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a b s t r a c t 

A facile, one-pot three component catalytic method is developed for the synthesis of N-substituted tetra- 

zole using RuO 2 /MMT nanocomposite. It is characterized with low and wide angle XRD which suggests 

that RuO 2 nanoparticles are evenly dispersed on the surface of MMT while FESEM images indicate a 

spherical morphology having size in the range of 40-50 nm. The catalytic efficiency is evaluated for 

three component one-pot synthesis of the tetrazole using various amine, sodium azide and triethyl- 

ortho-formate under solvent free condition. This strategy has resulted in good to excellent yields (84 

– 97%) of N-substituted tetrazoles within moderate reaction time. Moreover, the catalyst possesses ex- 

cellent reusability up to five cycles with only 5% decrease in the yield of tetrazole after 5 th cycle. The 

beneficial catalytic activity of the bifunctional nanocomposite is attributed to the uniformly dispersed 

RuO 2 nanoparticles on the surface of MMT where RuO 2 site is responsible for coordination of isocyanide 

intermediate while strong acidic character of MMT induces condensation and cyclization steps in a syn- 

ergic manner. Thus, it can be argued that RuO 2 /MMT nanocomposite possesses potential applications for 

Multi Component Reactions (MCR) in terms of efficient and sustainable manner. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Tetrazoles; a family of nitrogen rich bioactive heterocyclic scaf-

olds possess wide range of applications from medicinal chem-

stry to high energy materials [1] . They are explored as lipophilic

pacers and peptide chelating agents, peptide mimics [2] , a cata-

yst in the synthesis asymmetric molecules [3] , form an integral

tructural part of drugs like losartan and sartane and inhibitors of

IV [4] . Besides, they are widely used as ligands in Coordination

hemistry [5] and high energy density materials [6] for defense

urpose. These compounds are synthesized by classical [3 + 2] cy-

loaddition of azide with nitriles [7] or via condensation of pri-

ary amine, azide and ortho-formate through oxidative cyclisa-

ion [8] . However , these methodologies have several drawbacks in-

luding use of corrosive and toxic metal azides, highly moisture-

ensitive reaction conditions, strong acidic conditions, high reac-

ion temperature and in-situ generated hydrazoic acid which is

ighly toxic, explosive and volatile in nature. Several supported

etal oxide catalysts such as ZnO/GO, ZnO/Co 3 O 4 , CoY/zeolite,

uFe 2 O 3 , BaWO 4 , γ -Fe 2 O 3 , Fe 3 O 4 @Chitin, Fe 3 O 4 @SiO 2 @L-Arginine

nd Fe O @SiO /Cu(II)-salen are efficiently been used as a cata-
3 4 2 
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yst towards the synthesis of tetrazoles [9–17] where beneficial cat-

lytic activity is manifested by strong acidic nature of oxides. 

Recent effort s are directed towards effective utilization of

ulti-Component Reactions (MCRs) in organic synthesis that are

erformed in a single-pot because they don’t require rigorous

ork-up and purification steps [18] . This approach involves one-

ot methodology with three or more reactants in a single vessel

ithout isolating the products of intermediate steps in an atom

conomical manner [ 19 , 20 ]. Moderate reaction time, simplicity of

erformance, better yield, costs, safety and environmental accept-

bility are some of the facets of MCR syntheses [21] . Thus, MCRs

re quite often employed for the synthesis of pharmaceuticals

nd natural products, agrochemicals and polymers [22] . Majority

f MCRs are carried out with isocyanides-based intermediates or

eactants due to their excellent reactivity and capacity to gener-

te structurally diverse molecules using easily accessible starting

aterials like aldehydes or ketones, carboxylic acids, and amines

23] . Advantages of isocyanide based multi-component reactions

re tandem bond formation , functional group tolerance and the

igher degree of chemo-, regio- and stereo-selectivity. 

The dispersion of nanoparticles on different supports is envis-

ged as strategy for the development of bifunctional nanocom-

osites which prevents the agglomeration of NPs, enhances the

atalytic efficiency and these catalyst can be used in a sustain-

ble manner [ 21 , 24–26 ]. Adopting this approach, previously we re-
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N  
orted the generation of p-n heterojunction between RuO 2 layer

nd Ru NPs which is primarily responsible for the excellent cat-

lytic activity of Ru/MMT catalyst towards the synthesis of C-

ubstituted tetrazoles under ambient conditions [27] . Moreover,

he enhanced oxide layer on the active site of the catalyst is nec-

ssary for the sustained catalytic activity with excellent yields in

esser reaction time and beneficial TOF/TON values. Thus, it is

uite logical to extrapolate this strategy by designing RuO 2 /MMT

anocomposite and explore its feasibility for the one-pot synthesis

f N-substituted tetrazole via MCR approach. The objective of this

pproach stems from the fact that acidic nature of RuO 2 as well

s Lewis and Bronsted acidity of MMT would trigger the conden-

ation of amine with triethyl-ortho-formate while Ru-site would

romote oxidative cyclization step in a concerted manner. Thus,

uch a bifunctional nanocomposite may exhibit a synergic effect

owards one-pot three component synthesis of tetrazole in an ef-

cient manner. Such a methodology is been utilized towards the

ynthesis of variety of tetrazoles that has resulted in the excellent

ields within shorter reaction time and under ambient conditions

29] . Another facet of the present work involves the synthesis of

hese bioactive scaffolds under solvent free condition that avoids

sage of toxic solvents, tedious work-up and purification steps in a

reener manner [30] . In the present work, different compositions

f RuO 2 /MMT catalyst are explored for the one-pot three compo-

ent solvent free MCR type synthesis of N-substituted tetrazoles

ith amine, triethyl-ortho- formate and azide. 

. Experimental 

.1. Chemicals 

All chemicals were of analytical grade and used as received.

uCl 3 .3H 2 O (Aldrich), Montmorillonite K-10 (Fluka), triethyl-ortho-

ormate (TEOF), NaOH (Loba Chemie, UK), sodium azide and substi-

uted amines (Aldrich), DMF (S.D. Fine) and pre-coated TLC plates

silica gel 60 F254, Merck). 

.2. Pre-treatment of MMT 

The pre-pretreatment of MMT clay was carried out as per the

rocedure reported in the literature [27] . 

.3. Preparation of RuO 2 NPs 

2.05 g RuCl 3 .3H 2 O was dispersed in 100 mL water and stirred

t room temperature for 4 h. It was then subsequently hydrolyzed

y adding 0.54 g of NaOH pellets and the solution was stirred fur-

her for 2 h. Afterwards, the powder was filtered and washed thor-

ughly with deionized water to remove the excess salt. It was then

alcined at 700 °C in furnace for 3 h and subsequently ground so as

o obtain RuO 2 nanoparticles. 

.4. Preparation of RuO 2 /MMT nanocomposite 

0.9 g pre-treated Na-MMT was dispersed in 50 mL water and

tirred for 1 h. To this suspension, 0.205 g RuCl 3 .3H 2 O in 10 ml

ater was added and the mixture was stirred at room temperature

or another 4 h. It was then subsequently hydrolyzed by adding

.054 g of NaOH pellets, stirred further for 1 h, the powder thus

btained was filtered and washed thoroughly with deionized wa-

er to remove the excess salt. The powder was then calcined at

00 °C in furnace for 3 h and subsequently grounded so as to ob-

ain 10% RuO 2 /MMT composite. Similar procedure was adopted for

he synthesis of 5%, 15% nanocomposites of RuO 2 /MMT by varying

espective amounts of ruthenium salt and Na-MMT. 
.5. General procedure for the synthesis of N-substituted tetrazoles 

sing RuO 2 /MMT 

To a mixture of primary amine (1.5 mmol), triethyl-ortho-

ormate (1.5 mmol) and sodium azide (1 mmol) in a round bottom

ask, 10 mg 10% of RuO 2 /MMT catalyst was added to this mix-

ure and it was heated at 120 °C in oil bath for a desired period of

ime. After completion of the reaction, the catalyst was separated

y centrifugation at 20 0 0 rpm and the solid mass was extracted

ith 10 ml H 2 O:ethyl acetate (1:1). The organic layer was sepa-

ated, dried over sodium sulfate, and evaporated in vacuum evapo-

ator so as to obtain tcrude mass. It was then purified by recrystal-

ization in a mixture of EtOAc:MeOH (3:1) to yield pure product. It

as characterized by physical constant, 1 H and 

13 C spectral analy-

is. 

.6. Characterization 

X-ray powder diffraction (XRD) patterns were recorded on a

himadzu Lab XRD-6100 X-ray diffractometer using Cu-K α radia-

ion. FT-IR spectra were recorded on a Shimadzu (model 650 plus)

nfrared spectrophotometer with KBr pellets in the range of 400-

0 0 0 cm 

−1 . 1 H NMR (50 0 MHz) and 

13 C NMR (125 MHz) spectra

f tetrazoles in DMSO-d 

6 were recorded on Bruker AV 500 spec-

rometer. Chemical shifts are reported in ppm and the instrument

asinternally referenced to tetra methyl silane (TMS) and dimethyl

ulfoxide signals. Reported data is as follows: chemical shift, multi-

licity (s; singlet, d; doublet, t; triplet, q; quartet, m; multiplet, dd;

oublet of doublet, brs; broad singlet), coupling constants in Hz,

nd integration. Melting points were recorded on a Metler Toledo

elting point apparatus and were uncorrected. 

. Result and discussion 

.1. Characterization 

The power XRD pattern of RuO 2 /MMT composite is depicted in

ig. 1 . MMT exhibits a sharp peak around 8.9 ° corresponding to

001) phase with a basal interlayer distance of 8.9A 

0 . This spac-

ng is retained even after loading of RuO 2 nanoparticles suggesting

hat they are present on the surface of MMT [28] . The formation

uO 2 NPs on the MMT surface is reflected from the peaks that are

entered at 27.9 °, 34.9 ° and 54.3 ° corresponding to (110), (101) and

211) respectively due to the rutile phase (JCPDS Card No 9007541).

lso, their presence is further confirmed by low angle XRD analysis

 Fig. 1 (ii) ) where the peak position of (001) plane remained unal-

ered with progessive enhancement in the intensity pattern, imply-

ng that RuO 2 NP’s are not intercalated within the galleries of clay

29] . The FESEM image of RuO 2 /MMT composite display spherical

orphology with particle size in the range of 40-50 nm as well

s presence of RuO 2 particles on the surface of MMT ( Fig. 2 ). Fur-

hermore, the elemental composition of the composite from EDX

ndicates the presence of Ru along with Al and Si from alumino-

ilicate structure of MMT. 

.2. Catalyst screening 

.2.1. Optimization 

To optimize the reaction conditions, RuO 2 /MMT catalyst is eval-

ated towards one pot three component synthesis of N-substituted

etrazole with 4-chloroaniline, triethyl-ortho-formate and sodium

zide under solvent free condition ( Table 1 ). Inspection of this ta-

le reveals that the reaction does not proceed in presence of MMT

 Table 1 ; entry 1) while 38% conversion is observed with RuO 2 

P’s ( Table 1 ; entry2 ) which is further enhanced to 93% and 94%
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Fig. 1. XRD patterns of RuO 2 /MMT nanocomposites: ( i ) Wide angle (a) Na-MMT(b) RuO 2 NP’s (c) 5% (d) 10% (e) 15% and ( ii ) Low angle (a) MMT, (b) 5%, (c) 10% and (d) 15% 

loading RuO 2 on MMT. 

Fig. 2. (a) Catalyst screening FESEM image (b) EDAX with elemental composition of RuO 2 /MMT. 

Table 1 

Optimization reaction conditions for the synthesis of N-substituted tetrazole a using RuO 2 /MMT. 

Entry Catalyst Amount (mg) Reaction time (h) % Yield b 

1 MMT 10 12 No reaction 

2 RuO 2 NP’s 10 5 38 

3 5% RuO 2 @MMT 10 5 58 

4 10% RuO 2 @MMT 10 5 93 

5 15% RuO 2 @/MMT 10 5 94 

6 10% RuO 2 @/MMT 3 5 41 

7 10% RuO 2 @/MMT 5 5 75 

8 10%RuO 2 @/MMT 15 5 93 

9 10% RuO 2 @/MMT 20 5 93 

10 c 10% RuO 2 @/MMT 10 5 No reaction 

a 4-Chloroaniline (1mmol), NaN 3 (1.5 mmol), TEOF (1.5 mmol), Temp.120 °C, 
b Isolated yield 
c Reaction at room temp. 
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ith 10% and 15% RuO 2 /MMT composites respectively ( Table 1 ; en-

ries 4 and 5 ) under identical experimental conditions. Further-

ore, similar effect is observed when the amount of catalyst is

aried from 3-20 mg for this conversion. For example, when 3 mg

f 10% RuO 2 /MMT is used ( Table 1 ; entry 6 ), only 41% yield of 3a

s obtained which further increases to 93% with concomitant in-

rease in the amount of catalyst ( Table 1 ; 7-9 ). Thus, 10 mg of 10%

uO 2 /MMT is found to be optimal condition for achieving better

ield for 3a ( Table 1 ; entry 4 ) within 5 h. 
.2.2. Library synthesis 

Under these optimized conditions, we explored the feasibility,

cope and functional group compatibility towards thermally driven

olvent-free synthesis of N-substituted 1 H -tetrazoles with aromatic

nd heterocyclic amines using RuO 2 /MMT catalyst ( Table 2 ). It is

bserved that this methodology has resulted in good yields (84 –

7%) within reasonably good reaction time ranging from 3 – 8 h. It

s observed that formation of tetrazoles with heterocyclic amines

ccur at the faster rate than aromatic counterparts where higher
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Table 2 

Synthesis of N-substituted tetrazole using RuO 2 /MMT catalyst a 

Entry Reactant Time (h) Product Yield b (%) 

1 6 93 

2 6.5 91 

3 5 95 

4 4.5 96 

5 7 85 

6 8 84 

7 4 97 

8 3.5 95 

a Reaction conditions: Amine (1mmol), NaN 3 (1.5 mmol), TEOF (1.5 mmol), Temp.120 °C 
b Isolated yield 
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c  
eaction time is required for better conversion to tertrazole. This

ay be attributed to the beneficial adsorption of heterocyclic ni-

rogen through lone pair on the acidic surface of RuO 2 /MMT that

bentually results in the better conversion at considerably lesser

eaction time. The nature and position of substituents on the aro-

atic amine also seems to influence the formation of correspond-

ng tetrazoles. For example, better yields are achieved with elec-

ron donating functionalities ( Table 2 ; entries 1-4 ) in lesser reac-

ion time while, deactivating effects of electron withdrawing sub-

tituent result in the longer reaction time for the synthesis of N-
ubstituted tetrazoles, ( Table 2 ; entries 5&6 ). These compounds

re characterized by 1 H and 

13 C NMR spectral analysis ( Support-

ng information Fig. S1 ). Thus, it may be argued that stronger

cidic nature of RuO 2 /MMT nanocomposite is primarily responsi-

le for the solvent free synthesis of N-substituted tetrazoles in an

asier and economical manner. 

.2.3. Reusability studies 

The efficiency of the catalyst is usually evaluated by its suc-

essive usage in subsequent cycles under identical experimental
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Fig. 3. Reusability studies of RuO 2 /MMT catalyst. 

Fig. 4. FT-IR spectra of (a) fresh and (b) recovered 10% RuO 2 /MMT catalyst. 
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Fig. 5. XRD patterns of (a) fresh and (b) recovered 10% RuO 2 /MMT catalyst. 
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onditions. For this purpose, conversion of 2a to corresponding

etrazoles ( 3a ) is evaluated for the recycling experiment with 10%

uO 2 /MMT catalyst. It is observed that, the catalytic activity of the

omposite remains almost constant during five successi ve cycles

 Fig. 3 ) with marginal decrease of about 4 % in yield of 3a . Such

 behavior may be explained on the basis of acidity of the cata-

yst where both RuO 2 and MMT behaves as bifunctional sites for

his catalyst. Moreover, the Bronstead acidity of MMT significantly

ontribute towards the sustained catalytic activity of RuO 2 /MMT

anocomposite [28] . Marginal decrease in the yield (4%) may be

ttributed to blocking of active sites by adsorbed species on the

urface of the catalyst. Thus, RuO 2 /MMT may be regarded as robust

atalyst towards one-pot three component solvent free synthesis of

-substituted tetrazoles in a sustainable manner. 

.2.4. Post characterization of the catalyst 

Reusability studies clearly suggest that the surface properties

f bifunctional RuO 2 /MMT catalyst are not affected even after ex-

osure to successive harsh chemical environment. To authenticate

his fact, FT-IR spectra of fresh and recovered 10% RuO 2 /MMT cata-

ysts are recorded and the data is presented in Fig. 4 . Freshly pre-

ared catalysts exhibit a strong and broad peak around 50 0-50 0

m 

−1 due to Ru-O stretch [30] which remains unaltered for re-

overed catalyst after five-catalytic cycles. Similar observations are

oted for XRD studies where the crystalline phase remains unal-

ered even after five consecutive cycles ( Fig. 5 ). It is interesting

o note that the peak position and the intensities for (110), (101)

nd (211) planes of fresh and recovered catalyst are almost identi-

al with slightly sharpened nature for used catalyst probably due

o the formation of crystalline phase [31,32] . On the other hand,

here seems to be the thermal effect on the morphology of recov-

red catalyst. For example, FESEM image of used catalyst suggests

he agglomeration of RuO 2 NPs on the surface of MMT resulting in
enerating higher sized spherical particles on the surface of cata-

yst. ( Fig. 6 ). These observations clearly suggest the robustness of

anocomposite even after successive exposure to the harsh chemi-

al environment and also reflects the stronger association of RuO 2 

anoparticles on the surface of MMT. Such a clustering of oxide

ite can be ascribed to successive heating at the elevated tempera-

ure as well as stronger electronic interactions between RuO 2 sites

resent on the MMT surface of catalyst. 

To highlight the efficiency and sustainability of RuO 2 /MMT to-

ards one-pot three component methodology for MCR, a com-

arative account is tabulated ( Table 3 ) for different catalysts that

re employed for the solvent free synthesis of tetrazoles [33–39] .

nterestingly, there are only few reports on such a methodology

hich itself vouch for the significance of this strategy for MCR.

ne of the features emerged from such an assessment is that acid-

ty of catalyst is a crucial for the cyclisation of the key inter-

ediate formed during the ring closure phenomenon. For exam-

le, zeolite mediated synthesis of tetrazole is achieved with excel-

ent yield [33] while Ag-decorated borosilicate composite [34] ex-

ibit exceptional recycling capability with almost negligible lower-

ng in the yield of tetrazole. Better catalytic activity is reported for

u@bentonite [35] while the leaching of acid is observed for HClO 4 

oated SiO 2 during successive cycles [37] . Similarly, comparatively

ower yields are reported for ZnS [36] , chitosan derived magnetic

onic liquid [38] and Cu-intercalated magnetic hydrotalcite cata-

ysts [39] towards solvent free synthesis of tetrazoles. However

n our case, the yields of N-substituted tetrazole are found to be

arginally lowered (4%) during five-cycles. This feature may be

scribed to the Lewis acidity RuO 2 while the Bronsted acidity of

MT significantly contributes for the beneficial catalytic activity

owards the formation of cyclic product. Moreover, RuO 2 /MMT cat-

lyst explored in the present work exhibits sustained catalytic ac-

ivity in terms of yield and reusability due to the synergistic effect

f both RuO 2 and MMT support. Thus, it may be conluded that

uO 2 /MMT catalyst is robust, resistant to heat and its catalytic ac-

ivity is retained even after continuous exposure to harsh synthetic

onditions. 

.2.5. Plausible mechanism 

Three component one-pot cyclization process necessarily in- 

olves three steps [ 40 , 41 ]: (i) condensation of amine with TEOF

nder acidic condition (ii) nucleophilic attack of the azide on iso-

yanide like intermediate and (iii) cyclization of the intermediate.
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Fig. 6. FESM images of (a) fresh and (b) reused 10% RuO 2 /MMT. 

Table 3 

Reusability studies of different catalysts for the synthesis of N-substituted tetrazole. 

Entry Catalyst Time (h) Temp. ( °C) Reusability (no. of cycles; respective %yield) Ref. 

1 Natrolite zeolite 4 120 I-IV; 93-87 33 

2 Ag@borosilcate 3 120 I-V; 94-91 34 

3 CuNPs@bentonite 3 120 I-V; 93-85 35 

4 ZnS 3-7 130 I-V; 78-72 36 

5 HClO 4 -SiO 2 3 120 I-V; 94-91 37 

6 Nano-CSMIL 2 70 I-V; 90-84 38 

7 Fe 3 O 4 /HT-NH 2 -Cu 1–3 90 I-V; 87-80 39 

8 RuO 2 /MMT 6 120 I-V; 93-89 Present work 

Fig. 7. Proposed mechanism for the synthesis of N-substituted tetrazoles. 
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nitially, one of the ethoxy functionality of ortho formate is liber-

ted due to the strong acidic nature of the catalyst thereby forming

 carbocation, followed by nucleophilic attack of the amine ( Fig. 7 )

n this carocation. The formation of iminium cation is initiated by

he expulsion of another ethoxy group with concomitant addition

f azide that generates a pseudo-cyclic imidoylazide intermediate

y RuO 2 site of the catalyst. Eventually the cyclisation of this inter-

ediate leads to the formation of tetrazole in a concerted manner.

mongst these catalytic steps, the rate determining step is found to

e condensation of ortho formate with amine which is manifested

y the stronger acidic nature of MMT. Furthermore, RuO 2 site is re-

ponsible for coordination of imidoyl azide intermediates as well

s cyclization process. Thus, bifunctional nature of nanocomposite

fi  
rises from the acidic nature of both RuO 2 nanoparticles and MMT

n a coherent manner. The adsorptive capacity of MMT is another

nfluencing factor that accounts for better conversion in lesser re-

ction time. 

. Conclusion 

The present work demonstrates that a facile, one-pot three

omponent solvent free synthesis of tetrazole may be achieved

ith a simple, versatile and greener approach. The strong acidic

ature of RuO 2 site and MMT surface indeed contributes towards

he formation N-substituted tetrazole. The RuO 2 surface bene-

cially promotes the adsorptive coordination of isonitrile while



H.R. Pawar and R.C. Chikate / Journal of Molecular Structure 1225 (2020) 128985 7 

M  

m  

t  

f  

T  

b  

r

S

C

 

t

 

i

D

 

c  

i

A

 

C  

t  

k  

0

S

 

f  

R

 

 

 

 

 

 

 

 

 

[  

 

[  

[

[

[  

[  

[
[

[  

[  

 

[  

[
[  

[  

[

[

[

[  
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hus, it may be concluded that RuO 2 /MMT nanocomposite is ro-

ust, thermally stable and sustainable catalyst towards cyclization

eactions under ambient conditions. 
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