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A new method for the preparation of aluminum and titanium
trisphenoxides was realized using tetraallyltin or �-pinene as a
proton-trapping agent. Thus obtained chlorotitanium reagent
was converted to the corresponding cation-type reagent, which
proved to be an effective catalyst for epoxide rearrangements.

Over the last decade, extraordinary organic transformations
have been realized using aluminum tris(2,6-diphenylphenoxide)
(ATPH).1 The preparation of ATPH was routinely carried out by
treatment of Me3Al with 2,6-diphenylphenol at room tempera-
ture (Eq 1). Although Me3Al is a convenient reagent being reac-
tive to phenols, it is extremely pyrophoric2 and thus does not sat-
isfy a demand for a large-scale preparation with easy handling.
We report here a safer and more practical approach to this crit-
ical reagent by the combined use of AlBr3 and tetraallyltin re-
agents (Eq 2). This obviates the need to remove side products
such as alkali metal salts, which are inevitably generated during
usual procedures,3 by cumbersome decantation or other Schlenk
techniques. These practical advantages further extend to the syn-
thesis of a Ti-trisphenoxide reagent.
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Treatment of 2,6-diphenylphenol (12 equiv.) with AlBr3 (4
equiv.) in benzene at room temperature was followed by addition
of tetraallyltin (3 equiv.) The mixture was stirred at room tem-
perature for 1 h, and the solvent was evaporated in vacuo
(0.05mmHg, 40 �C) for 3 h with concomitant removal of the re-
sulting SnBr4 (bp 202

�C) and propene. The residual yellow solid
was identified as pure ATPH by comparison with the authentic
1H NMR data obtained by treatment of Me3Al with the phenol.4

Monitoring the reaction by 1H NMR (benzene-d6) showed that
the peaks corresponding to tetraallyltin had disappeared in a re-
gion ranging from 5.0 to 6.5 ppm. Internal standard5 peaks indi-
cated the quantitative formation of ATPH. The use of AlCl3 also
resulted in the formation of ATPH but was contaminated with
unidentified side products bearing phenoxide components.6 In
both cases, no free phenol remained, as ascertained by 1H
NMR analysis.

This procedure was also applicable to the preparation of Ti-
trisphenoxide 2.7 A similar reaction proceeded smoothly using

TiCl4 at room temperature to give the corresponding trisphenox-
ide product 2 in quantitative yield (with respect to the internal
standard, Eq 3), the structure of which was rigorously establish-
ed by 1H NMR and elemental analysis as well as by X-ray single
crystal8 analysis (Figure 1). This is in clear contrast to the results
that afforded the bisphenoxide Ti-reagent 3 by treatment of the
phenol with TiCl4 upon benzene reflux and by sweeping out
HCl under a flow of N2.

3f The crystal analysis revealed that 2
has a structure apparently distinct from, though slightly similar
to, that of ATPH; three phenyl rings form a partial cavity, one
of the rings being relatively exposed. The remaining two phenyl
rings have a face-to-face orientation to form a sandwich struc-
ture involving the chloro group (Figure 1b).
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Based on these results, a plausible mechanism for the reac-
tion could be proposed (Eq 4). We also confirmed that no reac-
tion occurred between the phenol and tetraallyltin alone even at
40 �C for 3 h. Thus the complexation-decomplexation equilibri-
um shifted to the right side and activated the release of HX from
coordination complex 4 (Eq 4). Although it was reported that al-
lyltributyltin was protonated by a mixture of binaphthol and
TiCl2(Oi-Pr)2 affording propene and tributyltin chloride,9 in
general, monodentate ligands including 1 are less effective in
forming such a metastable complex. It is also reasonable to sug-
gest a mechanism corroborating a pathway involving the direct
trap of HX from 4. Undoubtedly the acidity of the hydroxy group
of 4 is strengthened; otherwise the formation of metal phenox-
ides would not proceed.10 Whichever mechanism is preferred,
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Figure 1. The X-ray single crystal structure of 2. The (a) OR-
TEP and (b) CPK models.
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either of the reaction sequences is repeated in situ to give ATPH
and Ti-trisphenoxide 2.
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In place of tetraallyltin, �-pinene as a proton scavenger was
also capable of the synthesis of 2 (Eq 5). Although the yield was
moderate (ca. 70%), pure trisphenoxide 2 was obtained through
the Wagner–Meerwein–Whitmore rearrangement of �-pinene,
followed by recrystallization.
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Although the titanium reagent 2 showed relatively modest
catalytic activity, it was used as a cation-type catalyst superior
to the neutral catalyst ATPH (Eq 6). For example, treatment of
a 10mol% of 2 with AgOTf, followed by addition of 5 gave 6
in 75% yield within 1 h, compared with ATPH that afforded
55% yield after a prolonged reaction time (48 h). Tetra-substitut-
ed epoxide 7 was also compatible with similar conditions to give
allylic alcohol 8 (Eq 7).
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In summary, we achieved an alternative route to ATPH and
the chlorotitanium trisphenoxide 2 by use of metal halide salts
and tetraallyltin or �-pinene. Since organotin products are not
generated, this method has an environmentally more benign na-
ture. The reaction proceeded effectively with metals bearing
strong coordination capability. Application of this method to
phenols having a bidentate coordination site that would be ex-
pected to form more stable metal complexes9,10 is now in prog-
ress in our laboratory.
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