Z. Cai et al.

Letter

One-Pot Palladium(II)-Catalyzed Synthesis of Fluorenones via Decarboxylative Cyclization

395

Zhiqiang Cai* Xu Hou Ling Hou Zhiquan Hu Bo Zhang Zhengsheng Jin

School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, P. R. of China kahonqzqc@163.com

20 examples, up to 90% yield

Received: 31.08.2015 Accepted after revision: 05.10.2015 Published online: 19.11.2015 DOI: 10.1055/s-0035-1560527; Art ID: st-2015-w0682-I

Abstract A one-pot palladium-catalyzed synthesis of fluoronones via decarboxylative cyclization is reported. This protocol offers good yields and tolerates a broad range of functional groups. Based on the extensive experimental data, we propose a plausible decarboxylative insertion mechanism.

Key words palladium-catalyzed, decarboxylative insertion, C–C cleavage, control experiment, mechanism

Fluorenones are prominent structural motifs of many electronic and optical materials¹ and bioactive natural products.² Thus, intense efforts have focused on the development of novel methods to synthesize these compounds. Traditionally, they are synthesized by Friedel–Crafts acylation,³ remote metalation,⁴ and oxidation of fluorenes⁵ or fluorenols.⁶ Recently, some new metal-catalyzed strategies are reported, including radical cyclization,⁷ coupling reactions of arylpalladium,⁸ carbonylation,⁹ and decarboxylation.¹⁰

Although diverse successful synthesis of fluorenones has been afforded, the scope of carbonyl source reported were always focused on acyl substrates and CO. More recently, carboxylic acids,¹¹ organic nitrile,¹² and aldoxime¹³ were developed as new novel carbonyl source to attach fluorenones. In the catalytic system of organic nitrile¹² or aldoxime,¹³ the carbonyl group was derived from the hydrolysis of C=N bonds. On the other hand, metal-catalyzed insertion of isocyanide¹⁴ could form the similar C=N bonds, which inspired us that isocyanide may be a new carbonyl source in the synthesis of fluorenones. Herein, a one-pot palladium(II)-catalyzed synthesis of fluorenones via decarboxylative cyclization using *tert*-butyl isocyanide as a new carbonyl source is reported (Scheme 1). The control experiments suggested a decarboxylative insertion mechanism.

We initiated our studies by using 2-phenylbenzoic acid (**1a**) and *tert*-butyl isocyanide as a model substrate (Table 1, entry 1), which was treated with 5 mol% of Pd(OAc)₂ in DMSO (50% aq) at 140 °C for 24 hours. However, very poor yield (<5%) of **3a** was afforded (Table 1, entry 1). When two

Entry ^a	Catalyst (mol%)	Additive (equiv)	Yield (%) ^b
1	$Pd(OAc)_2(5)$	_	<5
2	$Pd(OAc)_2(5)$	AgOAc (2)	38
3	$Pd(OAc)_2(5)$	Ag_2CO_3 (2)	74
4	$Pd(OAc)_2(5)$	Ag ₂ O (2)	57
5	$Pd(OAc)_2(5)$	$Cu(OAc)_2(2)$	23
6	$Pd(OAc)_2(5)$	$K_2S_2O_8(2)$	41
7	$Pd(OAc)_2(5)$	BQ (2)	0
8	$Pd(OAc)_2(5)$	AcOH (2)	<5
9	$Pd(OAc)_2(5)$	K ₂ CO ₃	0
10	$Pd(OTf)_2(5)$	$Ag_2CO_3(2)$	80
11	$PdCl_2$ (5)	$Ag_2CO_3(2)$	36
12	Pd/C (5)	$Ag_2CO_3(2)$	12

^a Reaction conditions: **1a** (0.5 mmol), *tert*-butyl isocyanide (1 mmol), catalyst (5 mol%), oxidant (1 mmol), DMSO (50% aq) 3 mL, 140 °C for 24 h. ^b Isolated yields.

Letter

Z. Cai et al.

equivalents of AgOAc were added, the yield increased to 38% (Table 1, entry 2), which suggested that oxidants might increase the yield. After studying other oxidants carefully, Ag_2CO_3 showed the best activity (Table 1, entries 3–7). The addition of acid or base did not give good results (Table 1, entries 8 and 9). Subsequently, screening of other palladium catalysts, Pd(OTf)₂ gave the best catalytic efficiency, increasing the yield of **3a** to 80% (Table 1, entries 10–12). The

use of other solvents or increasing the amount of loading catalyst and additive led to no significant improvement on the yield (Supporting Information, SI-Tables 1, 2).

Encouraged by the preliminary results, we tried to explore the functional-group tolerance for the synthesis of fluorenones. The reaction showed a good tolerance to many functional groups, including electron-donating and electron-withdrawing groups (Scheme 2, 3a-p, e.g., Me, OMe, Cl, Br, F, CF₃). Benzoic acids with electron-donating groups on the 4- or/and 3-positions afforded the corresponding products in good to excellent yields (3a-e,g,m). But 2-substituted substrate resulted in a poor vield (**3f**, 36%), which might be due to steric hindrance. Notably, halogen substituents could also be tolerated in moderate yields (**3h-i**), which provided opportunities for further functionalization. However, benzoic acids with strong electron-withdrawing groups (3k,p) showed poor activity. In general, benzoic acids with electron-donating groups gave the better yields. Hetero- or nonaromatic substrates showed no activity (**3q-t**).

Scheme 2 Exploring the utility of this transformation. *Reagents and conditions*: 1 (0.5 mmol), *tert*-butyl isocyanide (1 mmol), Pd(OTf)₂ (5 mol%), Ag₂-CO₃ (1 mmol), DMSO (50% aq) 3 mL, 140 °C for 24 h.

Syn lett

Z. Cai et al.

To gain some preliminary insight into the reaction mechanism, control experiments were employed as shown in Scheme 3. Firstly, the reaction of **1a** under standard conditions in the absence of isocyanide afforded 69% yield of xenene (Scheme 3, eq. 1). However, using the deuterated solvent (DMSO- $d_6/D_2O = 1:1$) gave the appropriate deuterated xenene with D/H = 6.3:3.7 (Scheme 3, eq. 2). Secondly, the parallel reaction of **1a**–**d**⁵ in the absence of isocyanide at 140 °C and 50 °C afforded the appropriate deuterated xenene with D/H = 8.7:1.3 and D/H = 9.1:0.9, respectively (Scheme 3, eq. 3 and eq. 4). These results suggests a decarboxylation insertion mechanism via C–H activation.¹⁵

Based upon the experimental and literature results,^{14,15} a plausible mechanism is proposed in Scheme 4. Firstly, the decarboxylation insertion of **1a** catalyzed by the palladium/silver catalyst via two possible paths (path 1 or 2) generated intermediate **III**.¹⁵ Subsequently, the domino elimination and hydrolysis of **III** (path a or path b) generated **3a** to finish the catalytic cycle.¹⁴

In summary, we have developed a one-pot palladium(II)-catalyzed synthesis of fluorenones via decarboxylative cyclization using *tert*-butyl isocyanide as a new carbonyl source.^{16,17} This direct C–COOH cleavage and C–H activation is suitable for a broad range of substrates. The control experiments suggested a possible decarboxylative insertion mechanism. Further studies concerning the detailed mechanism and the broader scope of substrates are currently under way in our laboratory.

Scheme 3 Control experiments for the mechanism

Z. Cai et al.

Acknowledgment

This work was supported financially by the Scientific Research Foundation of the Education Department of Liaoning Province (L2015383) and the Doctoral Start-Up Fund of Shenyang University of Technology (No. 521422).

Supporting Information

Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560527.

References and Notes

- (1) (a) Shultz, D. A.; Sloop, J. C.; Washington, G. J. Org. Chem. 2006, 71, 9104. (b) Usta, H.; Facchetti, A.; Marks, T. J. Org. Lett. 2008, 10, 1385. (c) Scherf, U.; List, E. J. W. Adv. Mater. 2002, 14, 477. (d) Oldridge, L.; Kastler, M.; Müllen, K. Chem. Commun. 2006, 885.
- (2) (a) Talapatra, S. K.; Bose, S.; Mallik, A. K.; Talapatra, B. *Tetrahedron* **1985**, *41*, 2765. (b) Fan, C.; Wang, W.; Wang, Y.; Qin, G.; Zhao, W. *Phytochemistry* **2001**, *57*, 1255. (c) Wu, X. Y.; Qin, G. W.; Fan, D. J.; Xu, R. S. *Phytochemistry* **1994**, *36*, 477. (d) Perry, P. J.; Read, M. A.; Davies, R. T.; Gowan, S. M.; Reszka, A. P.; Wood, A. A.; Kelland, L. R.; Neidle, S. *J. Med. Chem.* **1999**, *42*, 2679. (e) Tierney, M. T.; Grinstaff, M. W. J. Org. Chem. **2000**, *65*, 5355.
- (3) (a) Barluenga, J.; Trincado, M.; Rubio, E.; González, J. M. Angew. Chem. Int. Ed. 2006, 45, 3140. (b) Chinnagolla, R. K.; Jeganmohan, M. Org. Lett. 2012, 14, 5246. (c) Shabashov, D.; Maldonado, J. R. M.; Daugulis, O. J. Org. Chem. 2008, 73, 7818. (d) Reim, S.; Lau, M.; Langer, P. Tetrahedron Lett. 2006, 47, 6903.
- (4) (a) Tilly, D.; Samanta, S. S.; De, A.; Castanet, A.-S.; Mortier, J. Org. Lett. 2005, 7, 827. (b) Tilly, D.; Fu, J.-M.; Zhao, B.-P.; Alessi, M.; Castanet, A.-S.; Snieckus, V.; Mortier, J. Org. Lett. 2010, 12, 68. (c) Alessi, M.; Larkin, A. L.; Ogilvie, K. A.; Green, L. A.; Lai, S.; Lopez, S.; Snieckus, V. J. Org. Chem. 2007, 72, 1588. (d) Tilly, D.; Samanta, S. S.; Castanet, A.-S.; De, A.; Mortier, J. Eur. J. Org. Chem. 2006, 174. (e) Tilly, D.; Samanta, S. S.; Faigl, F.; Mortier, J. Tetrahedron Lett. 2002, 43, 8347.
- (5) (a) Yang, G.; Zhang, Q.; Miao, H.; Tong, X.; Xu, J. Org. Lett. 2005,
 7, 263. (b) Catino, A. J.; Nichols, J. M.; Choi, H.; Gottipamula, S.; Doyle, M. P. Org. Lett. 2005, 7, 5167.
- (6) (a) Liu, T.-P.; Liao, Y.-X.; Xing, C.-H.; Hu, Q.-S. Org. Lett. 2011, 13, 2452. (b) Bei, X.; Hagemeyer, A.; Volpe, A.; Saxton, R.; Turner, H.; Guram, A. S. J. Org. Chem. 2004, 69, 8626.

(7) (a) Shi, Z.; Glorius, F. *Chem. Sci.* 2013, 4, 829. (b) Wertz, S.; Leifert, D.; Studer, A. *Org. Lett.* 2013, 15, 928. (c) Seo, S.; Slater, M.; Greaney, M. F. *Org. Lett.* 2012, 14, 2650. (d) Lockner, J. W.; Dixon, D. D.; Risgaard, R.; Baran, P. S. *Org. Lett.* 2011, 13, 5628.

Letter

- (8) (a) Zhang, X.; Larock, R. C. Org. Lett. 2005, 7, 3973. (b) Waldo, J. P.; Zhang, X.; Shi, F.; Larock, R. C. J. Org. Chem. 2008, 73, 6679. (c) Pletnev, A. A.; Larock, R. C. J. Org. Chem. 2002, 67, 9428. (d) Paul, S.; Samanta, S.; Ray, J. K. Tetrahedron Lett. 2010, 51, 5604.
- (9) Campo, M. A.; Larock, R. C. Org. Lett. **2000**, *2*, 3675.
- (10) Seo, S.; Slater, M.; Greaney, M. F. Org. Lett. 2012, 14, 2650.
- (11) Fukuyama, T.; Maetani, S.; Miyagawa, K.; Ryu, I. Org. Lett. **2014**, *16*, 3216.
- (12) Wan, J.-C.; Huang, J.-M.; Jhan, Y.-H.; Hsieh, J.-C. Org. Lett. 2013, 15, 2742.
- (13) Sun, C.-L.; Liu, N.; Li, B.-J.; Yu, D.-G.; Wang, Y.; Shi, Z.-J. Org. Lett. **2010**, *12*, 184.
- (14) (a) Hong, X.-H.; Wang, H.; Qian, G.; Tan, Q.; Xu, B. J. Org. Chem. 2014, 79, 3228. (b) Zhu, C.; Xie, W.; Falck, J. R. Chem. Eur. J. 2011, 17, 12591.
- (15) (a) Wang, C.; Rakshit, S.; Glorius, F. J. Am. Chem. Soc. 2010, 132, 14006. (b) Zhou, D.-B.; Wang, G.-W. Org. Lett. 2015, 17, 1260.
- (16) A mixture of 1 (0.5 mmol), DMSO (50% aq, 3 mL), Pd(OTf)₂ (5 mol%), and Ag₂CO₃ (2 equiv) was stirred at 140 °C under air atmosphere for 24 h. The reaction mixture was washed H₂O, and the aqueous phase was extracted with EtOAc (3×). The combined organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure. The crude product was purified by silica gel column chromatography to give the corresponding products (3a–i,¹⁷ 3k–m,¹⁷ 3o–p¹⁷ according to the literature).

3-Bromo-9H-fluoren-9-one (3j)

Yield: 59%. ¹H NMR (500 MHz, CDCl₃): δ = 7.66 (d, *J* = 8.2 Hz, 1 H), 7.57 (d, *J* = 8.2 Hz, 1 H), 7.52–7.47 (m, 3 H), 7.35–7.31 (m, 1 H), 7.25 (t, *J* = 6.4 Hz, 1 H). ¹³C NMR (125 MHz, CDCl₃): δ = 192.3, 146.1, 143.1, 140.9, 134.8, 134.3, 132.3, 129.8, 128.9, 125.3, 124.5, 120.9, 120.5. HRMS: *m/z* calcd for C₁₃H₇BrO: 259.0981; found: 259.0980

3-Fluoro-6-methoxy-9H-fluoren-9-one (3n)

Yield: 62%. ¹H NMR (500 MHz, CDCl₃): δ = 7.53–7.49 (m, 1 H), 7.42 (d, *J* = 8.2 Hz, 1 H), 7.16 (s, 1 H), 7.02 (m, 2 H), 6.83 (m, 1 H), 3.76 (s, 3 H). ¹³C NMR (125 MHz, CDCl₃): δ = 191.7, 167.2 (d, *J* = 254 Hz), 147.3 (d, *J* = 10.2 Hz), 145.8, 143.2 (d, *J* = 2.4 Hz), 132.3, 130.3, 126.2 (d, *J* = 10.2 Hz), 124.2, 121.4, 115.3 (d, *J* = 22.8 Hz), 108.2 (d, *J* = 24.4 Hz), 56.5. HRMS: *m/z* calcd for C₁₄H₉FO₂: 228.2185; found: 228.2189.

(17) Li, H.; Zhu, R.; Shi, W.; He, K.; Shi, Z.-J. Org. Lett. 2012, 14, 4850.