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Abstract: A strategy has been developed for the re-
giospecific synthesis of 1-trifluoromethylisoquino-
line derivatives. This strategy is enabled by a photo-
redox vinyl isocyanide insertion with the help of
Umemoto’s reagent. The methodology presented
here provides an access to highly fuctionalized 1-tri-
fluoromethylisoquinolines regiospecifically under
mild conditions in good-to-excellent chemical
yields. A detailed mechanism is proposed, which is
supported by experiments and theoretical calcula-
tions.
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Introduction of the trifluoromethyl (CF;) group into
organic compounds has attracted the attention of
chemists for decades, due to the unique properties of
trifluoromethylated molecules, such as elevated elec-
tronegativity, hydrophobicity, metabolic stability, and
bioavailability.!"! Aromatic and heterocyclic com-
pounds bearing one or more CF; groups on the ring
are important intermediates and building blocks for
the synthesis of numerous modern pharmaceuticals,
highly efficient crop protection agents, and specialty
materials.?!

Recently, a variety of processes has been developed
for the incorporation of the CF; group into diverse ar-
omatic compounds.’! Particularly, transition metal-
mediated or -catalyzed C—CF; bond formation reac-
tions have emerged as powerful synthetic tools in this
area in the past decade.’> For these methods, the ar-
omatic rings have to be pre-functionalized, such as
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aryl halides, boronic acids, sulfonates or as arenes
bearing a directing group.”! Direct C—H trifluorome-
thylation protocols, which obviate the need for pre-
functionalization of the substrates, become the focus
of many researchers.”) These methods provide
straightforward and efficient routes to aromatic and
heterocyclic trifluoromethylated products. However,
the regioselectivity of these transformations is often
questionable.!!

In particular, trifluoromethylated isoquinoline de-
rivatives are frequently encountered in pharmaceuti-
cals and natural products.”) Methods to access these
valuable structures are very limited.®! Trifluoromethy-
lations of isoquinolines at C-3 (the poorest electron
density) or C-4 (the highest electron density) position
can be achieved regioselectively,* ¢ while 1-CF;-iso-
quinolines have seldom been accessed. As observed
by Akiyama and co-workers,® direct trifluoromethy-
lation of isoquinoline under irradiation of a high-pres-
sure mercury lamp with gaseous CF;Br led to a mix-
ture of four regioisomers in 13.4% overall yield. 4-
CF;-isoquinoline was isolated as a major product in
8.2% yield while the 1-CF;-isomer was only produced
in 1.5% yield as a minor product (Figure 1, A). The
Stoltz group reported an elegant synthesis of a 1-CF;-
isoquinoline derivative via aryne annulation.*®) Only
one example was mentioned in this work (Figure 1,
B). So it remains an unsolved challenge to diversely
access 1-CF;-isoquinoline derivatives regiospecifically.

Recently, our group became interested in visible
light-promoted somophilic triple bond insertions to
provide functionalized (hetero)arenes.”) Comparing
to biphenyl isocyanides, which have frequently been
used to construct phenanthridine derivatives,”>*% the
chemistry of vinyl isocyanides remains mainly unex-
plored."! Very recently, we reported the synthesis of
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A: Direct trifluoromethylation of isoquinolines (ref.[83)
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B: Synthesis of 1-CFg-isoquinoline via aryne annulation (ref.[8])

OTf

FsC_N

T

CO,Me

F,C. OH

N
S o Y
H CO,Me N

X COZMe

CF;
57%

C: Regiospecific synthesis of 1-CFs-isoquinolines via vinyl isocyanide insertion (this work)
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Figure 1. Strategies for the synthesis of 1-CF;-isoquinolines.
1-arylisoquinoline derivatives using the somophilic in- achieved when MeOH was used as a solvent

sertion of vinyl isocyanides.” Based on this work, we
speculated that 1-CF;-isoquinoline derivatives could
be accessed with the help of this strategy. When vinyl
isocyanide 1 is employed as a somophile to react with
the CF; radical, an imidoyl radical I can be generat-
ed. After intramolecular homolytic aromatic substitu-
tion (HAS)!"! and an oxidation and deprotonation se-
quence, 1-CF;-isoquinoline derivatives 3 can be
formed ultimately (Figure 1, C). This de novo strategy
to access 1-CF;-isoquinolines assisted by somophilic
vinyl isocyanide insertion can address the regioselec-
tivity issue and can also be realized under mild condi-
tions. Herein, we would like to report a visible light-
promoted trifluoromethylation of vinyl isocyanides as
a modular approach to 1-trifluoromethylated isoqui-
nolines.['*!4

Initially, we examined this hypothesis using methyl
(Z)-2-isocyano-3-phenylbut-2-enoate (1la) and Ume-
moto’s reagent (2a)l"” as model substrates (Table 1).
When a solution of 1a and 2a in DMF was irradiated
by 13 W white LED in the presence of the photocata-
lyst Ir(ppy).(dtbbpy)PF, (I) and Na,HPO, for 3 h, the
desired isoquinoline 3a was isolated in 62% yield
(entry 1). Several common polar solvents were
screened, such as DMSO, CH;CN, THF, but they
could not give any improved results (entries 2-4). The
non-polar solvents, such as toluene, were not effective
at all (entry5). To our delight, an 88% yield was
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(entry 6). EtOH could not improve the result
(entry 7). The bases, such as Na,CO;, NaHCO;, and
K,HPO,, were also tested, but none of them gave
better results (entries 8-10). Other photocatalysts,
such as II, III and IV, also gave good yields of the iso-
lated products, which showed that the photocatalyst
did not affect this transformation significantly (en-
tries 11-13). Other CF; radical precursors, such as
Togni’s reagent (2b) and CF;SO,CI (2¢), were also in-
vestigated, but none of them gave better yields (en-
tries 14 and 15). Control experiments verified the ne-
cessity of the base, irradiation and photocatalyst (en-
tries 16-18). Without light and photocatalyst, no de-
sired product was isolated even if the reaction mix-
ture was heated up to 60°C.

Having identified the optimal conditions, we pro-
ceeded to explore the scope of this reaction (Table 2).
Firstly, aliphatic aryl ketone-derived vinyl isocyanides
were examined. Generally, the reactions proceeded
quite well and 1-CF;-isoquinolines 3a-h were generat-
ed in 28-89% yields. It was found that the electronic
property of phenyl groups had a significant effect on
this transformation. The isocyanide with an electron-
rich phenyl group is more reactive than the one with
an electron-deficient phenyl group (3b vs. 3¢). The
low yield of the isocyanide with an electron-deficient
phenyl group was due to the decomposition of the
isocyanide. The reactions with diaryl ketone-derived
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Table 1. Optimization of the reaction conditions."”!

Me O
T O
R'% +
% -C/’N ]
' $ OBF,
CF3
1a 2a

Z "N
\I

Ir(ppy)2(dtbbpy)PFe (I)

fac-Ir(ppy)s (Ill)

hotocatalyst Me
photocatalys
base, solvent N COMe
white LED AN
r.t., N2
3a CFs;

Ru(bpy)sCl2 (IV)

R'=R%=H ©:l</o
Ir(dFCF 3ppy),(dtbbpy)PFg (II) ' 2
R1 = CF3, RZ =F 2b CI:F3 CFSSOZC' ( C)
Entry Catalyst Solvent Base Yield [%]™
1 I DMF Na,HPO, 62
2 | DMSO Na,HPO, 53
3 | CH,CN Na,HPO, 56
4 I THF Na,HPO, 57
5 I toluene Na,HPO, trace
6 I MeOH Na,HPO, 88
7 I EtOH Na,HPO, 84
8 I MeOH Na,CO;, 78
9 | MeOH NaHCO, 80
10 I MeOH K,HPO, 68
11 11 MeOH Na,HPO, 73
12 I MeOH Na,HPO, 83
13 | \Y MeOH Na,HPO, 84
141 1 MeOH Na,HPO, 49
154 I MeOH Na,HPO, 62
16 I MeOH none 47
17 none MeOH Na,HPO, trace
18 I MeOH Na,HPO, NR

[l Reaction conditions: 1a (0.2 mmol), 2a (0.3 mmol), base (0.3 mmol) and catalyst (0.002 mmol, 1.0 mol%) in the indicated
solvent (2.0 mL) were irradiated by 13 W white LED for 3 h at room temperature. DMF = N,N-dimethylformamide,

DMSO =dimethyl sulfoxide, THF =tetrahydrofuran.
] Isolated yield.
[l 2b instead of 2a.
4l 2¢ instead of 2a.
[l No irradiation.

vinyl isocyanides worked also quite well. The corre-
sponding isoquinolines 3i—q could be provided in sat-
isfactory yields (52-94%). Then aryl aldehyde-derived
vinyl isocyanides were employed. Generally, the reac-
tivity of this type of vinyl isocyanide was lower than
that of the ketone-derived counterparts. The desired
isoquinolines 3r-z could be obtained in acceptable
yields (35-80%). Ethyl ester- or amide-based vinyl
isocyanides also underwent this transformation
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smoothly, the corresponding isoquinolines 3aa-ad
were generated in good yields (50-93%). The vinyl
isocyanides without electron-withdrawing groups are
quite unstable, and have thus not prepared successful-
ly by us at this stage.

In order to obtain further insights into the reaction
mechanism, a series of TEMPO trapping experiments
was employed. As shown in Scheme 1, when Umemo-
to’s reagent 2a was treated with the radical scavenger
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Table 2. Substrate scope.[*" <

R, O R, O
M A R R3 2a, |, NazHPO4 _ 0 A X R3
R N MeOH, r.t., 13 W white LED L AN
CF,
Me Me Me R?
- CO2Me 0 A ACOzMe O X CO2Me \\CO:zMe
R’ _N <O _N O N _N
CF3 CF; MeO CFs CF3 .
3a:R'=H, 88% 3d: 89%!° 3e: 74% 3f:R=Bn, 81%
3b: R' = OMe 81% 39: R = c-Hex, 75%
. , "R = o
3c:R' = CF3, 28% 3h: R = i-Pr, 81%
R4
s AN COsMe NOOMe Meo _x__COMe
R1—- AN _N N
7 : = O MeO ©
X CO,Me CF3 CF3 CF;
. o,
» _N 3r:R" = H, 50% 3x: 61% 3y: 73%/e!
| 3s: R!=5-OMe, 57% Ph O
8 3t: R" = 6-OMe, 80%!! * o CO2Me
3i:R"=R*=H, 94% 3u: R = 7-OMe, 46% 4 | ! X OFEt
3j: R'=R*= Me, 93% 3v: R'=7-F, 43% SN _N
3k:R'=R*=F, 91% 3w: R'= 7-CF5 39% CF, CF,
R1=R4= 0
2IrﬁBR1 -ROMS MR(‘E‘—7 ?fsev 3z 3% 3aa: 93%
: = , =H, ) 2
3n: R'=F, R* = OMe, 80% R® 0
30:R'=OMe, R4 = F, 87% XN Ph O
3p:R' =NO,, R* = H, 52% . _N N on-En
3q:R'"=H,R*=F, 94% H
CF3 2
3ab: R' = H, R2 = Ph, 85% CF;3
3ac: R' = OMe, R? = H, 50% 3ad: 93%

[a]

Reaction conditions: 1 (0.2 mmol), 2 (0.3 mmol), NaHPO, (0.3 mmol) and I (0.002 mmol,

1.0 mol%) in MeOH (2.0 mL) was irradiated by 13 W white LED for 1-4 h at room temperature.

[b]
[c]
[d]
[e]
M1 Regioisomer ratio: 1:1, determined by 'H NMR.

Isolated yield.

Regioisomer ratio: 1:1, determined by ’F NMR.

TEMPO in the dark, only a trace of trapping product
4 was detected based on FNMR analysis. Instead,
the adduct 4 was observed in comparable yields when
the trapping reactions were carried out under visible
light irradiation irrespective of whether the photoca-
talyst I was present. When isocyanide 1i was intro-
duced into the trapping experiments, no obvious
changes were observed. These observations strongly
suggests that generation of the CF; radical from
Umemoto’s reagent can be achieved only under visi-
ble light irradiation and is independent of the photo-
catalyst and isocyanide.
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Regioisomer ratio: 3.5:1, determined by ’F NMR.

Regioisomer ratio: 7.6:1, determined by ’F NMR.

These experimental observations can be supported
by theoretical calculations. Density functional theory
[B3LYP/6-3114+ +G (d,p)] calculation indicates that
the C—S bond in 2a is rather weak with a low bond
dissociation energy (BDE) (AGyys=82.1 kJmol™)
[Eq. (1)], which is located in the infrared area. Visible
light is strong enough to induce the homolytic cleav-
age of the C—S bond in 2a.

S
+eo

6

BDE 82.1 kJ/mol

(cf. 2 =1464 nm) (1)
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I, Na,HPO,, TEMPO (2.0 equiv.)

. - Q3
. MeOH, r.t., dark Me”™ "N” "Me
1.5 equiv. ! S
4 CF3 5
yield: trace
Na,HPO,, TEMPO (2.0 equiv.)
2a 4 + 5
MeOH, r,t,,13 W white LED
1.5 equiv yield
w/ | 40%
w/o | 30%
Na,HPO,, TEMPO (2.0 equiv.)
1i + 2a - > 4 + 5
MeOH, r.t.,13 W white LED
. . yield
1.0 equiv. 1.5 equiv. Wil 23%
w/ol 26%
Scheme 1. TEMPO trapping experiments.
2a
-061V visible light
visible light |r(|||)*F'N
l l -0.75V
CFae + 6 Ir(l1) Me O
0.06 V
1.14V
1a 5 Ir(Iv)
-065V
Me O Me O
A OMe N OMe
. fN — N
CF; CF3
7 8

Figure 2. Proposed reaction mechanism.

Based on our experimental and theoretical observa-
tions, a possible catalytic cycle is proposed for this
transformation (Figure 2). Umemoto’s reagent 2a
[E,» (2a/2a)=—0.61 V vs. SCE)!'" is dissociated into
persistent CF; radical and sulfur-centered radical
cation 6 assisted by visible light. The radical cation 6
[E,; (6/5)=0.06 V vs. SCE] is reduced to sulfide 5 by
excited state Ir(IID)*[E,, (Ir(AV)/Ir(111)*)=-0.75V
vs. SCE], which is generated from ground state Ir(III)
under visible light. The CF; radical is trapped by iso-
cyanide 1a to give imidoyl radical 7, which undergoes
intramolecular HAS with the generation of aryl radi-
cal 8. The aryl radical 8 [E,, (9/8)=—-0.65V vs. SCE]
is then oxidized by Ir(IV) [E,, (Ir(IV)/Ir(II))=
1.14V vs. SCE] to aryl cation 9 and regenerates
Ir(IIT). Ultimately deprotonation assisted by a base
yields 1-CF;-isoquinoline 3a. The structure of 3a was
established unambiguously by the single crystal X-ray
diffraction analysis.!'”!
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Another two possible mechanism for generation of
CF; radical cannot be ruled out completely at this
stage. One is enabled by electron donor-acceptor
(EDA) complexes between the Umemoto’s reagent
2a and isocyanides."! The other is reduction of 2a to
generate CF; radical directly by excited state
Ir(IID)* 1#0dkmel Ap alternative mechanism based on
the latter one was also proposed (Figure 3). Umemo-
to’s reagent 2a is reduced into persistent CF; radical
and sulfide 5 by excited state Ir(III)*, which is gener-
ated from ground state Ir(IIl) under visible light.
Then isoquinoline 3a is generated following a similar
pathway as the aforementioned.

In summary, we have described the regiospecific
synthesis of 1-CF;-isoquinoline derivatives. This strat-
egy is enabled by photoredox vinyl isocyanide inser-
tion with Umemoto’s reagent. The methodology pre-
sented here provides an access to highly-fuctionalized
1-CF;-isoquinolines regiospecifically at room temper-
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Figure 3. Alternative reaction mechanism.

ature in good-to-excellent chemical yields. The mech-
anism of this reaction was investigated experimentally
and theoretically. A novel and reasonable mechanism
was proposed. Further explorations on the chemistry
of vinyl isocyanides and the biological evaluation of
1-CF;-isoquinolines, as well as more detailed mecha-
nism investigations are underway in our laboratory.

Experimental Section

General Procedure

A 10-mL round-bottom flask was equipped with a rubber
septum and magnetic stir bar and was charged with vinyl
isocyanide 1 (0.2 mmol, 1.0 equiv.), Umemoto’s reagent 2a
(0.3 mmol, 1.5equiv.), Ir(ppy).(dtbbpy)PFs (0.002 mmol,
0.01 equiv.), Na,HPO, (0.3 mmol, 1.5 equiv.). The flask was
evacuated and backfilled with argon for 3 times. MeOH
(2.0 mL, 0.1M) were added with syringe under argon. The
mixture was then irradiated by a 13 W white LED strip.
After the reaction was complete (as judged by TLC analy-
sis), the solvent was removed under reduced pressure direct-
ly. The crude product was purified by flash chromatography
on silica gel to afford the desired product 3.
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