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Catalyst-Free Dehydrocoupling of Amines, Alcohols, and Thiols 

with Pinacol Borane and 9-Borabicyclononane (9-BBN)  

Erik A. Romero, Jesse L. Peltier, Rodolphe Jazzar and Guy Bertrand
*

Contrary to recent reports, the dehydrocoupling of pinacol borane 

and 9-borabicyclononane with a variety of amines, alcohols and 

thiols can be achieved under mild conditions without catalyst. This 

process involves the formation of Lewis acid-base adducts 

featuring a hydridic B–H in close proximity to an acidic Nu–H.  

 In 2013 Nolan and coworkers1 described the 

dehydrocoupling reaction of pinacol and catechol boranes with 

thiols catalyzed by the ruthenium complex A (Fig. 1). More 

recently, the catalytic dehydrogenative coupling of amines 

and/or alcohols with 9-borabicyclononane (9-BBN) and/or 

pinacol borane have been reported using catalysts based on 

osmium B,2 alkali earth metals C,3 alkali metals D,4 and 

aluminum E.5 The osmium complex B is postulated to utilize 

metal-ligand cooperativity to activate pinacol borane. The 

other catalysts (C-E) are proposed to proceed through metal 

amido, alkoxide or sulfide intermediates, which readily react 

with the Lewis acidic hydridoboranes. Subsequent hydride 

transfer to the corresponding metal yields the highly reactive 

metal hydride that can deprotonate another equivalent of Nu–

H (E = RN, O, S) to close the cycle. Interestingly, these results 

seem to exclude that pinacol borane and 9-BBN are sufficiently 

Lewis acidic to form adducts of type F shown in Scheme 1. The- 
 
Fig. 1. Reported catalysts for the dehydrocoupling of amines, alcohols and thiols 
with pinacol borane, catechol borane and/or 9-BBN. 

 

Scheme 1. Proposed catalyst-free dehydrocoupling pathway through Lewis acid-
base adducts F. 
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se adducts would feature hydridic B–H bonds in close 

proximity to acidic Nu–H bonds, and therefore should release 

H2 without the need for a catalyst.   

 Indeed, although numerous catalysts have been reported 

to promote the dehydrogenation of several amine-borane 

adducts, including ammonia-borane (NH3-BH3), it has also 

been shown that catalyst-free dehydrogenative processes can 

occur under thermal conditions.6 Herein we report the facile 

catalyst-free dehydrocoupling of amines, alcohols, and thiols 

with pinacol borane and 9-BBN.7 

 We began our investigation using a stoichiometric mixture 

of aniline and pinacol borane8 (0.4 mmol) in 0.4 mL of C6D6 

(Table 1, Entry 1). After 4 h at room temperature, 60% 

conversion into 1a was observed, with no byproducts 

detected. The influence of the solvent (Entries 1-4) and of the 

concentration (Entries 5-8) on the rate of the reaction were 

tested. The best results were found in the absence of solvent.9 

In this case, bubbling of H2 stopped after 15 minutes at room 

temperature, and after another 10 minutes the solution 

solidified. Dissolving this solid in acetonitrile led to nearly 

quantitative formation of 1a, the only impurities being traces 

of pinBOH and aniline.   

 The scope of the amine dehydrocoupling reaction with 

pinacol borane was studied in the absence of solvent, except 

when amines are solid at room temperature; in these cases 

0.151 mL of acetonitrile was used with 0.8 mmol of both 

reactants (Fig. 2). This reaction can be applied to both aliphatic 

and aromatic amines with varying degrees of steric and 

electronic contributions. Due to the high selectivity of the 

dehydrogenative coupling reaction, products 1a-e and 1g-r 

were obtained in good purity (as can be seen from the NMR 
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Table 1. Solvent and Concentration Effects on Amine Dehydrocoupling with pinacol 

boranea 

 

Entry Time  (h) Solvent Conc. (M) Conversion (%)
b
 

1 4 C6D6 0.8 60 
2 4 CDCl3 0.8 22 
3 4 THF-d8 0.8 30 
4 4 CD3CN 0.8 75 
5 0.5 CD3CN 0.8 29 
6 0.5 CD3CN 1.3 49 
7 0.5 CD3CN 2.8 85 
8 0.5 - - 94 

aThe reactions were carried out in a J-Young NMR tube at room temperature 

under an argon atmosphere using a 1:1 mixture (0.40 mmol) of aniline and 

pinacol borane. bConversion measured by 1H NMR referencing residual starting 

aniline. 

spectra included in the Supporting Information) by simply 

removing all volatiles under vacuum. 

 Interestingly, among all the amines that were considered, 

2,6-diisopropylaniline was the only one that appeared to be 

unreactive even after 24 hours at 120 oC. This prompted us to 

investigate the mechanism of the dehydrogenative coupling. 

Monitoring by 1H NMR spectroscopy the reaction of various 

amines with pinacol borane does not show the presence of 

any intermediates. However, in the case of allylamine, the 

addition of pinacol borane immediately produced a white solid 

with no hydrogen evolution. The physical state of both starting 

materials (liquids) suggested that the white solid obtained was 

the Lewis acid-base adduct Fg, which was confirmed by a 

single crystal X-ray diffraction study (Fig. 3). Upon dissolution 

of the solid in acetonitrile, 1H, 13C and 11B NMR analysis initially 

showed exclusively starting allylamine and free pinacol borane, 

in agreement with a weak B…N interaction. Monitoring the 

reaction by 1H NMR, showed complete formation of the 

dehydrocoupled product 1g after 24 h (Fig. 4).10  

 These observations confirm that the first step for 

dehydrocoupling is the reversible formation of Fg. To further 

substantiate this hypothesis, pinacol borane was added to 

fluorene, which has a comparable Brønsted acidity to that of 

amines, but (a) lacks the heteroatom coordination ability. No 

reaction occurred regardless of time and temperature. 

Similarly, hydrochloric acid failed to react with pinacol borane 

to form chloropinacolborane. These results highlight the 

intermediacy of the Lewis adduct in the dehydrocoupling 

reaction. On the other hand, the stability of Fg in the solid 

state led to the question of whether H2 elimination is an intra- 

or intermolecular process. The latter could explain why the 

dehydrogenative coupling of the very bulky Dipp–NH2 with 

pinacolborane did not occur even under elevated 

temperatures. Indeed, we found that addition of traces of 

triethylamine11 allowed for this coupling, the borylated 

product 1f being quantitatively formed after 24 hours at 120 
oC (Fig. 2). These results suggest that, at least with this 

sterically hindered substrate, the H2 elimination is an intermol- 

Fig. 2. Substrate scope for the dehydrocoupling of pinacol borane and 9-BBN 
with amines at room temperature, with conversions measured by 1H NMR 
(referencing residual starting amine), and reaction times. a120 oC and 1 mol% 
NEt3. 

 

Fig. 3. Solid-state structure of Fg at 50% probability thermal ellipsoids (C: grey, N: 
blue, B: yellow, O: red). Selected bond length: N–B = 1.61(7) Å. 

 

Fig. 4. 
1
H NMR spectra of allylamine and pinacol borane in acetonitrile at t0 

(bottom), 12 h (middle), and 24 h (top). 
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ecular process. 

 To extend the scope of the non-catalyzed dehydrocoupling 

reaction, we then used a broad range of alcohols and phenols 

as substrates. Under the standard experimental conditions 

used for amines, we observed quantitative formation of the 

desired coupling products 2a-k and 2m-w within minutes (Fig. 

5). Note that here also, traces of triethylamine had to be 

added when the bulky 2,6-di-tert-butylphenol was used (2l).  

 As demonstrated by Roesky and others, the 

dehydrocoupling of thiols is more challenging than that of 

amines and alcohols.5 We found that no reaction occurred 

between thiols with pinacol borane even at 120 oC for 48 

hours. However, addition of 1 mol% of triethylamine allowed a 

complete conversion into product 3a and 3b after 48 h and 96 

h, respectively. With 9-BBN, the reaction proceeds at room 

temperature with dodecane thiol and at 60 oC for 2,6-

dimethylthiophenol, without the need for Et3N. 

 
Fig. 5. Substrate scope for the dehydrocoupling of pinacol and 9-BBN with 
alcohols and phenols at room temperature with isolated yields. a24 h at 120 oC 
with 1 mol% NEt3. 
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Fig. 6. Substrate scope for the dehydrocoupling of pinacol borane and 9-BBN 
with thiols with conversions measured by 1H NMR (referencing residual starting 
thiol). a1 mol% NEt3. 

 

Herein we have disclosed the first extensive investigation into 

the non-catalyzed dehydrocoupling of amines, alcohols, and 

thiols with both pinacol borane and 9-BBN. Among the 

possible applications of this process is the synthesis of BN 

containing polymers.
12

 In addition, novel uses for these 

dehydrocoupled products are currently being developed by us 

and others. For example, Fernandez and coworkers
13

 have 

shown amino- and thio- pinacol boranes to act as convenient 

sources of E– with both ynones and Michael acceptors yielding 

cis-1,4-addition products.  
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