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Abstract A one-pot palladium-catalyzed synthesis of fluoronones via
decarboxylative cyclization is reported. This protocol offers good yields
and tolerates a broad range of functional groups. Based on the exten-
sive experimental data, we propose a plausible decarboxylative inser-
tion mechanism.
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Fluorenones are prominent structural motifs of many
electronic and optical materials! and bioactive natural
products.? Thus, intense efforts have focused on the devel-
opment of novel methods to synthesize these compounds.
Traditionally, they are synthesized by Friedel-Crafts acyla-
tion,® remote metalation,* and oxidation of fluorenes® or
fluorenols.® Recently, some new metal-catalyzed strategies
are reported, including radical cyclization,” coupling reac-
tions of arylpalladium,® carbonylation,® and decarboxyl-
ation.1?

Although diverse successful synthesis of fluorenones
has been afforded, the scope of carbonyl source reported
were always focused on acyl substrates and CO. More re-
cently, carboxylic acids,!' organic nitrile,'? and aldoxime!3
were developed as new novel carbonyl source to attach flu-
orenones. In the catalytic system of organic nitrile'? or al-
doxime,'3 the carbonyl group was derived from the hydro-
lysis of C=N bonds. On the other hand, metal-catalyzed in-
sertion of isocyanide'* could form the similar C=N bonds,
which inspired us that isocyanide may be a new carbonyl
source in the synthesis of fluorenones. Herein, a one-pot
palladium(II)-catalyzed synthesis of fluorenones via decar-

one-pot decarboxylative cyclization
C—C cleavage
20 examples, up to 90% yield

boxylative cyclization using tert-butyl isocyanide as a new
carbonyl source is reported (Scheme 1). The control experi-
ments suggested a decarboxylative insertion mechanism.
We initiated our studies by using 2-phenylbenzoic acid
(1a) and tert-butyl isocyanide as a model substrate (Table 1,
entry 1), which was treated with 5 mol% of Pd(OAc), in
DMSO (50% aq) at 140 °C for 24 hours. However, very poor
yield (<5%) of 3a was afforded (Table 1, entry 1). When two

Table 1 Optimization of the Conditions

o]
COOH
[Pd/additive .
©i + N—=§ ———————
Ph DMSO (50% aq),
140 °C
1a 3a
Entry? Catalyst (mol%) Additive (equiv) Yield (%)°
1 Pd(OAC), (5) - <5
2 Pd(OAC), (5) AgOAc (2) 38
3 Pd(OAC), (5) Ag,CO; (2) 74
4 Pd(OAC), (5) Ag,0 (2) 57
5 Pd(OAC), (5) Cu(OAd), (2) 23
6 Pd(OAC), (5) K,S,04 (2) 41
7 Pd(OAC), (5) BQ (2) 0
8 Pd(OAC), (5) ACOH (2) <5
9 Pd(OAC), (5) K,CO5 0
10 Pd(OTF), (5) Ag,C0; (2) 80
11 Pdcl, (5) Ag,CO; (2) 36
12 Pd/C (5) Ag,CO0; (2) 12

3 Reaction conditions: 1a (0.5 mmol), tert-butyl isocyanide (1 mmol), cata-
lyst (5 mol%), oxidant (1 mmol), DMSO (50% aq) 3 mL, 140 °C for 24 h.
blsolated yields.
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Scheme 1 Metal-catalyzed insertion synthesis of fluorenones

equivalents of AgOAc were added, the yield increased to
38% (Table 1, entry 2), which suggested that oxidants might
increase the yield. After studying other oxidants carefully,
Ag,CO; showed the best activity (Table 1, entries 3-7). The
addition of acid or base did not give good results (Table 1,
entries 8 and 9). Subsequently, screening of other palladi-
um catalysts, Pd(OTf), gave the best catalytic efficiency, in-
creasing the yield of 3a to 80% (Table 1, entries 10-12). The
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Pd(OTf)», Ag2COs5 =

use of other solvents or increasing the amount of loading
catalyst and additive led to no significant improvement on
the yield (Supporting Information, SI-Tables 1, 2).
Encouraged by the preliminary results, we tried to ex-
plore the functional-group tolerance for the synthesis of
fluorenones. The reaction showed a good tolerance to many
functional groups, including electron-donating and elec-
tron-withdrawing groups (Scheme 2, 3a-p, e. g., Me, OMe,
Cl, Br, F, CF;). Benzoic acids with electron-donating groups
on the 4- or/and 3-positions afforded the corresponding
products in good to excellent yields (3a-e,gm). But 2-sub-
stituted substrate resulted in a poor yield (3f, 36%), which
might be due to steric hindrance. Notably, halogen substitu-
ents could also be tolerated in moderate yields (3h-j),
which provided opportunities for further functionalization.
However, benzoic acids with strong electron-withdrawing
groups (3Kk,p) showed poor activity. In general, benzoic ac-
ids with electron-donating groups gave the better yields.
Hetero- or nonaromatic substrates showed no activity (3q-t).

DMSO (aq), 140 °C

A
R1/\ / /\R2

3

Cﬁ@

3a, 80% 3b, 85% 3¢, 81%

3f 36%

3d, 78% 3e, 82%

39, 89% 3h, 54% 3i, 61%
OMe MeO
3m, 90% 3n, 62%

3j, 59% 3k, 30% 3l, 50%

30, 58% 3p, 20%

3q, 0% 3r, 0%

3s, 0% 3t, 0%

Scheme 2 Exploring the utility of this transformation. Reagents and conditions: 1 (0.5 mmol), tert-butyl isocyanide (1 mmol), Pd(OTf), (5 mol%), Ag,-

CO; (1 mmol), DMSO (50% aq) 3 mL, 140 °C for 24 h.
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To gain some preliminary insight into the reaction
mechanism, control experiments were employed as shown
in Scheme 3. Firstly, the reaction of 1a under standard con-
ditions in the absence of isocyanide afforded 69% yield of
xenene (Scheme 3, eq. 1). However, using the deuterated
solvent (DMSO-dg¢/D,0 = 1:1) gave the appropriate deuter-
ated xenene with D/H = 6.3:3.7 (Scheme 3, eq. 2). Secondly,
the parallel reaction of 1a-d’ in the absence of isocyanide
at 140 °C and 50 °C afforded the appropriate deuterated xe-
nene with D/H=8.7:1.3 and D/H=9.1:0.9, respectively
(Scheme 3, eq. 3 and eq. 4). These results suggests a decar-
boxylation insertion mechanism via C-H activation.!

Based upon the experimental and literature results,41>
a plausible mechanism is proposed in Scheme 4. Firstly, the
decarboxylation insertion of 1a catalyzed by the palladi-
um/silver catalyst via two possible paths (path 1 or 2) gen-
erated intermediate IIL."> Subsequently, the domino elimi-
nation and hydrolysis of IIl (path a or path b) generated 3a
to finish the catalytic cycle.#

In summary, we have developed a one-pot palladi-
um(Il)-catalyzed synthesis of fluorenones via decarboxyl-
ative cyclization using tert-butyl isocyanide as a new car-
bonyl source.'®!” This direct C-COOH cleavage and C-H ac-
tivation is suitable for a broad range of substrates. The
control experiments suggested a possible decarboxylative
insertion mechanism. Further studies concerning the de-
tailed mechanism and the broader scope of substrates are
currently under way in our laboratory.

Pd(ll)
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Scheme 4 The possible mechanism
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Scheme 3 Control experiments for the mechanism
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