amount of acid sites 

Table 2  Reaction data of the Silicalite-1-supported ZnO catalystsa 

Catalyst 
Conversion/%  Selectivity/%  i-C4H8 

i-C4H10 CO2  i-C4H8 CH4 C2H4 C2H6 C3H6 C3H8 C4H8b  yield/% 
ZnO/S-1-0.08 46.7(44.3) 8.4(5.5)  75.6(81.7) 2.3(1.6) 0.3(0.1) 0.1(0.1) 5.7(4.3) 0.7(0.3) 15.3(11.9)  35.3(36.2) 
ZnO/S-1-0.35 51.0(49.0) 10.1(7.2)  74.5(79.4) 2.5(1.8) 0.4(0.2) 0.1(0.1) 6.2(4.8) 0.8(0.5) 15.5(13.2)  38.0(38.9) 

ZnO/S-1-1 43.5(41.4) 7.6(4.6)  77.7(82.6) 2.1(1.6) 0.3(0.1) 0(0) 5.1(4.1) 0.6(0.4) 14.2(11.2)  33.8(34.2) 
ZnO/S-1-1.7 37.2(36.4) 5.1(2.7)  78.5(83.0) 1.9(1.4) 0.3(0.1) 0(0) 4.9(4.0) 0.6(0.3) 13.8(11.2)  29.2(30.2) 

a The values outside and inside the bracket are the data obtained at 10 min and 360 min, respectively. 
b 1-Butene, cis-2-butene and trans-2-butene. 
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present on this catalyst and the largest amount of nest silanols pos-
sessed by the S-1-0.35 support. 

Experimental 
Preparation of catalyst 

Submicron and micrometer Silicalite-1 zeolites were synthe-
sized according to the literature.[37] Typically, tetrapropylammo-
nium hydroxide (TPAOH, 25 wt% aqueous solution), tetraethyl or-
thosilicate (TEOS) and distilled deionized water were mixed with 
stirring at room temperature to form a clear gel with a molar com-
position of mTPAOH : 25SiO2 : 480H2O (where m = 3, 6 and 9, re-
spectively). The gel was stirred for additional 4 h to ensure the 
complete hydrolysis of TEOS. Then it was transferred to an auto-
clave and crystallized at 170 oC for 72 h. The as-synthesized precip-
itate was washed with deionized water, dried at 100 oC overnight, 
and calcined in air at 550 oC for 4 h. The resultant Silicalite-1 zeo-
lites are labelled as S-1-x (where x = 1.7, 1 and 0.35 represent the 
crystallite size of ca. 1.7, 1 and 0.35 μm corresponding to m = 3, 6 
and 9, respectively). To prepare nanosize Silicalite-1 zeolite, TPAOH, 
TEOS and distilled deionized water were mixed under stirring at 
room temperature to get a clear solution, followed by being stirred 
at 80 oC for 24 h to form a gel with a molar composition of 1TPAOH : 
4SiO2 : 32H2O. Then the gel was transferred to an autoclave and 
crystallized at 170 oC for 24 h, followed by the same treatment as 
the above Silicalite-1 zeolites. The obtained Silicalite-1 is labelled 
as S-1-0.08, where 0.08 represents the crystallite size of ca. 0.08 
μm 

The supported ZnO catalysts were prepared by impregnating 
an aqueous solution of Zn(NO3)2•6H2O on Silicalite-1 zeolites with 
different crystallite sizes via an incipient wetness method. The im-
pregnated samples were dried at 100 oC overnight and calcined at 
600 oC for 6 h in air to obtain the ZnO/S-1-x catalysts. The weight 
content of Zn in all catalysts was 5%. 

Catalyst characterization 

X-ray diffraction (XRD) patterns were recorded on a MSAL XD2 
X-ray diffractometer at 40 kV and 30 mA. The BET surface areas and 
pore volumes were measured by N2 adsorption at −196 oC on a Mi-
cromeritics Tristar 3000 instrument. Scanning electron microscopy 
(SEM) was collected with a FEI Nova NanoSem 450 microscope for 
nanosize Silicalite-1 and with a Phenom Prox microscope for sub-
micron and micrometer Silicalite-1. The HAADF-STEM images and 
elemental mapping were recorded on an FEI Tecnai G2 F20 S-TWIN 
with an EDX instrument. Thermogravimetric (TG) analysis was per-
formed in a N2 flow from room to 850 oC at a ramp rate of 5 oC /min 
on a Perkin–Elmer 7 Series Thermal Analyzer apparatus to deter-
mine the amount of silanols of the four Silicalite-1 supports.[38] 

The surface acidity was measured by NH3 temperature-pro-
grammed desorption (NH3-TPD) on a Micromeritics AutoChem II 
instrument. 0.1 g of sample (40–60 mesh) was pretreat at 550 oC 
for 1 h in a N2 flow, and then cooled to 80 oC in flowing N2. At this 
temperature, the flow was switched to a 10 vol.% NH3/He mixture 
flowing at 30 mL/min and kept for 2 h, and then swept by He (30 
mL/min) for 2 h. Finally, the sample was heated in He (30 mL/min) 
to 600 oC at a ramp rate of 10 oC/min. Diffuse reflectance infrared 

Fourier transform (DRIFT) spectra were obtained on a Nicolet 6700 
spectrometer equipped with an MCT detector cooled by liquid N2. 
The DRIFT cell was fitted with CaF2 windows and a heating cartridge. 
The samples were pretreated in a He flow (30 mL/min) at 450 oC 
for 1 h, and cooled to 300 oC under flowing He. DRIFT spectra were 
collected at 300 oC under flowing He with a resolution of 4 cm−1 
and accumulation of 128 scans. 

Activity measurement 

Catalytic tests for isobutane dehydrogenation to isobutene as-
sisted by CO2 were performed at 570 oC in a fixed-bed flow micro-
reactor at atmospheric pressure.[39] The catalyst load was 0.1 g 
(40–60 mesh), and it was pretreated at 570 oC for 1 h in a N2 flow 
prior to the reaction. The gas reactant contained 50 vol.% CO2 and 
50 vol.% isobutane. The flow rate of isobutane was 2.9 mL/min, 
corresponding to the weight hourly space velocity (WHSV) of 4.1 
h−1. The hydrocarbon products were analyzed using an on-line gas 
chromatograph (GC) equipped with a FID and a HP-AL/S capillary 
column (50 m × 0.53 mm × 15 µm). CO and CO2 were analyzed on-
line by another GC equipped with a TCD and a 2-m packed column 
of carbon molecular sieve 601. 
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