Tetrahedron Letters xxx (2014) xxx-xxx

Contents lists available at ScienceDirect

Tetrahedron Letters

A method for the cyanation of alkenes using nitromethane as a source of cyano group mediated by proton-exchanged montmorillonite

Ken Motokura, Kenta Matsunaga, Akimitsu Miyaji, Sho Yamaguchi, Toshihide Baba*

Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan

ARTICLE INFO

Article history: Received 19 September 2014 Revised 17 October 2014 Accepted 24 October 2014 Available online xxxx

Keywords: Cyanation Nitromethane Alkene Proton-exchanged montmorillonite Heterogeneous catalysis

ABSTRACT

A novel method for the cyanation of alkenes using nitromethane as a source of the cyano group is described. H⁺-montmorillonite mediates the cyanation through the in situ formation of trimethylsilane-carbonitrile oxide from nitromethane and allylsilane, followed by 1,3-dipolar cycloaddition and subsequent rearrangement to afford the corresponding nitriles.

© 2014 Published by Elsevier Ltd.

Introduction

Nitriles are important building blocks for pharmaceuticals and agrochemicals.¹ They also receive much attention as useful precursors of amides, ketones, esters, and others.¹ Since cyanation of organic compounds is one of the most useful methods for the synthesis of target nitriles, the discovery of novel cyanation procedures is the key to access a variety of nitriles from diverse substrates.

CN sources for cyanations are broadly classified as either, nucleophilic² or electrophilic.³ Alternatively, trimethylsilanecarbonitrile oxide (Me₃SiCN \rightarrow O) as a 1,3-dipole can provide CN through 1,3-dipolar cycloaddition.⁴ De Sarlo et al. reported the synthesis of nitriles in this way from the reaction of trimethylsilanecarbonitrile oxide and several alkenes, such as styrene and norbornene (Eq. 1).⁴ This procedure is potentially applicable to the cyanation of more varied alkenes. However, the use of an instable trimethylsilanecarbonitrile oxide as a starting compound and the necessity of using a highly toxic Hg compound for its preparation⁵ have restricted its application. During the course of our research regarding the activation of silyl groups by proton-exchanged montmorillonite (H⁺-montmorillonite) as a solid acid,⁶ nitromethane was found to be a precursor of trimethylsilanecarbonitrile oxide. Herein, we report the in situ formation of trimethylsilanecarbonitrile oxide from commonly available chemicals for a novel cyanation of alkenes using nitromethane as a source of the cyano group (Eq. 2).⁷ This overcomes the problems regarding instability of trimethylsilanecarbonitrile oxide and does not require the use of highly toxic materials.

* Corresponding author. *E-mail address:* tbaba@chemenv.titech.ac.jp (T. Baba).

http://dx.doi.org/10.1016/j.tetlet.2014.10.127 0040-4039/© 2014 Published by Elsevier Ltd.

Please cite this article in press as: Motokura, K.; et al. Tetrahedron Lett. (2014), http://dx.doi.org/10.1016/j.tetlet.2014.10.127

K. Motokura et al./Tetrahedron Letters xxx (2014) xxx-xxx

Results and discussion

First, we attempted the cyanation of allyltrimethylsilane using nitromethane as the solvent and H⁺-montmorillonite as the acid. The reaction conditions and result are shown in Table 1. The reaction afforded 0.23 mmol of allylnitrile and almost all of the allylsilane (94% conversion) was converted to propylene and hexamethyldisiloxane (Table 1, entry 1). No allylnitrile was obtained when other acids, such as H_2SO_4 and Amberlyst, were used.

To confirm that nitromethane is truly the source of the cyano group in allylnitrile product, the reaction of ¹³C-nitromethane with allylsilane using H⁺-montmorillonite was conducted, as shown in Eq. 3. The incorporation of $a^{13}C$ atom in the CN group of allylnitrile was determined by GCMS (Figure S1) and ¹³C NMR analyses.

Table 1

Screening of Brønsted acids for allylnitrile synthesis from nitromethane and allyltrimethylsilane

Acid

. NI

CH ₃ NO ₂ + SIMe ₃ 80 °C, 5 h			
Brønsted acid	Acid amount (g)	Conv. of allyIsilane (%)	Allylnitrile produced (mmol)
H ⁺ -montmorillonite H ⁺ -montmorillonite Na ⁺ -montmorillonite montK10 H ₂ SO ₄ <i>p</i> -TsOH Nafion Amberlyst	0.10 0.05 0.05 0.05 0.05 0.05 0.05 0.05	94 93 8 29 86 77 28 60	0.23 0.08 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00

Reaction conditions: nitromethane (3.0 mL, 56 mmol), allyltrimethylsilane (3.0 mmol), acid (0.05–0.10 g), 80 °C, 5 h, under Ar. Conversion and product amount were determined by ¹H NMR analysis on the CDCl₃ solution of the reaction mixture using 1,4-dioxane as an internal standard.

¹³C content >95%

During the cyanation of allyltriemthylsilane, a trace amount of trimethylsilyl isocyanate (1) (Chart 1) was detected by GCMS analysis. The amount of 1 was less than 1%. The incorporation of a ¹³C atom into 1 was also detected in the reaction using ¹³C-nitromethane (Figure S2), indicating that nitromethane is transformed to 1. It was reported that trimethylsilanecarbonitrile oxide (2) (Chart 1) is readily transformed to 1 upon heating,⁵ indicating that 2 is most likely formed initially during the cyanation of allyltrimethylsilane with nitromethane using H⁺-montmorillonite.

Allylnitrile was hardly obtained when using sodium-exchanged montmorillonite (Na⁺-montmorillonite) instead of H⁺-montmorillonite (Table 1). This result indicates that the H⁺ site of montmorillonite is necessary for the cyanation reaction. Other Brønsted acids, such as Amberlyst, Nafion, and H₂SO₄, were completely inactive for the reaction of nitromethane with allyltrimethysilane (Table 1). Our group has previously reported the use of H⁺-montmorillonite as a catalyst for the allylsilylation of alkenes with allylsilanes, for which other Brønsted acids were also inactive.⁶ The catalytic activity of H⁺-montmorillonite is derived from the formation of active cationic Si species through the reaction between allylsilane and the H^+ site on the montmorillonite surface. Therefore, a proposed mechanism for the formation of **2** from nitromethane and allylsilane mediated by H⁺-montmorillonite is shown in Scheme 1. The cationic Si species ([Si]⁺) interacts with the oxygen atom of nitromethane to promote deoxygenation of nitromethane and generate fulminic acid (HCNO) and silanol. A cation exchange reaction between HCNO and another [Si]⁺ may afford 2. As shown in Table 1, 0.23 mmol of allylnitrile was obtained using 0.10 g of H⁺-montmorillonite. Since the amount of the H⁺ site in the H^+ -montmorillonite is 0.86 mmol g^{-1} , the H^+ site on the montmorillonite may act as a catalyst.

During the reaction of nitromethane with allyltrimethysilane using H⁺-montmorillonite, the formation of 4-(trimethylsilyl)-3-((trimethylsilyl)oxy)butanenitrile (**3**) (Chart 1) was observed. The

Scheme 1. Proposed mechanism for the formation of 2 from nitromethane and allylsilane mediated by H*-montmorillonite.

2

K. Motokura et al./Tetrahedron Letters xxx (2014) xxx-xxx

Figure 1. Mass spectra of intermediate 3 and ¹³C-3 during allylnitrile synthesis from nitromethane/¹³C-nitromethane and allyltrimethylsilane.

mass spectrum of **3** is shown in Figure 1. The incorporation of the ¹³C atom in the CN group of **3** when using ¹³C-nitromethane was detected by GC–MS analysis (Fig. 1). Figure 2A represents the ¹H NMR spectrum of the CDCl₃ solution of the concentrated reaction mixture after removal of H⁺-montmorillonite by filtration and subsequent evaporation. Other products, such as allylnitrile and hexamethyldisiloxane, could be selectively removed during the evaporation due to the higher boiling point of compound **3**, allowing the signals assigned to **3** (1–5) to be clearly observed.⁸ Next, the

solution was treated with H⁺-montmorillonite, and the ¹H NMR measurement of the resulting product was conducted (Fig. 2B). The signals corresponding to **3** had disappeared and the signals assigned as allylnitrile (a–c) and hexamethyldisiloxane had increased. This result clearly indicates that compound **3** is an intermediate in the formation of allylnitrile from nitromethane and allyltrimethylsilane.

The overall formation route of allylnitrile from nitromethane and allylsilane is shown in Scheme 2. First, **2** is generated by

Figure 2. ¹H NMR spectra of the CDCl₃ solution of (A) the concentrated reaction mixture containing **3** and (B) after treatment of the mixture with H^{*}-montmorillonite. *-indicates H₂O as a contaminant. Spectra (A) and (B) show the transformation of **3** to allylnitrile and hexamethyldisiloxane.

K. Motokura et al./Tetrahedron Letters xxx (2014) xxx-xxx

Scheme 2. Overall formation route of allylnitrile from nitromethane and allylsilane.

the reaction between nitromethane and allyltrimethylsilane. This is followed by the 1,3-dipolar cycloaddition of **2** and another allyltrimethylsilane and subsequent rearrangement to afford **3**. The 1,3-dipolar addition and rearrangement occur in without catalyst.^{4,9} Finally, **3** is converted to allylnitrile and hexamethyldisiloxane in the presence of H⁺-montmorillonite.

Based on the reaction route shown in Scheme 2, β -siloxy nitriles should be obtained as the major product if alkenes that do not contain silyl groups are used. We attempted the cyano-siloxylation of several alkenes using nitromethane and allyltrimethylsilane with H⁺-montmorillonite. The reaction of *p*-chlorostyrene afforded the cyano-siloxylation product in 18% yield (Eq. 4). The product yield increased to 22% for norbornene (Eq. 5). ¹H–¹H COSY and ¹H–¹³C HMQC NMR analyses indicated that both the CN and Me₃SiO groups were incorporated at the *exo*-positions of the norbornane skeleton (see Supporting information). This stereoselectivity correlates to a 1,3-dipolar cycloaddition mechanism. The synthesis of nitriles from alkenes mediated by H⁺-montmorillonite is the first cyanation of alkenes using nitromethane as a source of the cyano group.⁷

Summary

In summary, a novel cyanation of alkenes using nitromethane as a source of the cyano group was disclosed. Among the heterogeneous and homogeneous Brønsted acids tested, only H⁺-montmorillonite could mediate the cyanation reaction. The in situ formation of trimethylsilanecarbonitrile oxide, followed by 1,3-dipolar cycloaddition and subsequent rearrangement, is proposed as the reaction

pathway. Further efforts toward the improvement of the reaction efficiency as well as the scope of the substrates¹⁰ are now underway.

Experimental section

Characterization procedures

¹H and ¹³C NMR were recorded in CDCl₃ with a Bruker AVANCE III 400 or AVANCE III 500 spectrometer. ¹H–¹H COSY and ¹³C–¹H HMBC NMR were also recorded in CDCl₃ with a Bruker AVANCE III 500 spectrometer. A Shimadzu QP2010 Plus spectrometer equipped with a DB-1 column was used for GC–MS analysis. The product and the intermediate were identified by ¹H and ¹³C NMR and/or MS data.

Materials

Na⁺-montmorillonite $(Na_{0.66}(OH)_4Si_8(Al_{3.34}Mg_{0.66}Fe_{0.19})O_{20}$; Kunipia F) was obtained from Kunimine Industries Co. Ltd. H⁺-montmorillonite was prepared from Na⁺-montmorillonite using the reported ion exchange procedure with aqueous hydrogen chloride.¹¹ The parent H⁺-montmorillonite was stored under ca. 30% humidity for at least one week, and then dried under vacuum (ca. 1 mmHg) at 120 °C for 1 h before the catalytic reaction. MontK10 was purchased from Aldrich. Amberlyst was purchased from Organo Co. as Amberlyst[®] 15DRY. Nafion was purchased from Aldrich as Nafion[®] NR50. Unless otherwise noted, materials were purchased from Wako Pure Chemicals, Tokyo Kasei Kogyo Co., Kanto Kagaku Co., and Aldrich Inc.

Typical procedure for allylnitrile synthesis

The typical procedure for the cyanation of allyltrimethylsilane using nitromethane is as follows: Into a glass reactor were placed dried H⁺-montmorillonite (0.10 g), nitromethane (3.0 mL), and allyltrimethylsilane (3.0 mmol) under a dry Ar atmosphere using the Schlenk apparatus. The resulting mixture was vigorously stirred at 80 °C. After 5 h, the catalyst was separated by filtration and GC–MS analysis of the filtrate showed formation of allylnitrile. The yield of allylnitrile and conversion of allyltrimethysilane were determined by ¹H NMR analysis of the filtrate dissolved in CDCl₃ using 1,4-dioxane as an internal standard.

Typical procedure for cyano-siloxylation of alkenes

The typical procedure for the cyano-siloxylation of alkenes using nitromethane is as follows: Into a glass reactor were placed dried H⁺-montmorillonite (0.10 g), nitromethane (3.0 mL), norbornene (3.0 mmol), and allyltrimethylsilane (3.0 mmol) under a dry Ar atmosphere using the Schlenk apparatus. The resulting mixture was vigorously stirred at 80 °C. After 5 h, the catalyst was separated by filtration and GC–MS analysis of the filtrate showed formation of the cyano-siloxylated product. The yield of the nitrile product and the conversion of substrates were determined by ¹H NMR analysis of the filtrate dissolved in CDCl₃ using 1,4-dioxane as an internal standard.

The filtrate was evaporated and the crude product was purified by column chromatography using silica (*n*-hexane \rightarrow *n*-hexane/ ethyl acetate 9:1) to afford the pure product. The product was identified by ¹H and ¹³C NMR and mass data.

Acknowledgments

This study was supported by JSPS KAHENHI (grant nos. 24686092 and 25630362) and JSPS Grant-in-Aid for Scientific Research on Innovative Areas '3D Active-Site Science' (grant no. 26105003).

Please cite this article in press as: Motokura, K.; et al. Tetrahedron Lett. (2014), http://dx.doi.org/10.1016/j.tetlet.2014.10.127

Supplementary data

Supplementary data (copies of mass, ¹H NMR, and ¹³C NMR spectra of products and intermediates, and ¹H–¹H COSY and ¹H–¹³C HMQC NMR spectra of the product from norbornene are available free of charge at www.sciencedirect.com.) associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2014.10.127.

References and notes

- (a) Fleming, F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.; Shook, B. C. J. Med. Chem. 2010, 53, 7902; (b) Yamaguchi, K.; Mizuno, N. Synlett 2010, 2365; (c) Dormond, A.; Elbouadili, A.; Moise, C. J. Org. Chem. 1989, 54, 3747; (d) Yokoyama, M.; Takeshima, T. Tetrahedron Lett. 1978, 19, 147; (e) Kamitanaka, T.; Yamamoto, K.; Matsuda, T.; Harada, T. Tetrahedron 2008, 64, 5699; (f) Noè, M.; Perosa, A.; Selva, M. Green Chem. 2013, 15, 2252.
- Nucleophilic CN sources: (a) Koelsch, C. F.; Whitney, A. G. J. Org. Chem. 1941, 6, 795; (b) Friedman, L.; Shechter, H. J. Org. Chem. 1960, 25, 877; (c) Ellis, G. P.; Romney-Alexander, T. M. Chem. Rev. 1987, 87, 779; (d) Shibasaki, M.; Kanai, M.; Mita, T. In Organic Reactions; Overman, L. E., Ed.; John Wiley & Sons, Inc., 2008; Vol. 70, p 1.
- Electrophilic CN sources: (a) van Leusen, A. M.; Jagt, J. C. Tetrahedron Lett. **1970**, 12, 967; (b) Wheland, R. C.; Martin, E. L. J. Org. Chem. **1975**, 40, 3101; (c) Davis, W. A.; Cava, M. P. J. Org. Chem. **1983**, 48, 2774; (d) Hu, L.-Y.; Guo, J.; Magar, S. S.; Fischer, J. B.; Burke-Howie, K. J.; Durant, G. J. J. Med. Chem. **1997**, 40, 4281; (e) Hughes, T. V.; Hammond, S. D.; Cava, M. P. J. Org. Chem. **1998**, 63, 401; (f) Hughes, T. V.; Cava, M. P. J. Org. Chem. **1999**, 64, 313; (g) Wu, Y.; Limburg, D. C.; Wilkinson, D. E.; Hamilton, G. S. Org. Lett. **2000**, 2, 795.
- De Sarlo, F.; Brandi, A.; Goti, A.; Guarna, A.; Rovero, P. Heterocycles 1983, 20, 511.
- 5. Brandi, A.; De Sarlo, F.; Guarna, A.; Speroni, G. Synthesis 1982, 719.
- (a) Motokura, K.; Matsunaga, S.; Miyaji, A.; Sakamoto, Y.; Baba, T. Org. Lett. 2010, 12, 1508; (b) Motokura, K.; Matsunaga, S.; Miyaji, A.; Yashima, T.; Baba, T.

Tetrahedron Lett. **2011**, *52*, 6687; (c) Motokura, K.; Baba, T. *Green Chem.* **2012**, *14*, 565; (d) Motokura, K.; Matsunaga, S.; Noda, H.; Miyaji, A.; Baba, T. ACS Catal. **2012**, *2*, 1942.

- Cyanation of heteroaromatics using nitromethane as a source of cyano group has been reported: (a) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790; (b) Nagase, Y.; Sugiyama, T.; Nomiyama, S.; Yonekura, K.; Tsuchimoto, T. Adv. Synth. Catal. 2014, 356, 347.
- 8. High resolution ¹H NMR spectrum with enlarged view of intermediate **3** is shown in Figure S4, Supplementary material.
- Formation of 1 is an evidence for the existence of 2 during the reaction. However, the reaction pathway through silylation of oxygen atom of HCNO (Eq. 6) cannot be excluded.

- Other alkenes, such as 1-octene and methyl vinyl ketone were examined; however, desired cyano-siloxylated product was scarcely obtained under current reaction conditions.
- Motokura, K.; Nakagiri, N.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Org. Chem. 2007, 72, 6006.