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A series of novel N-substituted 2-(2-oxo-2H-chromen-4-yloxy)propanamide derivatives were synthe-
sized via converting the readily available 4-hydroxy coumarin to the corresponding ethyl 2-(2-oxo-2H-
chromen-4-yloxy)propanoate followed by hydrolysis and then reacting with different substituted
amines. The molecular structures of two representative compounds, that is, 3 and 5l were confirmed
by single crystal X-ray diffraction study. All the compounds synthesized were evaluated for their
cyclooxygenase (COX) inhibiting properties in vitro. The compound 5i showed balanced selectivity
towards COX-2 over COX-1 inhibition and good docking scores when docked into the COX-2 protein.

� 2012 Elsevier Ltd. All rights reserved.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most
extensively used therapeutics worldwide for the treatment of
inflammation, pain, fever, and for the prevention of thrombosis.

The mechanisms of their pharmacological effects are based on
inhibition of the catalytic domain of cyclooxygenase enzymes by
sterically hindering the entrance of arachidonic acid as their phys-
iological binder. This results in a reduced production of prostaglan-
dins and thromboxanes, which contribute as important autocrine
and paracrine mediators in many physiologic and pathophysiologic
responses.1–4

Cyclooxygenases (COXs) are membrane-bound heme proteins
which exist in two distinct isoforms, a constitutive form (COX-1)
and an inducible form (COX-2). Both COX-1 and COX-2 share the
same substrates, produce the same products and catalyze the same
reaction using identical catalytic mechanisms. The X-ray crystal
structure suggests that both the proteins are very similar in their
tertiary conformation.5,6 Their binding pocket and catalytic site
are nearly identical. The COX-1 enzyme is responsible for main-
taining homeostasis (gastric and renal integrity) and normal pro-
duction of eicosanoids. The COX-2 is mainly found in brain and
kidney while being virtually absent in most other tissues. However,
COX-2 expression is significantly upregulated under various acute
ll rights reserved.
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and chronic inflammatory conditions. It is also well documented
that COX-2 is over expressed in numerous human cancers such
as colorectal, gastric, and breast cancer.7

Recognition of the importance of COX-2 in inflammation and
carcinogenesis has prompted discovery of various COX-2 selective
inhibitors over the last two decades. A large number of compounds
have been synthesized and investigated as selective inhibitors of
COX-2 and many of them belong to the diaryl heterocyclic class
of compounds, for example, celecoxib, rofecoxib, valdecoxib, etor-
icoxib, SC57666 etc. (Fig. 1). 8a While celecoxib is still in the market
other inhibitors are either withdrawn or not launched due to their
possible adverse side effects. For example refocoxib was with-
drawn based on the fact that its uses may be associated with an in-
creased risk of cardiovascular side effect.8b Similarly, lumiracoxib
(prexige) was hold back due to concerns that it may cause liver
failure.8c However, the lack of common reason for withdrawal of
these inhibitors suggest that the possible risk associated with their
uses may be drug-specific rather than class-specific. Incidentally,
all the inhibitors withdrawn are known to be highly selective to-
wards COX-2 compared to celecoxib. It is therefore unclear that
which degree of COX-2 selectivity should be considered as safe.
It appeared that developing moderately selective inhibitors rather
than those possessing high selectivity might be a more balanced
approach. Nevertheless, the identification of new inhibitors based
on a novel scaffold possessing structural features other than that
of the known inhibitors could be beneficial and desirable for the
potential treatment of inflammatory diseases.
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Figure 1. Examples of known COX-2 inhibitors.
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Figure 2. The design of 4-substituted coumarin derivative (B) from the known
7-substituted analogue (A).
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Our long standing interest in the identification of new COX-2
inhibitors9 prompted us to explore the use of coumarin framework
for the design of non archetype inhibitors. We were particularly
encouraged by the recent report on docking studies of 7-substituted
coumarin derivatives (A, Fig. 2) with COX-2 enzyme and their
promising anti-inflammatory activities.10 These compounds con-
taining (hetero)aryl amine connected through a linker at C-7 of
the coumarin ring were shown to interact mainly with Arg 44
amino acid, which was thought to be involved when COX-2 was
inhibited. We anticipated that a similar group at C-4 instead of at
C-7 of the coumarin ring (B, Fig. 2) would maintain the interaction
with COX-2. Moreover, an amide moiety (i.e., –CONHAr of B)
possessing a a-methyl group was thought to provide possibility of
better pharmacokinetic stability rather than an ester (i.e., –OCOCH2–
of A) containing a a-amino moiety (Fig. 2). Herein we report our
preliminary results on the synthesis and COX-2 inhibiting properties
of 4-oxyalkyl substituted coumarin derivatives which to the best of
our knowledge were not explored as inhibitors of COX earlier.

The synthesis of our target compounds B is outlined in
Scheme 1. Thus 4-hydroxy coumarin on reaction with ethyl
2-bromopropanoate yielded ethyl 2-(2-oxo-2H-chromen-4-yloxy)
propanoate (3), which on hydrolysis using NaOH solution afforded
the key starting material 2-(2-oxo-2H-chromen-4-yloxy)propanoic
acid (4). Further amidation of the compound 4 with different
amines yielded N-substituted-2-(2-oxo-2H-chromen-4-yloxy)pro-
panamide 5 (Table 1). This reaction was carried out in DMF using
the coupling reagent HATU [2-(7-aza-1H- benzotriazole-1-yl)-
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Scheme 1. Reagents and conditions: (a) K2CO3, acetone, reflux, 5 h, 98%; (b) NaO
1,1,3,3-tetramethyluronium hexafluorophosphate]. A variety of
alkyl/(hetro)aryl amines were employed to prepare a range of
target amides that are shown in Table 1. All the compounds syn-
thesized were mixture of enantiomers whereas the compound 5h
was a mixture of diastereomers. All these compounds were charac-
terized by 1H and 13C NMR as well as MS spectra. Additionally, the
molecular structure of the intermediate 3 and a representative
compound 5l were established unambiguously by single crystal
X-ray diffraction study (Figs. 3 and 4).11,12

All the compounds synthesized were evaluated for their COX
inhibiting potential and selectivity by using biochemical COX
(COX-1 and COX-2) enzyme based assay. The COX-1 enzyme
was isolated from Ram seminal vesicles whereas the recombinant
human COX-2 was expressed in insect cell expression system.
These enzymes were purified by employing conventional chro-
matographic techniques. Enzymatic activities of COX-1 and
COX-2 were measured according to the method reported earlier,13

with slight modifications using a chromogenic assay based on the
oxidation of N,N,N,N,-tetra methyl-p-phenylene diamine (TMPD)
during the reduction of PGG2 to PGH2.14,15 The known non-selec-
tive inhibitor indomethacin and COX-2 inhibitor celecoxib was
used as reference compounds in this assay. The IC50 values deter-
mined for all the compounds along with their selectivity (COX-2/
COX-1 ratio) are listed in Table 2. While most of the compounds
showed COX inhibiting properties in vitro only three of them
however were found to be COX-2 selective. While it was not clear
that which structural features were particularly responsible for
COX-2 inhibition the data presented in Table 2 however indicated
that the size of the amide side chain perhaps played a key role.
The size of this amide moiety seemed to be favorable for com-
pounds 5b, 5h and 5i that showed COX-2 selectivity (entry 2, 8
and 9, Table 2). The compound 5i was found to have better activ-
ity than 5b and 5h. It is better than indomethacin though inferior
to the diaryl heterocyclic class celecoxib in terms of selectivity.
Notably, while celecoxib is still in the market its uses in patients
having heart disease (or those who have a risk of developing
heart disease) are restricted. The use of paracetamol or certain
NSAIDs such as non-selective inhibitor naproxen have been sug-
gested to be safer choices in these patients. The compound 5i
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Table 1
Preparation of coumarin derivatives (5) from 2-(2-oxo-2H-chromen-4-yloxy)propanoic acid (4) (Scheme 1)a

Entry Amine Product (5) Yieldb (%)
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Table 1 (continued)

Entry Amine Product (5) Yieldb (%)
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a All the reactions were carried out using compound 4 (1 mmol) and an appropriate amine (1.1 mmol) in the presence of HATU (1.1 mmol) in DMF (3.0 mL) for 12 h at room
temp.

b Isolated yield.

Figure 3. ORTEP representation of the compound 3 (thermal ellipsoids are drawn at
50% probability level).

Figure 4. ORTEP representation of the compound 5l (thermal ellipsoids are drawn
at 50% probability level).
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therefore was of further interest as the moderate or balanced
selectivity displayed by this compound might be beneficial from
the view point of adverse side effects shown by rofecoxib or
lumiracoxib.

To understand the interaction of compound 5i with COX-2
enzyme, in silico docking studies were carried out (see ESI). The
docking analysis was performed to identify the key amino acid res-
idues involved in making interactions between the compound 5i
and the human COX-2 model. The compound 5i was docked suc-
cessfully in the human COX-2 homology model, which showed
good docking scores, that is, �9.48 kcal/mol. The docking program
AutoDock computes binding energy, RMSD and inhibition constant
(Ki) with respect to the docked molecule. The AutoDock computed
binding energy; RMSD and Ki values along with H-bond interacting
residues are presented in Table 3. The binding 3D conformation of
human COX-2 with compound 5i is shown in Figure 5. It was ob-
served that the interaction of 5i with human COX-2 occurred in a
distinct site, formed by Phe188, Gln189, His193, Tyr371, Trp373,
Leu376, Leu377, Tyr390, Phe393 and Ile394 residues. In a similar
docking studies the binding site of celecoxib was found to be
formed by Phe188, Gln189, His193, Asp348, Phe349, Tyr371, Trp373,
Ser516, Gly519 and Ile520 residues indicating a different binding
pocket for celecoxib which perhaps justify the differences in poten-
cies of celecoxib and 5i in COX-2 inhibition.

In summary, a series of novel N-substituted 2-(2-oxo-2H-chro-
men-4-yloxy)propanamide derivatives were designed and ex-
plored as potential inhibitors of COX. These compounds were
synthesized from readily available 4-hydroxy coumarin via a sim-
ple and straightforward three step method. The molecular struc-
tures of two representative compounds were confirmed by single
crystal X-ray diffraction study. All the compounds synthesized
were evaluated for their cyclooxygenase (COX) inhibiting proper-
ties in vitro. The compound 5i showed balanced selectivity towards
COX-2 over COX-1 inhibition and good docking scores when



Table 2
In vitro COX inhibition by N-substituted 2-(2-oxo-2H-chromen-4-yloxy)propanamide
derivatives (5)

Entry Compound COX inhibition IC50 (lM) COX-2/COX-1
Selectivity ratio

COX-1 COX-2

1 5a 4.61 74.91 16.24
2 5b 0 13.19 —
3 5c 1.64 16.83 10.26
4 5d 2.26 38.71 17.12
5 5e 9.60 50.25 5.23
6 5f 13.73 0 —
7 5g 5.03 69.94 13.90
8 5h 0 8.25 —
9 5i 2.98 1.02 0.33
10 5j 4.60 12.64 2.74
11 5k 9.64 52.39 5.43
12 5l 3.33 8.43 2.53
13 Indomethacin 0.0067 0.048 7.16
14 Celecoxib 15.0 0.042 0.0028

Table 3
Docking results of compound N-(1-oxo-1,2-dihydroisoquinolin-5-yl)-2-(2-oxo-2H-
chromen-4-yloxy)propanamide onto human COX-2

Compound Binding energy
(kcal/mol)

Estimated inhibition
constant (Ki) (nm)

RMSD
(Å)

5i �9.48 13.2 0.56

Figure 5. Docking of compound 5i into the human COX-2.

D. Rambabu et al. / Bioorg. Med. Chem. Lett. 22 (2012) 6745–6749 6749
docked into the COX-2 protein. Overall, the coumarin framework
presented here could be an attractive template for the identifica-
tion of novel cyclooxygenase inhibitors and the corresponding
synthetic strategy described could be useful for generating diver-
sity based library of small molecules of potential pharmacological
interest.
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