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Abstract: Thetitle cyclic guanidine (4a) isan efficient promoter of
enone epoxidation by tert-butyl hydroperoxide. Optimisation stud-
ies are reported and the procedure applied to cyclic and acyclic ke-
tones, quinones and naphthoquinones. N-Substituted guanidine (4c)
proved best for the epoxidation of 2-amidobenzoquinones. Prelimi-
nary asymmetric epoxidation studies are also discussed.
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The epoxidation of el ectron deficient alkenes, a process of
great synthetic importance, can be achieved in a number
of ways.! Many of these procedures utilise aqueous hydro-
gen peroxide and inorganic bases but in examples where
these conditions cause problems, the use of anhydrous
tert-butyl hydroperoxide (TBHP) and 1,8-diazabicyc-
[0[5.4.0]undec-7-ene (DBU, 3) in dichloromethane has
been recommended.?® We have made use of this proce-
dure during our studies on the total synthesis of manumy-
cin and related epoxyquinone antibiotics (Scheme 1).4 All
of the quinones 2 are very sensitive to alkali and undergo
rapid transformation to an unidentified black dyestuff un-
der standard alkaline peroxide conditions but the DBU
procedure was extremely fast and efficient.
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In seeking to optimise this epoxidation procedure, we de-
cided to investigate the use of the corresponding 1,5, 7-tri-
azabicyclo[4.4.0]dec-5-enes (4),° a group of strong bases
with pKa(ca. 13)® similar to or slightly greater than DBU.
The parent compound (4a) and its N-methyl derivative 4b
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have both been used to catalyse Michagl additions,” as
have enantiopure C-substituted analogues.® We were at-
tracted to bicyclic guanidine bases 4 for several reasons.
Compounds 4a and 4b are commercially available and the
conversion of 4a into other N-substituted analogues is
well described.® We felt that this gave the potential for
tuning the reactivity of the bases and for preparing enan-
tiomerically pure analogues. In addition, the preparation
of solid-supported base is possible: this application was
reported during the course of our study.°

We commenced this study by examining the epoxidation
of trans-chalcone using anhydrous TBHP (5.5 M in de-
cane) (Scheme 2 and Tables 1-3). We were delighted to
see that the oxidation proceeded smoothly in a range of
solvents using guanidine 4a as shown in Table 1. We also
established (Tables 1 and 2), that epoxidation proceeded
efficiently using sub-stoichiometric quantities of 4a but
that the reaction slows dramatically when less than 0.3
equivalents are employed. It should be noted that thereac-
tion proceeded to completion at a much faster rate when
one equivalent or more of 4a was employed but a lower
yield of product was obtained, presumably due to base-
promoted side reactions. Further studies showed that the
reaction still proceeded efficiently with just aslight excess
of oxidant (5.5 equiv. TBHP, 90% 5; 1.1 equiv. TBHP,
78% 5), and that guanidine 4a a so catalysed epoxidation
with hydrogen peroxide and other peroxides, even in the
presence of water (Table 3).
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solvent, RT
Scheme 2

Table 1 Chalcone epoxidation with 0.3 eg. (4a) in several solvents

TBHP solvent trans-chalcone epoxide (5)

equivalents yield reaction time
5.5 dichloromethane 93% 240 min
5.5 chloroform 90% 280 min
5.5 toluene 85% 120 min
5.5 tetrahydrofuran  84% 120 min
5.5 acetonitrile 82% 55 min
5.5 iso-propanol 72% 70 min
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Table2 Variation of the equivalents of guanidine (4a) in CHCl;

guanidine (4a) TBHP trans-chalcone epoxide (5)

equivalents equivalents yield reaction time
2.0 5.5 63% 40 min
1.0 5.5 71% 100 min
0.5 5.5 84% 210 min
0.3 5.5 90% 280 min
0.1 5.5 95% 51h

Table 3 Variation of the oxidant

guanidine oxidant (5.5 equivalents) trans-chalcone epoxide (5)

(4a) yield reaction time

equivalents

0.3 33.5% H,0, 96% 10 min

0.3 cumene hydroperoxide  81% 400 min
(80% in cumene)

0.3 TBHP (70% in water) 92% 290 min

0.3 TBHP (5.5 M in decane) 93% 240 min

We also examined the epoxidation of other substrates (Ta-
ble 4). Cyclohexenone oxide (6) and naphthoquinone ox-
ide (7) were both produced in high yields using catalytic
amounts of guanidine 4a. In addition, this procedure was
employed in the synthesis of deoxypreussomerin A
However, epoxidation of quinones la-c proceeded rather
violently under these conditions with the reaction mixture
turning black within seconds and only low yields (33-
45%) of epoxides 2a-c being isolated. Use of the N-meth-
yl guanidine 4b gave dlightly better yields but the reaction
was till very fast. Wetherefore prepared the N-benzhydr-
yl guanidine 4c*2 and found that with this catalyst the ep-
oxidation of these sensitive quinones proceeded more
slowly and in much higher yields (60% - 68%).

Table4 Variation of the substrates
o) (o]
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(e] DCM, 0°C (e} DCM, RT
25 min, 94% 2 min, 90%
6 o

NHCOR TBHP

(2a) MeCO- 60%
0 0.3eq. (4¢)
DCM, RT

o- 65%
(2b) P

. 0- 68%
I 30-150min (p) C‘/\/\/‘:

[82% based on recovered (1¢)]

We have also prepared a range of enantiomerically pure
guanidines (e.g. 4d-g, Scheme 3).23 Preliminary studies
illustrate the potential of these reagents, athough consid-
erable optimisation isclearly required. Thus, for example,
epoxidation of enone 8 with TBHP in the presence of 4d
gave apredominance of epoxide (-)-(9) {[«a]p - 65 (c 0.98,
CHCI,); 35% ee}, avaluable building block in antibiotic
synthesis.*'®> The enantiomer of 4d was also prepared and
thiswas used to produce (+)-9 with asimilar enantiomeric

purity.
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In summary, we have shown that a number of cyclic
guanidines 4 promote the TBHP-mediated epoxidation of
electron deficient alkenes® and that enantiomerically
pure guanidines show promise in asymmetric epoxida-
tions.
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